ANCI O CUINICOS HINYOD COLLEGE	,	
ANGLO-CHINESE JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATION		/100
Higher 2		
CANDIDATE NAME		
TUTORIAL/ FORM CLASS INDEX NUMBER		
MATHEMATICS	. <u>-</u>	9758/01
Paper 1	20 /	August 2024
Candidates answer on the Question Paper. Additional Materials: List of Formulae (MF26)		3 hours
READ THESE INSTRUCTIONS FIRST		
Write your index number, class and name on all the work you hand in. Write in dark blue or black pen.	Question	Marks
•	1	/4
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.	2	/5
Answer all the questions.	3	/6
Write your answers in the spaces provided in the question paper. Give non-exact numerical answers correct to 3 significant figures, or 1	4	/8
decimal place in the case of angles in degrees, unless a different level of	5	/9
accuracy is specified in the question. The use of an approved graphing calculator is expected, where	6	/9
appropriate. Unsupported answers from a graphing calculator are allowed unless a	7	/10
question specifically states otherwise.	8	/11
Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using	9	/12
mathematical notations and not calculator commands. You are reminded of the need for clear presentation in your answers.	10	/12
The number of marks is given in brackets [] at the end of each question or	11	/14
The receiver of marks is diversification of the fill of each differitor of the	Total	100

This document consists of 24 printed pages and 2 blank pages.

Anglo-Chinese Junior College

[Turn Over

1 The complex numbers z and w satisfy the following equations.

$$iw^2 + 2wz = 2i$$
$$z + iz = 2 + iw$$

Find z and w, giving your answers in the form of a+ib where a and b are real numbers. [4]

An interior designer designed a built-in cupboard for his client as shown above. The built-in cupboard of length 9a metres, a > 0, has three equal sections and each section has a semi-elliptical hole in the centre. The designer wants to fit a hollow rectangular compartment, for storage into each of the elliptical hole. Each rectangular compartment with negligible thickness, has a length of l metres, where l < 2a, a height of y metres, and a fixed depth. The cross-section for part of the built-in cupboard is shown in the diagram below and the elliptical holes are modelled by the equation

$$f(x) = \begin{cases} \sqrt{1 - \frac{x^2}{a^2}} & \text{for } -a \le x \le a, \\ 0 & \text{for } a \le x \le 2a, \end{cases}$$

and f(x+3a) = f(x) for $-\frac{9a}{2} \le x \le \frac{9a}{2}$, where a is a real constant.

- (a) Write down, in terms of l and a, the value of f(x) when $x = 3a + \frac{1}{2}l$. [1]
- (b) The interior designer wishes to maximise the rectangular compartment storage space. Show that the length of the compartment l, is $\sqrt{2}a$ metres, when the space is maximised. Find also the corresponding height of the compartment. (You do not need to show that the value is a maximum.)

- Elly started planking as an exercise and she continues the exercise every day to build her core muscles. If she meets her target duration, she increases the target duration of the exercise by an additional 4 seconds on the next day. On any day, she will stop her exercise once she meets her target duration for the day. However, Elly does not always meet her target. Each day when Elly misses her target, she decreases her target duration by 5% on the following day. On Day 1, Elly carries out 20 seconds of planking, and she hopes to reach her target of 2 minutes by the end of 30 days.
 - (a) Assume that Elly met her targets for the first 11 days but missed her target duration from Day 12 to Day 15. Determine whether Elly will be able to reach her target of 2 minutes by the end of 30 days, if she met all her targets from Day 16 onwards. [3]

Due to the difficulty level, Elly decides to restart the programme by increasing the target duration of the exercise by a% each day, regardless of whether she meets her target.

- (b) Find in terms of a, the total target duration Elly has completed by the end of 30 days if she carries out 20 seconds of planking on Day 1. [2]
 [You may assume that on any day, she will stop her exercise once she meets her target duration for that day.]
- (c) If the total target duration she has completed by the end of 30 days is at least 30 minutes, find, to the nearest integer, the least value of a. [1]
- 4 (i) Using standard series from the List of Formulae (MF26), show that for x^4 and higher powers to be neglected, $f(x) = \ln\left(\frac{1+2x}{1-2x}\right) \approx 4x + \frac{16}{3}x^3.$ [3]
 - (ii) Use your series from part (i) to estimate $\int_0^{0.04} \ln\left(\frac{1+2x}{1-2x}\right) dx$, correct to 8 decimal places.
 - (iii) Use your calculator to find $\int_0^{0.04} \ln\left(\frac{1+2x}{1-2x}\right) dx$, correct to 8 decimal places. [1]
 - (iv) Comparing your answers to parts (ii) and (iii), and with reference to the value of x, comment on the accuracy of your approximations. [2]
 - (v) Explain why a Maclaurin series for $g(x) = \ln\left(\frac{x+2}{x-2}\right)$ cannot be found. [1]

- 5 A curve has equation $y = \frac{5e^x}{\sqrt{4e^x 3}}$. The line y = 5 intersects the curve at points A and B.
 - (i) Find the exact x-coordinates of the points A and B. [3]
 - (ii) Using the substitution $u = e^x$, find the exact volume generated when the area bounded by the curve and the line y = 5 is rotated about the x-axis through 360°. Give your answer in the form $\frac{25\pi}{8}(a \ln 3 b)$, where a and b are constants to be determined. [6]
- 6 Do not use a calculator in answering this question.
 - (a) (i) One of the roots of the equation $aw^4 16w^3 + 21w^2 aw + 5 = 0$, where a is real, is 2-i. Find the value of a and the other roots. [4]
 - (ii) Hence solve $5w^4 aw^3 + 21w^2 16w + a = 0$. [2]
 - (b) The complex number z is given by

$$z = \frac{\left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)^4}{-k\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)},$$

where k is a positive real constant

Find
$$|z|$$
 and $\arg z$. [3]

7 (i) Show that $\frac{r^2-3r+1}{r!} = \frac{1}{(r-2)!} - \frac{2}{(r-1)!} + \frac{1}{r!}$.

Hence find
$$\sum_{r=3}^{n} \frac{r^2 - 3r + 1}{r!}$$
 in terms of n . [3]

- (ii) It is given that $\sum_{r=3}^{5} \frac{r^2 3r + 1}{r!} = \sum_{r=2}^{a+1} (2r 3)$. Find the value of a. [3]
- (iii) State the value of $\sum_{r=3}^{\infty} \frac{r^2 3r + 1}{r!}$. Hence evaluate $\sum_{r=7}^{\infty} \frac{r^2 r 1}{(r+1)!}$. [4]

8 The curve C is defined by the parametric equations

$$x = \theta - \cos^2 \theta$$
 and $y = \theta - \sin \theta$ where $0 \le \theta \le \pi$.

- (a) Show algebraically that the gradient of C is never negative for all points on C. [2]
- (b) Find the equation of tangent that is parallel to y axis. [2]
- (c) If θ is sufficiently small for θ^3 and higher powers to be neglected, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} \approx a + a\theta + b\theta^2,$$

where a and b are constants to be determined.

[3]

The line D has cartesian equation $y = x + \frac{1}{4}$.

- (d) Find the exact x-coordinates of the point(s) of intersection(s) of curve C and line D. [4]
- 9 The function f is given by

$$f(x)=(x-a)+\frac{1}{|x-a|}$$
, for $x \in \mathbb{R}, x \neq a$,

where a is a positive constant.

- (i) Using differentiation,
 - (a) find, in terms of a, the coordinates of the stationary point(s) of y = f(x) for x > a.

[2]

- (i) (b) show that y = f(x) has no stationary points for x < a. [2]
- (ii) Sketch the curve of y = f(x), showing clearly the equations of asymptotes, the coordinates of the points where the curve crosses the axes and coordinates of any turning point(s). [3]
- (iii) Describe a sequence of transformations which transforms the curve of y = f(x) on to the curve of $y = 2x 2a + \frac{1}{|2x|}$. [3]

The function g is given by

$$g(x) = (x-a) + \frac{1}{|x-a|}$$
, for $x \in \mathbb{R}$, $x < a$,

where a is a positive constant.

(iv) By considering the graphs of y = g(x) and $y = g^{-1}(x)$, solve the inequality $g^{-1}(x) > g(x)$, giving your answer in terms of a. [2]

Second-hand smoking in public spaces have resulted in negative effects such as coronary heart disease, lung cancer, and other diseases. Designated smoking rooms are often being built to contain the smoke. A room containing 30 m³ of air is originally free of carbon monoxide. Let V m³ be the volume of carbon monoxide in the room at time t minutes after the smoke starts entering the room. Let C be the concentration of carbon monoxide in the room at time t.

Initially, there is no carbon monoxide in the room. However, smoke containing 5% of carbon monoxide is blown into the room at the rate of 0.002 m³/min. The rate at which the carbon monoxide leaves the room is $\frac{C}{500}$ m³/min.

(i) Express
$$\frac{dV}{dt}$$
 in terms of C .

(ii) Hence, given that
$$C = \frac{V}{30}$$
, show that $\frac{dC}{dt} = \frac{1}{15000} (0.05 - C)$. [2]

- (iii) By solving the differential equation in part (ii), show that the concentration of carbon monoxide in the room at time t is $C = 0.05 \left(1 e^{-\frac{1}{15000}t}\right)$. [4]
- (iv) Explain in context what will happen to the concentration of carbon monoxide in the long run? [1]
- (v) Sketch the curve of C against t. [2]
- (vi) Medical research has shown that when the volume of carbon monoxide in the room reaches 0.0036 m³, a person exposed to it can lead to loss of consciousness. Find the time for the concentration of carbon monoxide to reach this level, giving your answer to nearest integer.
 [2]

At a ski resort, engineers are installing cables for a new cable car system to transport skiers to ski slopes. The system involves installing cables running between support towers. Cables are laid in straight lines and the widths of cables can be neglected. The cable AB is used to transport skiers up the slope and another parallel cable CD is used to transport skiers down the slope. Straight lines are used to represent the cables and a plane Π is used to model the ski slope.

The cable AB has vector equation
$$\mathbf{r} = \begin{pmatrix} 5 \\ -5 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix}$$
 where $\lambda \in \mathbb{R}$ and $-5 < \lambda < 15$.

The parallel cable CD passes through the point (3,-18,10). The cartesian equation of the ski slope Π is x-2y+3z=5.

- (i) Find the distance between the cables AB and CD. [2]
- (ii) The length of the cable from point A to point B is 100 units. Find the length of the projection of AB on the ski slope Π .
- (iii) Find the coordinates of a point P on the cable AB which is at a perpendicular distance of $2\sqrt{14}$ units from the ski slope Π .
- (iv) There is a viewing gallery on the mountain that overlooks the ski slope. The engineers wish to install a huge glass window plane at the viewing gallery. The window plane is perpendicular to the ski slope and is parallel to the cable AB. Given that (10, 10, 20) is a point on the window plane, find the cartesian equation of the window plane.
- (v) Due to a power outage while testing the system, a cable car got stuck on the cable AB at the point Q with coordinates (-7, 7, 25). The maintenance team wishes to reach the point Q as quickly as possible. Find the coordinates of the point on the ski slope closest to the point Q from where the team should launch their operation. [3]

	ANGLO-CHINESE JUNIOR CO JC2 PRELIMINARY EXAMINA Higher 2			/100
CANDIDATE NAME				
TUTORIAL/ FORM CLASS		INDEX NUMBER		
MATHEMA	TICS			9758/02
Paper 2			23	August 2024
Candidates and Additional Mate	swer on the Question Paper. erials: List of Formulae (MF2	26)		3 hours
READ THESE II	NSTRUCTIONS FIRST			-
Write your index Write in dark blue	number, class and name on all the	work you hand in.	Question	Marks
	·		1	/5
Do not use staple	HB pencil for any diagrams or grapes, paper clips, glue or correction fl	ohs. uid.	2	77
Answer all the qu	uestions.		3	/10
Write your answe	ers in the spaces provided in the qu	estion paper.	4	/8
decimal place in	numerical answers correct to 3 si the case of angles in degrees, unl	Ignificant figures, or 1 ess a different level of	5	/10
accuracy is spec The use of a	6	/8		
appropriate.		•	7	/8
question specific	swers from a graphing calculator ally states otherwise.		8	/10
a question, you	ted answers from a graphing calcul are required to present the math	nematical steps using	9	/10
mathematical not	tations and not calculator command	is.	10	/12

This document consists of 24 printed pages and 2 blank pages.

part question.

Anglo-Chinese Junior College

The total number of marks for this paper is 100.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or

[Turn over

/12

/12

11

Section A: Pure Mathematics [40 marks]

The diagram shows part of the graph $y = x^{\cos 2x}$, for $0 \le x \le 5$, which represents the path of a roller coaster. The horizontal distance travelled by the roller coaster is denoted by x units and its vertical distance travelled is denoted by y units.

- (a) Show that $\frac{dy}{dx} = x^{\cos 2x} \left[\frac{\cos 2x}{x} (2\sin 2x) \ln x \right].$ [2]
- (b) At the point on the graph where $x = \pi$, find the rate at which the roller coaster is moving vertically when it is moving horizontally at a rate of 8 units per hour.
- (c) Find the acute angle that the tangent to the graph where $x = \pi$ makes with the horizontal. [1]
- Referred to the origin O, the points A, B and C have position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively and they lie on plane π .
 - (a) Show that $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$ is a vector perpendicular to the plane π . [2]
 - (b) Prove that the equation of plane π can be written as

$$\mathbf{r} \bullet (\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) = \mathbf{a} \bullet (\mathbf{b} \times \mathbf{c}),$$

explaining clearly the reason for any result that you use in your proof. [2]

(c) Given that $\mathbf{a} = \mathbf{i}$, $\mathbf{b} = \mathbf{j}$ and $\mathbf{c} = \mathbf{k}$, show that the equation of the plane π can be written as $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1$. Hence, find the cartesian equations of the planes which are at a distance of 5 units from plane π .

- 3 (a) Show that $\int 2t \cos^2 t \, dt = \frac{1}{4} \left(2t \sin 2t + 2t^2 + \cos 2t \right) + c$, where c is an arbitrary constant.
 - [3]

(b) A curve C has parametric equations

4

$$x = 2t \sin t$$
, $y = \cos t$ for $\frac{3\pi}{4} \le t \le \pi$.

- (i) Sketch the graph of C. Give in exact form the coordinates of the end points. [2]
- (ii) Find the exact area enclosed by C, the y-axis, the x-axis and the line $x = \frac{3\pi}{2\sqrt{2}}$.

The origin O and the points A, B and C lie in the same plane, where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$. It is given that $\angle AOC = \angle BOC = \theta$, where θ is an acute angle.

- (a) Show that $\mathbf{c} \cdot \hat{\mathbf{a}} = \mathbf{c} \cdot \hat{\mathbf{b}}$ where $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are unit vectors in the directions of vectors \mathbf{a} and \mathbf{b} respectively.
- (b) If c can be written as $m\hat{a} + n\hat{b}$, where m and n are constants, use the result from (a) to show that m = n.
- (c) Write down the equation of the line passing through the points A and B. [1]
- (d) Given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 2$ and m = n, show that the position vector of the point of intersection of the line passing through A and B and the line passing through C and C is $t(\hat{\mathbf{a}} + \hat{\mathbf{b}})$, where t is a constant to be determined.

- 5 The function h is defined by $h: x \mapsto \left[\ln(x+2)\right]^2 + 1$, $x \in \mathbb{R}$, x > -2.
 - (a) The function h^{-1} exists if the domain of h is restricted to $-2 < x \le k$. State the greatest possible value of k.

The function f is defined by

$$\mathbf{f}(x) = \begin{cases} \left[\ln(x+2)\right]^2 + 1, & \text{for } x \in \mathbb{R}, -2 < x \le -1, \\ \frac{1}{x+2}, & \text{for } x \in \mathbb{R}, x > -1. \end{cases}$$

- **(b)** Sketch the graph of y = f(x). [1]
- (c) Given that f^{-1} exists, find f^{-1} in a form similar to f. [4]
- (d) Show that f^2 exists and find its range. [2]
- (e) If $f^2(2) = f(x)$, find x. [2]

Section B: Probability and Statistics [60 marks]

- 6 The events A and B are such that P(A) = a and P(B) = b. A and B are independent events.
 - (a) Find an expression for $P(A' \cap B')$ in terms of a and b, and hence prove that A' and B' are independent events. [2]

It is given that P(A'|B') = 0.85 and P(B') = 0.8.

(b) Find
$$P(A \cap B')$$
. [2]

For a third event C, it is given that A and C are mutually exclusive and $P(A' \cap C') = 0.52$.

(c) Find
$$P(C)$$
. [1]

(d) Hence find the set of possible values of
$$P(A' \cap B' \cap C')$$
. [3]

- 7 Taylor is planning some surprise treats for her fans during her upcoming concert. She is creating a setlist of 12 songs which consists of the following:
 - 6 songs chosen from her entire discography which will include her number one hit song,
 - 3 surprise duets with a special guest artist,
 - 3 pre-recorded songs.
 - (a) In how many ways can Taylor arrange the setlist of 12 songs by considering the following:
 - her number one hit song is the last song in the setlist,
 - the 3 surprise duets are to be performed back-to-back,
 - the 3 pre-recorded songs are all separated from each other by at least one song. [2]

Another segment of Taylor's concert involves a medley consisting of dancers from different countries. It is given that her dance entourage is made up of dancers from 6 different countries. There are 5 dancers from each country.

(b) Find the number of ways she can form a team of 10 dancers from 3 different countries with at least 2 dancers from each country. [4]

The final segment of Taylor's concert is a high-energy dance routine involving her most talented team of 10 dancers. The choreography requires the dancers to be positioned at 10 different spots on the stage. 5 of the spots form a circle with each spot illuminated in blue by the spotlights. The remaining 5 spots form another circle with each spot illuminated with a distinct colour by the spotlights.

- (c) Given that the two circles do not overlap, find the number of possible arrangements for the 10 dancers at the 10 spots. [2]
- A refrigerator manufacturer claims that the mean lifespan of refrigerators of a particular model is 12 years. A consumers association representative suspects that the mean lifespan of the refrigerators is actually less than 12 years.

The durations x, in years, of a random sample of 45 refrigerators are summarised as follows.

$$\sum (x-12) = -4.3$$
 $\sum (x-12)^2 = 17.08$

- (a) Calculate unbiased estimates of the population mean and variance of the lifespan of the refrigerators. [2]
- (b) State hypotheses that can be used to test if the mean lifespan of the refrigerators is less than 12 years, defining any parameters you use. Test, at the 5% level of significance, whether the mean lifespan of the refrigerators is less than 12 years. [4]

The manufacturer switches to a different coolant and decides to test whether the mean lifespan of the refrigerators has changed from 12 years. He records the durations of a large random sample of n refrigerators and finds that their mean lifespan is 12.4 years and variance is 4.1 square years.

A test at 5% significance level, is carried out on the new random sample. The test shows that there is sufficient evidence that the mean lifespan of refrigerators has changed.

- (c) Find the range of possible values of n. [4]
- 9 In this question you should state the parameters of any distribution you use.

The times, in minutes, taken for male runners to complete a marathon follow the distribution $N(196, 24^2)$.

- (a) Calculate the expected number of male runners who take more than 180 minutes to complete a marathon in a randomly chosen batch of 80 male runners. [2]
- (b) It is given that at most 10% of the fastest male runners will be eligible to join the competition. Find the qualifying time, to the nearest minute, to join the competition.

The times, in minutes, taken for female runners to complete a marathon follow the distribution N(210, 30²).

(c) Find the probability that the total time taken by a randomly selected male runner and 3 randomly selected female runners is between 700 and 800 minutes. [3]

To help the group of marathon runners improve their timings for the actual competition, a sponsor provides all runners with a set of running apparel to help them reduce air drag. This reduces the timing of each male runner by 5% and reduces the timing of each female runner by 6%.

- (d) Find the probability that, after being equipped with the new apparel, the total time taken by 2 randomly chosen female runners differs from twice the time taken by a randomly selected male runner by less than 17 minutes. [4]
- A female social media influencer is analysing the performance of her past videos posted online. She wants to understand the relationship between the number of video views, v, and the number of followers gained, f, from her past video posts. The data from her earliest 9 videos is given in the table below.

	ν	1000	5000	8000	10 000	20 000	30 000	40 000	50 000	60 000
ŀ	f	15	163	10	278	389	456	492	541	560

(a) Due to a technical issue, one of the 9 videos had no audio which affected the number of followers gained. Draw a scatter diagram of these 9 data points and circle the data point that likely represents the video with no audio. [2]

The female social media influencer decides to **exclude** the data point that represents the video with no audio from her analysis. For parts (b), (c) and (d) of this question, you should **exclude** this data point.

(b) Use your scatter diagram to explain with reasons the conclusion that the influencer should reach regarding the relationship between f and v. [1]

(c) By referring to the scatter diagram and calculating the relevant product moment correlation coefficients, determine whether the relationship between f and v is modelled better by f = a + bv or $f = a + b \ln v$, where a and b are constants.

Explain how you decide which model is better and state the equation of the least squares regression line in this case, giving your answer to 3 decimal places. [5]

- (d) Use the appropriate least squares regression line in (c) to estimate the number of followers gained when the number of video views is 100 000. Comment on the reliability of this estimate.
- (e) Explain why in the 'method of least squares', the distances which are used in finding the least squares regression line are squared. [1]

A male social media influencer also decides to analyse the performance of his past videos posted online and found that the sum of the squares of the distances which are used in finding the least squares regression line is zero.

- (f) What can you deduce about the data points of this male influencer?
- A candy shop is having a lucky draw to generate publicity. On average, 4% of candy bars produced contain a lucky draw ticket each.
 - (a) The shop owner orders r candy bars on a particular day. The number of candy bars that contain a lucky draw ticket each is the random variable D.
 - (i) State, in the context of the question, two assumptions needed to model D by a binomial distribution. [2]

You are now given that D can be modelled by distribution B(r, 0.04).

(ii) Find the value of r if the variance is 1.92. [1]

The shop owner orders k candy bars on another day.

(b) The probability that there are more than 3 lucky draw tickets among the k candy bars is at least 0.34. Determine the minimum value of k. [3]

The lucky draw box contains five numbered vouchers. Two of the vouchers are numbered 0, the three others are numbered 1, 2 and 4 respectively. A voucher is taken one at a time, at random and without replacement, until the second voucher labelled 0 is taken out. The random variable A is the sum of the numbers on the vouchers taken.

(c) State the possible values that A can take and determine the probability distribution of A. [4]

A customer plays this lucky draw once and receives \$A.

(d) Find the probability that the customer receives at least \$5, given that he has taken out at least 4 vouchers. [2]

entation (P)

Report
Markers'
Paper 1
xamination
Preliminary E
Mathematics F
024 JC2 H2
7

$iw^{3} + 2wz = 2i (1)$ $z + iz = 2 + iw (2)$ From eq (2): $z(1+i) = 2 + iw (2)$ $z(1+i) = 2 + iw (2)$ Sub into eq (1): $iw^{2} + 2wz = 2i$ $iw^{2} + w(2 - 2i + iw + w) = 2i$ $(1+2i) w^{2} + (2 - 2i) w - 2i = 0$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^{2}} - 4(1+2i)(-2i)}{2(1+2i)}$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^{2}} - 4(1+2i)(-2i)}{2(1+2i)}$ $= \frac{-2+2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2+2i \pm \sqrt{i}}{2(1+2i)}$ $= -2+2i $	5	Solutions	Markers' Comments
From eq (2): z + iz = 2 + iw (2) From eq (2): $z(1+i) = 2 + iw (2)$ Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2 - 2i + iw + w) = 2i$ $(1+2i) w^2 + (2 - 2i) w - 2i = 0$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^2 - 4(1+2i)(-2i)}}{2(1+2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1 + i $	-	7	Common mistalve
From eq (2): z(1+i) = 2+iw(2) From eq (2): $z(1+i) = 2+iw - 1-i$ $z(1+i) = 2+iw - 1-i$ Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2-2i+iw+w) = 2i$ $(1+2i) w^2 + (2-2i) w - 2i = 0$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^2 - 4(1+2i)(-2i)}}{2(1+2i)}$ $= \frac{-2+2i \pm 4i}{2(1+2i)}$ $= \frac{-2+2i \pm 4i}{2(1+2i)}$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= \frac{1}{\sqrt{1 - \frac{2}{4^2}}}$ $= \sqrt{1 - \frac{2}{4^2}}$	•	i	1 TC
From eq (2): $z(1+i) = 2 + iw$ $\Rightarrow z = \frac{2 + iw}{1 + i} \frac{1 - i}{1 - i} = \frac{2 - 2i + iw - i^2w}{1^2 - i^2} = \frac{1}{2}(2 - 2i + iw + w)$ Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2 - 2i + iw + w) = 2i$ $(1+2i)w^2 + (2-2i)w - 2i = 0$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^2 - 4(1+2i)(-2i)}}{2(1+2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $= (2i + 2i)$ When $x = 3a + \frac{1}{2}i$, for $x = \frac{1}{2}i$, $x = \frac{1}{2}i$.		İ	1.11
$z(1+i) = 2 + iw$ $\Rightarrow z = \frac{2 + iw}{1 + i} \frac{1 - i}{1 - i} = \frac{2 - 2i + iw - i^2 w}{1^2 - i^2} = \frac{1}{2} (2 - 2i + iw + w)$ Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2 - 2i + iw + w) = 2i$ $(1+2i) w^2 + (2 - 2i) w - 2i = 0$ $w = \frac{-(2 - 2i) \pm \sqrt{(2 - 2i)^2 - 4(1 + 2i)(-2i)}}{2(1 + 2i)}$ $w = \frac{-2 + 2i \pm \sqrt{-16}}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $= 2i + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $= 4i - \frac{2i}{4a^2}$ $= \sqrt{1 - \frac{1^2}{4a^2}}$		From eq (2):	(4w-w')+3w'i=-2+2i
$\Rightarrow z = \frac{2 + iw}{1 + i} \frac{1 - i}{1 - i^2} = \frac{2 - 2i + iw - i^2 w}{1^2 - i^2} = \frac{1}{2}(2 - 2i + iw + w)$ Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2 - 2i + iw + w) = 2i$ $(1 + 2i) w^2 + (2 - 2i) w - 2i = 0$ $w = \frac{-(2 - 2i) \pm \sqrt{(2 - 2i)^2 - 4(1 + 2i)(-2i)}}{2(1 + 2i)}$ $w = \frac{-2 + 2i \pm \sqrt{-16}}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= 1 + i \text{ or } \frac{3 - 6i}{5 - 5i}$ $= 1 + i \text{ or } \frac{3 - 6i}{5 - 5i}$ $= \sqrt{1 - \frac{1}{4a^2}}$ $= \sqrt{1 - \frac{1^2}{4a^2}}$		z(1+i) = 2+iw	Equate real:
$\Rightarrow z = \frac{z + iw}{1 + i} \frac{1 - i}{1 - i} = \frac{z - 2i + iw + i}{1 - i} = \frac{1}{2} (2 - 2i + iw + w)$ Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2 - 2i + iw + w) = 2i$ $(1 + 2i) w^2 + (2 - 2i) w - 2i = 0$ $w = \frac{-(2 - 2i) \pm \sqrt{(2 - 2i)^2 - 4(1 + 2i)(-2i)}}{2(1 + 2i)}$ $w = \frac{-2 + 2i \pm \sqrt{-16}}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1 + 2i)}$ $= z = 1 \text{or} \frac{3 - 6i}{5 - 5i}$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{1^2}{4a^2}}$			$(4w-w^2) = -2$
Sub into eq (1): $iw^2 + 2wz = 2i$ $iw^2 + w(2 - 2i + iw + w) = 2i$ $(1+2i)w^2 + (2-2i)w - 2i = 0$ $w = -(2-2i) \pm \sqrt{(2-2i)^2 - 4(1+2i)(-2i)}$ $= -2 + 2i \pm \sqrt{-16}$ $= -2 + 2i \pm 4i$ $= -2 + 2$		$\Rightarrow z = \frac{z + 1W}{1 + 1W} = \frac{1 - z + 1W - 1W}{1 - z - z} = \frac{1}{z} (2 - 2i + 1W + W)$	Equate imag: $3w^2 = 2$
Sub mio eq (1): $iw^{2} + 2wz = 21$ $iw^{2} + w(2 - 2i + iw + w) = 2i$ $(1+2i)w^{2} + (2-2i)w - 2i = 0$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^{2} - 4(1+2i)(-2i)}}{2(1+2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $= z = 1 \text{ or } \frac{3}{5} - \frac{6}{5}i$ $f(x) = f(3a + \frac{1}{2}i)$ $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{1^{2}}{4a^{2}}}$ $= \sqrt{1 - \frac{1^{2}}{4a^{2}}}$		(+1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	Taking wi, zi as imaginary
		Sub into eq (1): $iw^2 + 2wz = 2i$	and w, z is real
$(1+2i) w^2 + (2-2i)w - 2i = 0$ $w = \frac{-(2-2i) \pm \sqrt{(2-2i)^2 - 4(1+2i)(-2i)}}{2(1+2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1+i \text{ or } -\frac{3}{5} + \frac{1}{5}i$		$ iw^2 + w(2-2i+iw+w) = 2i$	
$w = \frac{-(2-2i)\pm\sqrt{(2-2i)^2-4(1+2i)(-2i)}}{2(1+2i)}$ $= \frac{-2+2i\pm\sqrt{-16}}{2(1+2i)}$ $= \frac{-2+2i\pm4i}{2(1+2i)}$ $= 1+i \text{ or } -\frac{3+1}{5+5}i$ $f(x) = f(3a+\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1-\frac{l^2}{4a^2}}$		$\begin{cases} (1+2i)w^2 + (2-2i)w - 2i = 0 \end{cases}$	Trying to solve the
$w = \frac{-(2-2i)\pm\sqrt{(2-2i)^2} - 4(1+2i)(-2i)}{2(1+2i)}$ $= \frac{-2+2i\pm\sqrt{-16}}{2(1+2i)}$ $= \frac{-2+2i\pm4i}{2(1+2i)}$ $= 1+i \text{ or } -\frac{3+\frac{1}{5}}{5}i$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$			question by just letting z =
$w = \frac{2(1+2i)}{2(1+2i)}$ $= \frac{-2+2i\pm\sqrt{-16}}{2(1+2i)}$ $= \frac{-2+2i\pm4i}{2(1+2i)}$ $= 1+i \text{ or } -\frac{3+\frac{1}{2}i}{5+\frac{5}{5}i}$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$		$-(2-2i)\pm\sqrt{(2-2i)^2-4(1+2i)(-2i)}$	a + ib and $w = u + iv$
$= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $z = 1 \text{ or } \frac{3 - 6i}{5 - 5i}$ $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$		W = W	equating real and
$= \frac{-2 + 2i \pm \sqrt{-16}}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $z = 1 \text{ or } \frac{3 - 6i}{5 - 5i}$ $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$		7(1+71)	imaginary and forming 4
$\frac{=}{2(1+2i)}$ $=\frac{-2+2i\pm 4i}{2(1+2i)}$ $=1+i \text{ or } -\frac{3+\frac{1}{2}i}{5+\frac{5}{5}i}$ When $x=3a+\frac{1}{2}i$, $f(x)=f(3a+\frac{1}{2}i)$ $=f(\frac{1}{2}i)$ $=f(\frac{1}{2}i)$ $=\sqrt{1-\frac{l^2}{4a^2}}$		$-2 + 2i \pm \sqrt{-16}$	equations.
$= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= \frac{-2 + 2i \pm 4i}{2(1+2i)}$ $= 1 \text{ or } \frac{3 + \frac{1}{5}}{5 - 5}i$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$		=	i
$= \frac{-2 + 2.1 \pm 41}{2(1+2i)}$ $= 1+i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \left(\frac{1}{2}i\right)^2}$ $= \sqrt{1 - \frac{l^2}{4a^2}}$			Students wrongly
$2(1+2i)$ $= 1+i \text{ or } -\frac{3}{5} + \frac{1}{5}i$ $z = 1 \text{ or } \frac{3-6}{5-5}i$ When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$		= -2+21±41	rejected $z = 1$ claiming
$z = 1 + i \text{ or } -\frac{3}{5} + \frac{1}{5};$ $z = 1 \text{ or } \frac{3}{5} - \frac{6}{5};$ $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{i^2}{4a^2}}$		2(1+2i)	that it is not real.
When $x = 3a + \frac{1}{2}i$, $f(x) = f(3a + \frac{1}{2}i)$ $= f(\frac{1}{2}i)$ $= \sqrt{1 - \frac{1^2}{4a^2}}$			
When $x = 3a + \frac{1}{2}l$, $f(x) = f(3a + \frac{1}{2}l)$ $= f(\frac{1}{2}l)$ $= \sqrt{1 - \left(\frac{1}{2}l\right)^2}$ $= \sqrt{1 - \frac{l^2}{4a^2}}$			
When $x = 3a + \frac{1}{2}l$, $f(x) = f(3a + \frac{1}{2}l)$ $= f(\frac{1}{2}l)$ $= \sqrt{1 - \frac{l^2}{4a^2}}$ $= \sqrt{1 - \frac{l^2}{4a^2}}$		ğ	
When $x = 3a + \frac{1}{2}l$, $f(x) = f(3a + \frac{1}{2}l)$ $= f(\frac{1}{2}l)$ $= \sqrt{1 - \frac{l^2}{a^2}}$ $= \sqrt{1 - \frac{l^2}{4a^2}}$			Students need to learn how
$f(x) = f(3a + \frac{1}{2}l)$ $= f(\frac{1}{2}l)$ $= \sqrt{1 - \frac{l^2}{a^2}}$ $= \sqrt{1 - \frac{l^2}{4a^2}}$	2(a)	When $x = 3a + \frac{1}{2}t$,	to use the information of
	ì	-	f(x) = f(x)
		$f(x) = f(3a + \frac{1}{x}I)$	1(x+3a)=1(x)
		7	to get $f(3a + \frac{1}{2}I) = f(\frac{1}{2}I)$
		= f(\frac{1}{2})	2, 2,
		(2,)	AND
		(4. \2	read the domain of
7		$\{I_{\overline{1}}^{-}\}$	piecewise function.
		$= (1 - (\frac{2}{3}))$	
		4 42	Common mistake: Most
		12	students substituted
function directly without realizing that it does not fall within the given		$=\sqrt{1-rac{1}{4a^2}}$	$x = 3a + \frac{1}{2}l$ into the
function directly without realizing that it does not fall within the given			77
realizing that it does not fall within the given			function directly without
tall within the given			realizing that it does not
			tall within the given

Compartment. A = $l \sqrt{1 - \frac{l^2}{4}}$ $A = l \sqrt{1 - \frac{l^2}{4a}}$ To maximize A To maximize A $\sqrt{1 - \frac{l^2}{4a^2}} - \sqrt{1 - \frac{l^2}{4a^2}} - 1 - \frac{l^2$	sa of the rectangular	Constant. $ \frac{1}{2} + I \left(\frac{-2l}{4a^2} \right) $ To maximise the rectangular compartment storage space, they need to find <i>l</i> in terms of <i>l</i> first. $ \frac{1^2}{4a^2} \sqrt{1 - \frac{l^2}{4a^2}} $ Unfortunately, many students failed to do so, they maximise the height instead, hence zero marks awarded.	$\frac{l^2}{a^2\sqrt{1-\frac{l^2}{4a^2}}} = 0$ $\sqrt{1-\frac{l^2}{4a^2}} = \frac{l^2}{4a^2\sqrt{1-\frac{l^2}{4a^2}}}$ $1-\frac{l^2}{4a^2} = \frac{l^2}{4a^2}$	Since $l > 0$, $l = \sqrt{2}a$ (shown). Thus the height of the compartment is $\frac{1}{\sqrt{2}}$ cm.	
	Let A be the cros compartment. $A = l \sqrt{1 - \frac{l^2}{4a^2}}$	$\frac{dA}{dl} = \sqrt{1 - \frac{l^2}{4a^2}} + l$ $= \sqrt{1 - \frac{l^2}{4a^2}} - \frac{l^4}{4a^4}$ To maximize A, $\frac{dA}{dl} = 0$	$\sqrt{1-\frac{l^2}{4a^2}-4a^2}$	Since $l > 0$, $l = \sqrt{2}a$ (st) compartment is $\frac{1}{\sqrt{2}}$ cm.	

	3(b)				3(2)				
$1 - \left(1 + \frac{a}{100}\right)$	$S_{10} = \frac{20\left[1 - \left(1 + \frac{a}{100}\right)^{30}\right]}{\left[1 + \frac{a}{100}\right]^{30}} = \frac{2000}{\left[1 + \frac{a}{100}\right]^{30} - 1}$	$U_{30} = 64(0.95)^4 + 14(4) = 108.1284$ < 120 seconds Since the maximum time Elly can achieve is 108.12 seconds, thus, she is not able to	$U_{17} = 64(0.95)^4 + 4$ $U_{20} = 64(0.95)^4 + (5-1)(4)$:	$U_{13} = 64(0.95)$ $U_{15} = 64(0.95)^{4-1}$ $U_{16} = 64(0.95)^{3-1}$	Let U_n be the Elly's targeted time of <i>n</i> th day $U_{12} = 20 + 11(4) = 64$	To maximize A , $\frac{dA}{dx} = 0$ $1 - \frac{x^2}{a^2} = \frac{x^2}{a^2} \implies x^2 = \frac{a^2}{2} \implies x = \frac{a}{\sqrt{2}}$ since $x > 0$.	$\sqrt{1-\frac{x^2}{a^2}}$	$\frac{dA}{dx} = 2\sqrt{1 - \frac{x^2}{a^2} + 2x} \left(\frac{-\frac{2x}{a^2}}{2\sqrt{1 - \frac{x^2}{a^2}}} \right)$	Alternatively $A = 2x\sqrt{1 - \frac{x^2}{a^2}}$
Wrong common ratio used: • a , $\frac{a}{100}$ etc There are 30 terms in the series, not 29.	Wrong notations used: • 1.0a, 0.0a etc.		U_{16} , it is should not be $U_{16} = 64(0.95)^3 + 4$.	not $U_{12} = 60(0.95)$. As the target is always based on the previous day's outcome. Likewise for	Note: $U_{12} = 20 + 11(4) = 64$,				

4(v)	4(ii)	4(ii)	Ś	
For Maclaurin series, $g(0)$ is required. When $x = 0$, $\ln(-1)$ is undefined. Thus the Maclaurin series for $g(x) = \ln\left(\frac{x+2}{x-2}\right)$ cannot be found.	$\int_0^{\infty} \ln\left(\frac{1+2x}{1-2x}\right) dx = 0.00320342 \text{ (to 8 d.p)}$ When the value of x is close to zero, the approximation of both is as accurate as up to 8 decimal places.	$\int_0^{0.64} \ln\left(\frac{1+2x}{1-2x}\right) dx \approx \int_0^{0.64} 4x + \frac{16}{3}x^3 dx$ $= 0.00320341 \text{ (to 8 d.p)}$	Since $\ln(1+x) = x - \frac{x}{2} + \frac{x}{3} - \frac{x}{4} + \dots$ $\ln\left(\frac{1+2x}{1-2x}\right) = \ln(1+2x) - \ln(1-2x)$ $= 2x - \frac{4x^2}{2} + \frac{8x^3}{3} - \frac{16x^4}{4}$ $-\left(-2x - \frac{4x^2}{2} - \frac{8x^3}{3} - \frac{16x^4}{4}\right) + \dots$ $\approx 4x + \frac{16}{3}x^3 \text{ (shown)}$	$\frac{2000}{a} \left[\left(1 + \frac{a}{100} \right)^{30} - 1 \right] \ge 1800$ From GC, $a \ge 6.73$. Thus $a \approx 7$ (to the nearest integer)
Stating $\ln(x-2) = \ln\left[(-2)\left(1-\frac{x}{2}\right)\right]$ $= \ln(-2) + \ln\left(1-\frac{x}{2}\right)$ is unacceptable as $\ln\left[(-2)\left(1-\frac{x}{2}\right)\right] \neq \ln(-2) + \ln\left(1-\frac{x}{2}\right)$ because logarithm properties are valid only for positive real numbers.	As above. Both points are necessary in order to get the full credit.	This is 8 decimal places and 6 significant figures. Do not give up to 10 decimal places.	Note the meaning of standard series in MF26.	Not possible to solve algebraically.

$\pi \int_{1}^{3} [5^{2} - (\frac{5u}{\sqrt{4u - 3}})^{2}] \frac{1}{u} du$	$\pi \int_{1}^{\ln 3} \frac{\int_{0}^{\ln 3} \left(\frac{5e^{x}}{\sqrt{4e^{x}-3}}\right)^{2} dx =$ $\pi \int_{1}^{3} \left(\frac{5u}{\sqrt{4u-3}}, \frac{1}{u}\right)^{2} du =$						
when $x = 0$, $u = 1$ when $x = \ln 3$, $u = 3$	$\int_{0}^{\ln 3} \left(\frac{5e^{x}}{\sqrt{4e^{x} - 3}} \right)^{2} dx = \int_{u=1}^{u=3} \left(\frac{5u}{\sqrt{4u - 3}} \right)^{2} \left(\frac{1}{u} \right) du$ $= \int_{1}^{3} \frac{25u}{4u - 3} du$ $= 25 \int_{1}^{3} \frac{u}{4u - 3} du$	$= 25 \int_{1}^{3} \frac{1}{4} + \frac{\frac{3}{4u - 3}}{\frac{4}{4u - 3}} du$ $\approx 25 \left[\frac{u}{4} + \left(\frac{3}{4} \right) \left(\frac{1}{4} \right) \ln 4u - 3 \right]^{3}$	$= 25 \left[\frac{3}{4} + \left(\frac{3}{4} \right) \left(\frac{1}{4} \right) \ln 9 - \left(\frac{1}{4} + \left(\frac{3}{4} \right) \left(\frac{1}{4} \right) \ln 1 \right) \right]$ $= 25 \left[\frac{3}{4} + \left(\frac{3}{16} \right) \ln 3^2 - \left(\frac{1}{4} + 0 \right) \right]$	$= 25 \left[\frac{1}{2} + \left(\frac{3}{8} \right) \ln 3 \right] (2)$ Sub (2) into (1):	Required Volume = $\pi (5^2) (\ln 3) - \pi \int_0^{\ln 3} \left(\frac{5e^x}{\sqrt{4e^x - 3}} \right)^2 dx$ = $25\pi (\ln 3) - 25\pi \left[\frac{1}{2} + \left(\frac{3}{8} \right) \ln 3 \right]$	$= 25\pi \left(\ln 3\right) - 25\pi \left[\frac{1}{2} + \left(\frac{3}{8}\right)\ln 3\right]$ $= 25\pi \left[\ln 3 - \frac{1}{2} - \left(\frac{3}{9}\right)\ln 3\right]$	$= 25\pi \left[\left(\frac{5}{8} \right) \ln 3 - \frac{1}{2} \right]$ $= \frac{25\pi}{8} \left[5 \ln 3 - 4 \right]$ $\therefore a = 5, b = 4.$

(b) $z = \frac{\cos\left(\frac{\pi}{3}\right)}{-k\left(\cos\left(\frac{\pi}{3}\right)\right)}$ $= \frac{-k\left(\cos\left(\frac{\pi}{3}\right)\right)}{ke^{ix}\left(e^{-\frac{i\pi}{3}}\right)^{4}}$ $= \frac{1}{k}e^{-\frac{i\pi}{3}}$ $= \frac{1}{k}e^{-\frac{i\pi}{3}}$	6(a) $aw^4 - 16w^3 + 21w^4$ (ii) $a\left(\frac{1}{w}\right)^4 - 16\left(\frac{1}{w}\right)^3$ $5w^4 - aw^3 + 21w^2$ Replace w by $\frac{1}{w}$, $\frac{1}{w} = 2 \pm i, \pm \frac{1}{2}i$ $w = \frac{2}{5} \pm \frac{1}{5}i, \pm 2i$	all real, w = 2+i is also a root. $(w - (2-i))(w - (2+i)) = (w - (2-i))(w - (2+i)) = (w - (2-i))(w^2 - 4w + 5 = 0)$ $(w^2 - 4w + 5)(aw^2 + bw + 1) = 0$ By comparing coefficient of w By comparing coefficient of w $a + 5b = 4 \Rightarrow 5a + 25b = 20$ $(w^2 - 4w + 5)(4w^2 + 1) = 0$ $w = 2 \pm i, \pm \frac{1}{2}i$
$\frac{\left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)^4}{k\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{3}\right)\right)}$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$ $\left(e^{-\frac{i\pi}{3}}\right)^4$	$aw^{4} - 16w^{3} + 21w^{4} - aw + 5 = 0$ $a\left(\frac{1}{w}\right)^{4} - 16\left(\frac{1}{w}\right)^{3} + 21\left(\frac{1}{w}\right)^{2} - a\left(\frac{1}{w}\right) + 5 = 0$ $5w^{4} - aw^{3} + 21w^{2} - 16w + a = 0$ Replace w by $\frac{1}{w}$, $\frac{1}{w} = 2 \pm i, \pm \frac{1}{2}i$ $w = \frac{2}{5} \pm \frac{1}{5}i, \pm 2i$	all real, w = 2 + i is also a root. $(w - (2 - i))(w - (2 + i)) = (w - 2)^2 - i^2 = w^2 - 4w + 5$ $aw^4 - 16w^3 + 21w^2 - aw + 5 = 0$ $(w^2 - 4w + 5)(aw^2 + bw + 1) = 0$ By comparing coefficient of w^2 : $21 = 5a - 4b + 1$ 5a - 4b = 20 By comparing coefficient of w : $-a = -4 + 5b$ $a + 5b = 4 \implies 5a + 25b = 20$ $a + 5b = 4 \implies 5a + 25b = 20$ $(w^2 - 4w + 5)(4w^2 + 1) = 0$ $(w^2 - 4w + 5)(4w^2 + 1) = 0$
Most students can use the properties of modulus and argument well. Students must learn to apply $-1 = e^{i\pi}$. Common mistakes: (1) $ z = -\frac{1}{k}$ (2) make argument into principal range by $+\pi$ or $-\pi$, instead of $+2\pi$ or -2π .	so students need to use replacement method. Some students simply used the GC to solve, hence zero marks awarded.	stated $w=2+i$ as a root. Well done! Common mistakes: (1) students did not realise the coeff. of $w^i = a$, hence factorized the polynomial wrongly (2) students used GC when question stated: "Do not use a calculator in answering this question."

7(ii)	$=\begin{bmatrix} \frac{1}{1!} & \frac{2}{2!} & \frac{1}{3!} \\ \frac{1}{2!} & \frac{2}{3!} & \frac{1}{4!} \\ \frac{1}{2!} & \frac{2}{3!} & \frac{1}{4!} \\ \frac{1}{2!} & \frac{2}{3!} & \frac{1}{4!} \\ \frac{1}{2!} & \frac{2}{4!} & \frac{1}{5!} \\ \frac{1}{(n-4)!} & \frac{2}{(n-2)!} & \frac{1}{(n-1)!} \\ \frac{1}{(n-2)!} & \frac{2}{(n-1)!} & \frac{1}{n!} \\ \frac{1}{(n-2)!} & \frac{1}{(n-1)!} & \frac{2}{n!} & \frac{1}{n!} \\ \frac{1}{2!} & \frac{1}{2!} & \frac{1}{(n-1)!} & \frac{2}{(n-1)!} & \frac{1}{n!} \\ \frac{1}{2!} & \frac{1}{(n-1)!} & \frac{1}{n!} & \frac{1}{n!} \end{bmatrix}$	7(i) $\frac{1}{(r-2)!} - \frac{2}{(r-1)!} + \frac{1}{r!} = \frac{r(r-1)-2r+1}{r!}$ $= \frac{r^2 - 3r + 1}{r!}$ $= \frac{r^3 - 3r + 1}{r!} = \sum_{i=3}^{n} \frac{1}{(r-2)!} - \frac{2}{(r-1)!} + \frac{1}{r!}$	$ z = \frac{1}{k}$ $\arg z = -\frac{5\pi}{12}$
AP No. of terms $= a+1-2+1$ $= a$ $S_n = \frac{n}{2} [\text{first term + last term}]$ $= \frac{a}{2} [1+2(a+1)-3]$	MOD generally well done. Students who are listed the first 3 and last 3 terms have higher success rate because cancellation pattern can be seen clearly.	Prove from RHS is much easier.	

Note that binomial expansion should be use.	Do not attempt to convert to cartesian equation. For $\sin \theta = \frac{1}{2}$, $\theta = \frac{5\pi}{6}$ is missed out. Always solve a trigonometric equation by considering the 4 quadrants. Do not simply find the principal angle. Always check out for more solutions when solving for angles.
$\frac{dy}{dx} = \frac{1 - \cos \theta}{1 + \sin 2\theta}$ $\approx \frac{1 - \left(1 - \frac{\theta^2}{2}\right)}{1 + 2\theta}$ $= \frac{\theta^2}{2} (1 + 2\theta)^{-1}$ $\approx \frac{\theta^2}{2} (1 - 2\theta)$ $= \frac{\theta^3}{2} - \theta^3$ $\approx \frac{\theta^2}{2}$ $= \frac{\theta^3}{2} - \theta^3$ $= \frac{\theta^3}{2} - \theta^3$ $= \frac{\theta^3}{2} - \theta^3$	Solving $x = \theta - \cos^2 \theta$, $y = \theta - \sin \theta$ and $y = x + \frac{1}{4}$. Thus $\theta - \sin \theta = \theta - \cos^2 \theta + \frac{1}{4}$ $-\sin \theta = \sin^2 \theta - 1 + \frac{1}{4}$ $\sin^2 \theta + \sin \theta = \frac{3}{4}$ $\left(\sin \theta + \frac{1}{2}\right)^2 = 1$ $\sin \theta = -\frac{1}{2} \pm 1 = \frac{1}{2} \text{ or } -\frac{3}{2} \text{ (reject since } 0 \le \theta \le \pi)$ $\sin \theta = -\frac{1}{2} \pm 1 = \frac{1}{2} \text{ or } -\frac{3}{2} \text{ (reject since } 0 \le \theta \le \pi)$ $\sin \theta = \frac{\pi}{2} \text{ or } \frac{5\pi}{6}$ $\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$ When $\theta = \frac{\pi}{6}$, $x = \frac{\pi}{6} - \cos^2 \left(\frac{\pi}{6}\right) = \frac{\pi}{6} - \frac{3}{4}$
(3)8	8(d)

Common mistake: (1) Wrong sum of AP formula. (2) no of terms of AP calculated wrongly	$\sum_{r=1}^{n} \frac{r^2 - 3r + 1}{r!} = \frac{1}{2}$ Generally well done! Question stated 'Hence'', so students need to use replacement method of r by r-1. Otherwise, marks will be deducted.	Never negative implies ">", not ">". More detailed working needs to be presented for "shown" question.	$\theta = \frac{3\pi}{4}$ since $0 \le \theta \le \pi$. Thus $\theta = -\frac{\pi}{4}$ is not acceptable. Equation of vertical lines are in the form of $x = []$.
	7(iii) As $n \to \infty$, $\frac{1}{(n-1)!} \to 0$, $\frac{1}{n!} \to 0$, $\frac{1}{n!} \to 0$, $\frac{1}{n!} \to 0$, $\frac{1}{n!} \to 0$, $\frac{n}{n!} = \frac{r^2 - 3r + 1}{r!} = \frac{1}{2}$ $\sum_{n=3}^{\infty} \frac{r^2 - r - 1}{(r+1)!} = \sum_{n=3}^{\infty} \frac{r^2 - 3r + 1}{r!}$ $= \sum_{n=3}^{\infty} \frac{r^2 - 3r + 1}{r!}$ $= \sum_{n=3}^{\infty} \frac{r^2 - 3r + 1}{r!}$ $= \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{6!} + \frac{1}{7!}\right)$ $= \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{6!} + \frac{1}{7!}\right)$ $= \frac{1}{840} \text{ or } 0.00119$	8(a) $x = \theta - \cos^2 \theta$, $y = \theta - \sin \theta$ $\frac{dy}{dx} = \frac{1 - \cos \theta}{1 + 2\cos \theta \sin \theta}$ For $0 \le \theta \le \pi$, $-1 \le \cos \theta \le 1$ and $-1 \le \sin 2\theta \le 1$. Thus $0 \le 1 - \cos \theta \le 2$ and $0 \le 1 + \sin 2\theta \le 2$ for $0 \le \theta \le \pi$. $\frac{dy}{dx} = \frac{1 - \cos \theta}{1 + \sin 2\theta} \ge 0 \text{ for } 0 \le \theta \le \pi$. Thus never negative.	For tangents that are parallel to $y - axis$, $\frac{dy}{dx} \to \infty$. $1 + \sin 2\theta = 0$ $\sin 2\theta = -1$ $2\theta = \frac{3\pi}{2}$ $\theta = \frac{3\pi}{4}$ since $0 \le \theta \le \pi$ When $\theta = \frac{3\pi}{4}$, equation of tangent is $x = \frac{3\pi - 1}{4 - 2}$.

	Students did not read the question carefully and mistaken the inflow rate as 0.002.	Most students were able to use implicit differentiation or chain rule to derive the differential equation.
$y = g(x)$ $y = g(x)$ $x = a$ $x = a$ $x = a$ By considering graph, $g^{-1}(x) > g(x)$ for $x < a - \frac{1}{a}$	Rate in = 0.05(0.002) Rate out = $\frac{C}{500}$ $\frac{dV}{dt} = 0.05(0.002) - \frac{C}{500}$ = $\frac{1}{10000} - \frac{C}{500}$	Since $C = \frac{V}{30}$ $\frac{dC}{dt} = \frac{1}{30} \frac{dV}{dt}$ $= \frac{1}{30} \left(\frac{1}{10000} - \frac{C}{500} \right)$ $= \frac{1}{15000} \left(0.05 - C \right)$
	10(t)	10(ii)

9(11)	$f(x) = (x-a) + \frac{1}{ x-a } \to f(x+a) = x + \frac{1}{ x }$	Most students were able to determine the correct
	$\rightarrow f(2x+a) = 2x + \frac{1}{ 2x }$	sequence in general but some were rather sloppy or
	$\rightarrow f((2x+a)-2a=2x-2a+\frac{1}{ 2x }$	vague in their descriptions.
	Sequence of transformations in the following order,	e.g. "Transform/Shift by a
	1. Translation by a units in the negative x-direction. 2. Scaling by factor $\frac{1}{2}$ parallel to the x-axis.	units" "Scale by $\frac{1}{2}$ units in the x-axis."
	3. Translation by 2a units in the negative y-direction.	
-	Alternative Method 1. Scaling by factor $\frac{1}{2}$ paralle, to the x-axis	
	2. Translation by $\frac{a}{2}$ units in the negative x-direction	
	3. Translation by 2a units in the negative y-direction.	
9(iv)	$g^{-1}(x) > g(x)$ To get points of intersection of $g^{-1}(x)$ and $g(x)$; solve	A lot of students tried to find $g^{-1}(x)$ first but were
	$g(x) = x$ $x - a - \frac{1}{x - a} = x$	not successful in solving the inequality.
	$-a = \frac{1}{x - a}$	
	x-a=-x	
	$x = a - \frac{1}{a}$	

(x)	ઉ	(iv)		(iii)
When $V = 0.0036$, $C = \frac{V}{30} = 0.00012$ $\Rightarrow 0.00012 = 0.05 \left(1 - e^{-\frac{1}{15000}} \right)$ $\Rightarrow t = 36.043 = 36 \text{ minutes}$	$C = 0.05$ $C = 0.05 \left(1 - e^{-\frac{1}{1000^2}}\right)$	When $t \to \infty$, $e^{-15000} \to 0$, $C \to 0.05$ The concentration of carbon monoxide increases and approaches to 5%.	$= Be^{-15000}, \text{ where } B = \pm e^{-A}$ $C = 0.05 - Be^{-15000}$ When $t = 0, C = 0 \Rightarrow B = 0.05$ $\therefore C = 0.05 - 0.05e^{-15000} = 0.05 \left(1 - e^{-15000}\right)$	$\frac{dC}{dt} = \frac{1}{15000}(0.05 - C)$ $\int \frac{1}{0.05 - C} d\theta = \int \frac{1}{15000} dt$ $-\ln 0.05 - C = \frac{1}{15000}t + A$ $0.05 - C = \pm e^{\frac{1}{15000}t - A}$
Many students did not read the question carefully and mistaken the value of C as 0.00012.	Note that the curve is not supposed to intersect the asymptote. The graph should only lie in the first quadrant based on the context of the question.	Students need to explain how the concentration approaches to 5% (i.e. in an increasing manner) Saying that the concentration approaches/tends to 5% is not sufficient.	For ease of solving, students should solve for the arbitrary constant only after they have "removed" the modulus. (i.e. solve for B instead of A)	Common mistake $\int \frac{1}{0.05 - C} d\theta$ $= \ln 0.05 - C + D$

	11(ii)		11(0)
$\begin{vmatrix} -2 - 4 + 9 \\ \sqrt{17}\sqrt{14} \end{vmatrix} = \frac{3}{\sqrt{17}\sqrt{14}}$ $\theta = 78.787^{\circ}$ Length of projection of AB on plane $= 100 \sin 78.787^{\circ} = 98.1 \text{units}$	Method 1 Let angle between line AB and normal of plane be θ $\cos \theta = \frac{\begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}}{\sqrt{(-2)^2 + (2)^2 + (3)^2} \sqrt{(1)^2 + (-2)^2 + (3)^2}}$	$= \frac{\begin{pmatrix} -2 \\ -13 \\ 3 \end{pmatrix} \times \begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix}}{\sqrt{17}} = \frac{\begin{pmatrix} -45 \\ 0 \\ -30 \end{pmatrix}}{\sqrt{17}} = \frac{\sqrt{(-45)^3 + (-30)^3}}{\sqrt{17}}$ $= \frac{\sqrt{2925}}{\sqrt{17}} = 15\sqrt{\frac{13}{17}} = 13.1 \text{ (to 3sf)}$	Let $\overrightarrow{OX} = \begin{pmatrix} 5 \\ -5 \\ 7 \end{pmatrix}$ and $\overrightarrow{OY} = \begin{pmatrix} 3 \\ -18 \\ 10 \end{pmatrix}$ $\overrightarrow{XY} = \overrightarrow{OY} - \overrightarrow{OX} = \begin{pmatrix} -2 \\ -13 \\ 3 \end{pmatrix}$ Distance between parallel lines AB and CD $\begin{vmatrix} \overrightarrow{XY} \times \begin{pmatrix} -2 \\ 2 \\ 3 \\ 3 \end{vmatrix} = \begin{vmatrix} -2 \\ \cancel{XY} \times \begin{pmatrix} 2 \\ 2 \\ 3 \end{vmatrix} \\ \sqrt{(-2)^2 + (2)^2 + (3)^2} \end{vmatrix}$
	Common mistake for method 1 Length of projection = 100 cos 78.8 or 100 sin 11.21		Distance between parallel lines AB and CD =

	Should realise that $ \overline{AB} ^2 + (5-2\lambda)^2 + (-5+2\lambda)^2 + (7+3\lambda)^2 = 100$ Because $\begin{pmatrix} 5-2\lambda \\ 7+3\lambda \end{pmatrix}$ Should realise that $\begin{pmatrix} 5-2\lambda \\ 7+3\lambda \end{pmatrix}$ Should realise that $\frac{5-2\lambda}{7+3\lambda}$ Should realise that $\frac{7-2\lambda}{7+3\lambda}$ Should realise that $\frac{7-2\lambda}{7+3\lambda}$ so the line with respect to the origin and is not \overline{AB}
Length of projection of AB on the ski slope $[1] = \frac{AB \times \begin{pmatrix} 1 \\ 3 \end{pmatrix}}{\sqrt{(1)^2 + (-2)^3 + (3)^2}} = \frac{100}{\sqrt{(1)^2 + (-2)^3 + (3)^2}} = \frac{100}{\sqrt{17}} = \frac{12}{\sqrt{17}} = 98.1$	Method 3 $ \frac{AB}{ AB } \begin{pmatrix} -2 \\ 3 \end{pmatrix} \Leftrightarrow \overline{AB} = A \begin{pmatrix} -2 \\ 3 \end{pmatrix} $ $ \overline{AB} ^2 = \lambda^2 (2^2 + 2^2 + 3^2) = 100 : \lambda = \pm \frac{100}{\sqrt{17}}. $ Hence $\overline{AB} = \pm \frac{100}{\sqrt{17}} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ Length of projection of AB on the ski slope $\Pi = \frac{100}{\sqrt{17}}$ $ \frac{\overline{AB} \times \begin{pmatrix} -2 \\ 3 \end{pmatrix}}{\sqrt{(1)^2 + (-2)^2 + (3)^2}} = \frac{100}{\sqrt{17}} \begin{pmatrix} 12 \\ 9 \\ 9 \end{pmatrix} $ $ \frac{100}{\sqrt{17}} \begin{pmatrix} -2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \frac{100}{\sqrt{17}} \begin{pmatrix} 12 \\ 3 \end{pmatrix} = 98.1 $

Alternative solution	
Let angle between line AB and the plane be $ heta$	
$\begin{pmatrix} -2 \\ 2 \\ -2 \\ 3 \\ 3 \\ 3 \end{pmatrix}$	
$\sin \theta = \frac{\left(-2\right)^2 + \left(2\right)^2 + \left(3\right)^2 \sqrt{\left(1\right)^2 + \left(-2\right)^2 + \left(3\right)^2}}{\sqrt{\left(-2\right)^2 + \left(3\right)^2 + \left(3\right)^2}}$	
$= \frac{ -2 - 4 + 9 }{\sqrt{17}\sqrt{14}} = \frac{3}{\sqrt{17}\sqrt{14}}$	
Length of projection of AB on plane = $100 \cos 11.213^{\circ}$ = 98.1 units	
Method 2	Common mistake $\begin{vmatrix} -2 \\ \overline{AB} = 2 \end{vmatrix}$
$\overline{AB} = \pm \frac{100}{\sqrt{17}} \begin{pmatrix} -2\\2\\3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} = \sqrt{17} & \& \overline{AB} = 100$
	$\frac{AB}{AB} \neq \begin{pmatrix} -2 \\ 2 \end{pmatrix}$

$\lambda = -1 \text{ or } \lambda = -\frac{59}{3} = -19\frac{2}{3} (\text{reject}) \text{ since } -5 < \lambda < 15$ $\therefore \text{ Coordinates of } P (7, -7, 4)$	$\frac{-2\lambda - 2(-3 + 2\lambda) + 3(-4 + 3\lambda) - 4\lambda^{(4)}}{3\lambda + 31 = \pm 28}$		1	$\left \left(\frac{7+3\lambda}{3} \right) \left(\frac{3}{3} \right) \right = 2\sqrt{14}$	$\begin{pmatrix} -2\lambda \\ -5+2\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix}$		$= \frac{\left(\frac{3}{3}\right)^{2}}{\sqrt{\left(1\right)^{2} + \left(-2\right)^{2} + \left(3\right)^{2}}} = 2\sqrt{14}$	$\overline{MP} \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	Distance of P from plane	(7+31)	$\overrightarrow{MP} = \overrightarrow{OM} - \overrightarrow{OP} = \begin{vmatrix} -2\lambda \\ -5 + 2\lambda \end{vmatrix}$	$(7+3\lambda)$ (0)	and $\overrightarrow{OM} = 0$	$1.(111) \mid SHICE point r is on the interval. (5)$
Others: 1) Some wasted time finding point of intersection of line AB and plane [] and used it as point M on the plane	sign.	need to remember to consider the absolute	=2(14) Thus ending with one	And $-2\lambda - 2(-5 + 2\lambda) + 3(7 + 3\lambda)$		$\left \frac{(1+3\lambda)(3)}{\sqrt{14}} \right = 2\sqrt{14}$	$\begin{pmatrix} -2\lambda \\ -5+2\lambda \\ -2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$	Thus	absolute sign when finding	2) Did not consider the	(7)	point on line or -5	is a point on the planesome students use any (5)	1) When finding OM

	11(y)	11(iv)
Alternative Method Let foot of perpendicular from Q to plane be F : $M(5,0,0)$ is a point on the plane.	$\begin{vmatrix} 1 \\ -2 \\ 3 \end{vmatrix} \begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -12 \\ -9 \\ -2 \\ 2 \end{vmatrix} = \begin{pmatrix} 12 \\ 9 \\ 2 \end{pmatrix}$ Equation of window plane $\begin{vmatrix} 12 \\ 12 \\ 20 \end{vmatrix} = \begin{pmatrix} 10 \\ 10 \\ 9 \\ 20 \end{pmatrix} = 250$ Cartesian Equation of plane is $12x + 9y + 2z = 250$ Equation of line passing through Q and perpendicular to plane $\begin{vmatrix} -7 \\ 7 \\ 1 \\ 25 \end{vmatrix} + \mu \begin{vmatrix} 1 \\ -2 \\ 25 \end{vmatrix}$ Point of intersection of this line and plane $\begin{vmatrix} -7 + \mu \\ 7 - 2\mu \\ 5 + 3\mu \end{vmatrix} \cdot \begin{vmatrix} 1 \\ -2 \\ 25 + 3\mu \end{vmatrix} = 5$ $25 + 3\mu \begin{vmatrix} 1 \\ 3 \\ 3 \end{vmatrix}$ $(-7 + \mu) - 2(7 - 2\mu) + 3(25 + 3\mu) = 5$ $14\mu + 54 = 5$ $\mu = -\frac{7}{2} = -3.5$ Foot of perpendicular is $\left(-\frac{21}{2}, 14, \frac{29}{2}\right)$	Vector perpendicular to plane
3) Alternative Method $\overrightarrow{QF} = \overrightarrow{QM} \cdot \hat{\mathbf{n}} \hat{\mathbf{n}} \text{ often seen}$	have problems finding the correct answer $\begin{pmatrix} 1 \\ -2 \\ -2 \\ x \end{vmatrix} = \begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix}$ 2) Left the answer in parametric form $\begin{pmatrix} 10 \\ 10 \\ 20 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -2 \\ 20 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$ Or scalar product form Common mistake 1) Foot of perpendicular is the point of intersection of the point of $\begin{pmatrix} -7 \\ 25 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 25 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 25 \end{pmatrix} = 5$ 2) Did not give answer in coordinate form	Common mistake

ted vector of \overrightarrow{QM} onto the normal to plane is \overrightarrow{QF} $\overrightarrow{QM} \cdot \mathring{n} \mathring{n}$ $\begin{pmatrix} 12 \\ -7 \\ -25 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ $-1)^2 + (-2)^2 + (3)^2 $ $-1)^3 + (-2)^2 + (3)^2 $ $-2 $					
Projec $ \frac{ \mathbf{Projec} }{ \mathbf{CF} } = \frac{ \mathbf{Frojec} }{ \mathbf{CF} } $ Froat of	Projected vector of \overrightarrow{QM} onto the normal to plane is \overrightarrow{QF} $\overrightarrow{QF} = (\overrightarrow{QM} \cdot \hat{n})\hat{n}$	$ \left(\frac{12}{-7} , \frac{1}{-25} \right) \left(\frac{1}{-2} \right) \\ \sqrt{(-1)^2 + (-2)^2 + (3)^2} $	$=\frac{-7}{2}\begin{pmatrix}1\\-2\\3\end{pmatrix}$	$\overrightarrow{OP} = \overrightarrow{QP} + \overrightarrow{OQ} = \frac{-7}{2} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -7 \\ 7 \\ 25 \end{pmatrix} = \begin{pmatrix} -21_2 \\ 14 \\ 29_2 \end{pmatrix}$	Foot of perpendicular is $\left(-\frac{21}{2}, 14, \frac{29}{2}\right)$

2024 JC2 H2 Math Prelim P2 Markers Report

o	Solution	
<u>E</u>	$y = x^{\cos 2x}$	Some used $y = e^{\cos 2x \ln x}$ to get to
	$\ln y = (\cos 2x) \ln x$ $\frac{1}{y} \frac{dy}{dx} = \frac{\cos 2x}{x} + (-2\sin 2x) \ln x$	$\frac{dy}{dx} = e^{\pi t 3 \pi h x} \left[\cos 2x \left(\frac{1}{x} \right) + \ln x \left(-2 \sin 2x \right) \right]$
	$\frac{dy}{dx} = x^{\cos 2x} \left[\frac{\cos 2x}{x} - (2\sin 2x) \ln x \right] \text{ (shown)}$	Some students made the mistake of applying the formula for $y = a^{f(x)}$, not realising that x is a variable and not a constant.
1(b)	$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = x^{\cos 2x} \left[\frac{\cos 2x}{x} - (2\sin 2x) \ln x \right] \times 8$ $= \pi^{\cos 2x} \left[\frac{\cos 2x}{x} - (2\sin 2x) \ln x \right] \times 8$ $= \pi \left[\frac{1}{\pi} - 0 \right] \times 8$	Most students can apply this chain rule.
1(c)	Since $\frac{dy}{dx}\Big _{x=\pi} = 1$, gradient of tangent is 1. Thus the angle that the tangent makes with the horizontal is $\frac{\pi}{4}$ or 45°.	Some students concluded that gradient is equal to one, but did not know how to proceed.
2(a)	Vector perpendicular to π $\mathbf{n} = \overline{AB} \times \overline{AC}$ $= (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$ $= (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$ $= (\mathbf{b} \times \mathbf{c}) - (\mathbf{b} \times \mathbf{a}) - (\mathbf{a} \times \mathbf{c}) + (\mathbf{a} \times \mathbf{a})$ Since $-(\mathbf{b} \times \mathbf{a}) = \mathbf{a} \times \mathbf{b}, -(\mathbf{a} \times \mathbf{c}) = \mathbf{c} \times \mathbf{a}$ and $\mathbf{a} \times \mathbf{a} = 0$ $\therefore \mathbf{n} = \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$ (proved)	The points A, B and C lie on plane π . To find vector perpendicular to plane (ie normal of plane) we take the cross product of two vectors parallel to plane. Vectors parallel to plane can be \overline{AB} and \overline{AC} . (or vector joining any two points on plane)
	Alternative solution: Vector perpendicular to π $n = \overline{BA} \times \overline{BC}$ $= (\mathbf{a} - \mathbf{b}) \times (\mathbf{c} - \mathbf{b})$ $= (\mathbf{a} \times \mathbf{c}) - (\mathbf{a} \times \mathbf{b}) - (\mathbf{b} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{b})$ $= -(\mathbf{c} \times \mathbf{a}) - (\mathbf{a} \times \mathbf{b}) - (\mathbf{b} \times \mathbf{c})$ $= -(\mathbf{c} \times \mathbf{a}) - (\mathbf{a} \times \mathbf{b}) - (\mathbf{b} \times \mathbf{c})$ $= -(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$ Since $\mathbf{a} \times \mathbf{c} = -(\mathbf{c} \times \mathbf{a})$ and $\mathbf{b} \times \mathbf{b} = 0$ $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} \text{ is a vector neuronitical at to a large (neurons)}$	Note that a, b and c need not be vectors parallel to plane. i.e. if point A is on the plane, vector a need not be on the plane.
	t banco de la companie de la compani	

		2
a	Equation of plane π : $\mathbf{r}.\mathbf{n} = \mathbf{a}.\mathbf{n}$	Since vector perpendicular to plane is already found in (a) we
	$\mathbf{r} \cdot (\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$	use the formula r.n = a.n to find
	$= \mathbf{a} \cdot (\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$	equation of plane.
	$=\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) + \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{a} \cdot (\mathbf{c} \times \mathbf{a})$	
	$=\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})$	
	Since	Property of cross product:
	$\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to \mathbf{a} , so $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0$	a × b is a vector which is
	$\mathbf{c} \times \mathbf{a}$ is a vector perpendicular to \mathbf{a} , so $\mathbf{a} \cdot (\mathbf{c} \times \mathbf{a}) = 0$	perpendicular to both vectors a and b.
		Dot product of two perpendicular
<u> </u>	axb+bxc+cxa	(1) (0) (0)
		$\mathbf{i} \times \mathbf{j} = 0 \times 1 = 0 = \mathbf{k}$ etc.
	$= i \times j + j \times k + k \times i = k + j + i \times 1$	(1) (0) (0)
	$\mathbf{a}_{\bullet}(\mathbf{b} \times \mathbf{c}) = \mathbf{i}_{\bullet}(\mathbf{j} \times \mathbf{k}) = \mathbf{i}_{\bullet}\mathbf{i} = \mathbf{i}_{\bullet}^{\dagger} = 1$	The right-hand side of the equation
		should also be shown.
	Equation of plane π is $\mathbf{r} \cdot 1 = 1$.	
	Plane which are at a distance of 5 units from where or we need to	
	t autos winen are at a unstante et 3 mins ment plane 7, ale paranet to it.	
	€.	
	Let the equation of the planes be \mathbf{r} , $1 = d$	
	(1) Distance between parallel planes	
	$\left \frac{d-1}{d-1} \right = \frac{d-1}{d-1}$	Distance between two parallel nlanes $\mathbf{r} \cdot \mathbf{n} = d$ and $\mathbf{r} \cdot \mathbf{n} = d$
	(1) 43	$p_{\text{cuttoff}} = a_1 \text{ and } a_2$ $ d_1 - d_2 $
		is $\frac{ x ^2}{ x }$. (from lecture notes)
	(4)	Modes To see at 5 E
	$a - 1 = \pm 3\sqrt{3}$ $A - 1 \pm 5$. $A = 1$	equations of the two planes must
	M = 1 1 2 V J	first be expressed with the exact same normal vector n .
	Caresian equations of planes are $A + y + z = 1 \pm 3\sqrt{3}$	
	Alternative Method Planes which are at a distance of 5 units from plane π are parallel	
	(1)	
	Let the equation of the planes be \mathbf{r} . $\mathbf{l} = d$	Distance of plane $\mathbf{r.n} = d$ from O is
	<u> </u>	d
	Distance of parallel planes from $0 = \frac{1-1}{\sqrt{3}}$	<u>r</u>

		E
3(a)		
Let $u = 2t$ Let $\frac{dv}{dt} = \cos^2 t$ $\frac{du}{dx} = 2$ $\frac{dv}{dt} = \frac{\cos 2t + 1}{2}$ $v = \frac{1}{2} \left(\frac{\sin 2t}{2} + t \right)$	Find a point P on the plane which are at a distance of 5 units from plane π . $\overrightarrow{OP} = k + 5\hat{n} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \pm \frac{5}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \pm \frac{5}{\sqrt{3}} \\ 1 \pm \frac{5}{\sqrt{3}} \end{pmatrix}$ Let the equation of the planes be $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{pmatrix} \pm \frac{5}{\sqrt{3}} \\ 1 \pm \frac{5}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 + \frac{15}{\sqrt{3}} = 1 + 5\sqrt{3} \text{ or } 1 - \frac{15}{\sqrt{3}} = 1 - 5\sqrt{3}$ Catesian equations of planes are $x + y + z = 1 \pm 5\sqrt{3}$	Distance of π from $O = \frac{1}{\sqrt{3}}$ Distance between two planes $= \frac{d}{\sqrt{3}} - \frac{1}{\sqrt{3}} = 5 \text{ (if } d > 0) \qquad \text{or} \qquad = \frac{-d}{\sqrt{3}} + \frac{1}{\sqrt{3}} = 5 \text{ (if } d < 0)$ $\therefore d = 1 + 5\sqrt{3} \qquad \text{or} \qquad d = 1 - 5\sqrt{3}$ Catesian equations of planes are $x + y + z = 1 \pm 5\sqrt{3}$
Use LIATE to choose u. i.e algebraic over trigo. Recall the correct method to evaluate $\int \cos^2 t \ dt$ i.e using double angle formula.		

3(bii)	3(b)	
Required area = $-\int_0^{\frac{3\pi}{2\sqrt{R}}} y dx$	when $t = \frac{3\pi}{4}$, $x = 2\left(\frac{3\pi}{4}\right)\sin\left(\frac{3\pi}{4}\right) = \frac{3\pi}{2\sqrt{2}}$ when $t = \pi$, $y = \cos\left(\frac{3\pi}{4}\right) = \frac{-1}{\sqrt{5}}$	$\int 2t \cos^2 t dt = (2t) \left(\frac{1}{2} \left(\frac{\sin 2t}{2} + t \right) \right) - \int \frac{1}{2} \left(\frac{\sin 2t}{2} + t \right) (2) dt$ $= t \left(\frac{\sin 2t}{2} + t \right) - \int \frac{\sin 2t}{2} + t dt$ $= \frac{t \sin 2t}{2} + t^2 + \frac{\cos 2t}{4} - \frac{t^2}{2} + c$ $= \frac{t \sin 2t}{2} + \frac{t^2}{2} + \frac{\cos 2t}{4} + c$ $= \frac{1}{4} \left(2t \sin 2t + 2t^2 + \cos 2t \right) + c \text{(shown)}$
Since the area required is below the x-axis it is necessary to include a negative sign when using the area under the curve formula. i.e. $-\int_{x}^{t_{2}} y dx$. Limits in this case are x-coordinates. Since y is in terms of t, it is necessary to express dx in terms of dt. The limits must also be converted accordingly, to become values of t when $x = 0$, $t = \pi$ (lower limit) $x = \frac{3\pi}{2\sqrt{2}}$, $t = \frac{3\pi}{4}$ (upper limit) as seen from graph.	Note: It is necessary to copy the shape of the curve accurately from the GC. Curves which show y-coordinates of curve below $y = -1$ were penalised.	Recall the correct integration by parts formula.

	1.11.11.11.11.11.11.11.11.11.11.11.11.1	c
	$=-\int_{t_{\pi}}^{3\pi} (\cos t)(2t\cos t + 2\sin t) dt$	
	$=-\int_{x}^{4} 2t \cos^{2} t + 2 \sin t \cos t dt$	
	$=\int_{\frac{3\pi}{4}}^{x} 2t \cos^{2} t + \sin 2t dt$	When the limits are interchanged and the negative sign is removed.
	$\frac{1}{4} \left[2t \sin 2t + 2t^2 + \cos 2t \right]_{\frac{3\pi}{4}}^{x} + \left[-\frac{\cos 2t}{2} \right]_{\frac{3\pi}{4}}^{x}$	Remember to use the result from the part (a) above.
	$= \frac{1}{4} \left[(0 + 2\pi^2 + 1) - \left(\frac{3\pi}{2} \sin \left(\frac{3\pi}{2} \right) + \frac{18\pi^2}{16} + \cos \left(\frac{3\pi}{2} \right) \right) \right] + \left[-\frac{1}{2} - 0 \right]$ $= \frac{1}{4} \left[2\pi^2 + 1 + \frac{3\pi}{2} - \frac{9\pi^2}{8} - 0 \right] - \frac{1}{2}$	
	$=\frac{\pi^2}{2} - \frac{9\pi^2}{32} + \frac{3\pi}{8} - \frac{1}{4}$ $7\pi^2 = \frac{3\pi}{3\pi} + \frac{3\pi}{8} - \frac{1}{4}$	
	$= \frac{32}{32} + \frac{4}{8} - \frac{4}{4}$ Alternative method (with respect to y-axis)	Since the area required is on the right of the waxis it is not
	= [1 v3 x dv+area of rectancle	necessary to include a negative sign when using the area under
	$= \begin{bmatrix} \frac{3\pi}{4} & 2t \sin t (-\sin t) dt + \left(\frac{3\pi}{4}\right) \end{bmatrix}$	the curve formula. i.e $\int_{N}^{2\pi} x dy$.
	$\int_{\Gamma_{1}^{3R}} \int_{\Gamma_{1}^{3R}} \int_{\Gamma_{2}^{3R}} \int_{\Gamma$	coordinates.
	$= \int_{x}^{x} -2t \sin^{2} t dt + \frac{1}{4}$ $= \int_{3\pi}^{\pi} 2t (1 - \cos^{2} t) dt + \frac{3\pi}{3}$	Since x is in terms of t, it is necessary to express dy in terms of dt.
	$= \int_{3\pi}^{\pi} 2t - \int_{3\pi}^{\pi} 2t \cos^2 t dt + \frac{3\pi}{4}$	The limits must also be converted accordingly, to become values of t
	$= \left[t^{2}\right]_{3\pi}^{\pi} - \frac{1}{4} \left[2t \sin 2t + 2t^{2} + \cos 2t\right]_{3\pi}^{\pi} + \frac{3\pi}{4}$	when $y = -1$, $t = \pi$ (lower limit)
	$= \frac{7\pi^2 - 1}{12\pi^2 + 1 + \frac{3\pi}{2} - \frac{9\pi^2}{12\pi^2} + \frac{3\pi}{3\pi}$	$y = \frac{-1}{\sqrt{2}}, t = \frac{3\pi}{4}$ (upper limit)
	Required area = $\frac{7\pi^2}{32} + \frac{3\pi}{8} - \frac{1}{4}$	as seen from graph. When the limits are interchanged and the negative sign is removed.
		Remember to use the result from the part (a) above.
4(a)	Since the angle between c and a and angle between c and b is θ	Basic formula for angle between two vectors is
_	: ca = c.b	$\cos \theta = \frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{c} \mathbf{a} } \text{ or } \cos \theta = \frac{\mathbf{c} \cdot \hat{\mathbf{a}}}{ \mathbf{c} \hat{\mathbf{a}} }$
	NO.	

		9
	$ \mathbf{c} \cdot \hat{\mathbf{a}} = \mathbf{c} \hat{\mathbf{a}} \cos \theta = \mathbf{c} \cos \theta \text{ since } \hat{\mathbf{a}} = 1$	Also
	$ \mathbf{c} \cdot \hat{\mathbf{b}} = \mathbf{c} \hat{\mathbf{b}} \cos \theta = \mathbf{c} \cos \theta \sin c \hat{\mathbf{b}} = 1$	<u>•••</u>
	. c•â ≈ c•ĥ	$\hat{\mathbf{a}} = \frac{\mathbf{a}}{ \mathbf{a} }$ or $\mathbf{a} = \mathbf{a} \hat{\mathbf{a}}$
	Alternative method c-â = length of projection of c on a	are results that may be used.
	$\mathbf{c} \cdot \hat{\mathbf{b}} = \text{length of projection of } \mathbf{c} \text{ on } \mathbf{b}$	
	Since the triangles OCF1 and OCF2 are congruent, OF1=OF2	
	₩ ▼ <	
	<u> </u>	
	\ \	
	B F7	
	100	
9		It is necessary to follow the
)		instruction given in the question,
	(ma+nb)-a=(ma+nb)-b	mainly to use the result from (a).
	$m\hat{\mathbf{a}}\cdot\hat{\mathbf{a}}+n\hat{\mathbf{b}}\cdot\hat{\mathbf{a}}=m\hat{\mathbf{a}}\cdot\hat{\mathbf{b}}+n\hat{\mathbf{b}}\cdot\hat{\mathbf{b}}$	Note that
	$m \hat{\mathbf{a}} ^2 + n\hat{\mathbf{b}} \cdot \hat{\mathbf{a}} = m\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} + n \hat{\mathbf{b}} ^2$	$\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} = \hat{\mathbf{a}} ^2 = 1$
	$m-n=m\hat{\mathbf{a}}\cdot\hat{\mathbf{b}}-n\hat{\mathbf{b}}\cdot\hat{\mathbf{a}}$ since $ \hat{\mathbf{a}} = \hat{\mathbf{b}} =1$	
	$m-n=(m-n)\hat{\mathbf{a}}\cdot\hat{\mathbf{b}}$	It is wrong to compare coefficients to deduce that $m = n$,
	$(m-n)(1-\hat{\mathbf{a}}\cdot\hat{\mathbf{b}})=0$	It is necessary to show that
	$\Rightarrow m-n=0$ or $1-\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = 0$	$(1-\mathbf{a} \cdot \mathbf{b})$ is not 0.
	$\therefore m = n$ or $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = 1$	
	$(shown)$ $ \hat{\mathbf{a}} \hat{\mathbf{b}} \cos 2\theta = 1$	
	$\cos 2\theta = 1$	
	$\theta = 0^{\circ}(reject)$	
4(c)	Equation of line through A and B	Equation of line is
	$r=a+\lambda(b-a)$	$r=a+\lambda(b-a)$ NOT
		$l = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$
•		

		B
5(a)		4(d)
Greatest possible value of $k = -1$	Since \mathbf{a} and \mathbf{b} are not parallel, $1 - \lambda = \frac{m}{3}, \lambda = \frac{m}{2}$ $\Rightarrow m = \frac{6}{5}$ $\therefore \mathbf{c} = m(\hat{\mathbf{a}} + \hat{\mathbf{b}}) = \frac{6}{5}(\hat{\mathbf{a}} + \hat{\mathbf{b}}), \therefore t = \frac{6}{5}$ Alternative solution for last part Equate equations of lines to find point of intersection, $\mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) = m(\hat{\mathbf{a}} + \hat{\mathbf{b}})$ Since $\mathbf{a} = 3\hat{\mathbf{a}}$ and $\mathbf{b} = 2\hat{\mathbf{b}}$ $(1 - \lambda)(3\hat{\mathbf{a}}) + \lambda(2\hat{\mathbf{b}}) = m(\hat{\mathbf{a}} + \hat{\mathbf{b}})$ Since $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are not parallel, $3 - 3\lambda = m, 2\lambda = m$ $\Rightarrow m = \frac{6}{5}$ $\therefore \mathbf{c} = m(\hat{\mathbf{a}} + \hat{\mathbf{b}}) = \frac{6}{5}(\hat{\mathbf{a}} + \hat{\mathbf{b}}), \therefore t = \frac{6}{5}$	Equation of line passing through O and C $\mathbf{r} = m\hat{\mathbf{a}} + m\hat{\mathbf{b}} = m(\hat{\mathbf{a}} + \hat{\mathbf{b}})$ Equate equations of lines to find point of intersection, $\mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) = m(\hat{\mathbf{a}} + \hat{\mathbf{b}})$ $(1 - \lambda)\mathbf{a} + \lambda\mathbf{b} = m\left(\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} }\right)$
For h^{-1} to exist, h needs to be a one-one function. The greatest value of k can be found easily by identifying the minimum point of the graph of $y = f(x)$ using a GC. There is no need to find the minimum point by differentiation.	a = a to write ain terms of a.	Method to find point of intersection of two lines. -Equate the vector equation of the two lines. - Equate the 'coefficients' of the non parallel vectors a and b and solve for λ and m .

$y = \frac{1}{x+2}$ $x = -2 + \frac{1}{y}$ $D_{f^{-1}} = R_{f}$ $\therefore f^{-1}(x) = \langle$	For $-2 < x$ $y = (\ln(x + \frac{1}{2} \sqrt{y - 1}) = \frac{1}{2} \sqrt{y - 1} = \frac{1}{2}$ $\sin x + 2 = 6$ $x = -2 + \frac{1}{2} \sqrt{y - 1}$ For $x > -1$	5(c)		S (E)
$y = \frac{1}{x+2}$ $x = -2 + \frac{1}{y}$ $D_{y^{-1}} = R_{y}$ $\therefore f^{-1}(x) = \begin{cases} -2 + e^{-\sqrt{x-1}}, & \text{for } x \ge 1, \\ -2 + \frac{1}{x}, & \text{for } 0 < x < 1 \end{cases}$	For $-2 < x \le -1$ $y = (\ln(x+2))^2 + 1$ $\pm \sqrt{y-1} = \ln(x+2)$ since $-2 < x \le -1 \implies 0 < x+2 \le 1 \implies \ln(x+2) \le 0$ $\therefore -\sqrt{y-1} = \ln(x+2)$ $x+2 = e^{-\sqrt{y-1}}$ $x = -2 + e^{-\sqrt{y-1}}$ For $x > -1$	$\begin{cases} \left(\ln(x+2)\right)^2 + 1, & \text{for } x \in \mathbb{R}, -2 < x \le -1, \\ \frac{1}{x+2}, & \text{for } x \in \mathbb{R}, x > -1. \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y = f(x)
A small number of students did not express f^{-1} in terms of x . A significant number of students have difficulty finding the domains of f^{-1} . There were also some inappropriate use of notations such as $1 \le x \le \infty$.	Many students did not know the reason why $\sqrt{y-1} = \ln(x+2)$ needs to be rejected.		did not realise the presence of a vertical asymptote.	Students need to remember to include and label the equations of the asymptotes in their sketch. A significant number of students

1		
()	For f^2 to exist $R_f \subseteq D_f$	Students needs to be show
	$R_f = (0, \infty)$	clearly why $R_{\ell} \subseteq D_{\ell}$.
	$D_{\ell} = (-2, \infty)$. Hence, $R_{\ell} \subseteq D_{\ell}$.	A significant number of students
	: f ² exists	have difficulty finding R.,
	- (0 1)	correctly. Some incorrectly
	$A_{j,2} = \begin{pmatrix} v_{j,2} \\ v_{j,3} \end{pmatrix}$	wrote $R_{r^2} = \left(\frac{1}{2}, 0\right)$
2(e)	$f^2(2) = f(x)$	This part was well attempted by
	$f' f^2(2) = f'^1 f(x)$	many students.
	f(2) = x	

	2+2	
	* = x 4	
	Alternative Method	
	$f^2(2) = f(x)$	
	s(z) = s(1) + s(1) + s(2)	
	$\prod_{x \in X} (x) = 1 \left(\frac{1}{2+2} \right) = 1 \left(\frac{1}{4} \right) = \frac{1}{\frac{1}{4}+2} = \frac{1}{9} = 1 \left(\frac{x}{3} \right)$	
	4 4 1	
	$f(x) = \frac{1}{x+2} = \frac{1}{9}$	
	$x = \frac{1}{4}$	
6(a)	$P(A' \cap B') = 1 - P(A \cup B)$	This part was well attempted by
	$=1-\lceil P(A)+P(B)-P(A\cap B)\rceil$	many students. However some
	=1-P(A)-P(B)+P(A)P(B)	presentation of their steps to
	=1-a-b+ab	prove that
	=(1-a)-b(1-a)	$F(A \cap B) = F(A)F(B)$. It is
	=(1-a)(1-b)	and B are independent events and
	=P(A')P(B')	hence A' and B' are independent
	Since $P(A' \cap B') = P(A')P(B')$, hence A' and B' are	
	independent events.	
(p)	Since A and B are independent events and A' and B' are independent events.	This part was generally well attempted by many students with
	P(A' B') = P(A') = 0.85	a variety of different methods
	P(A) = 1 - P(A') = 0.15	observed. However some
	Method 1	P(A' R') = P(A') which
	$P(A \cap B') = P(A) \times P(B')$) () () () () () () () () () (
	= 0.15×0.8	find $P(A)$.
	= 0.12	./

		0.7
	Method 2 Since A' and B' are independent events, P(A' B') = P(A') = 0.85.	
	$P(A \cap B') = P(A) - P(A \cap B)$	
	$= P(A) - P(A) \times P(B)$ = (1-0.85) - (1-0.85)(1-0.8)	
	=0.15-(0.15)(0.2)	
	= 0.12	
	Method 3 $P(A \cap B') = 1 - P(A' \cap B') - P(B)$	
	$=1-\left[P(A')\times P(B')\right]-P(B)$	
	$=1-[0.85\times0.8]-0.2$	
	=1-0.68-0.2 = 0.12	
(c)	$P(A' \cap C') = 1 - P(A \cup C)$	Some students did not understand
	$=1-\big[P(A)+P(C)\big]$	what mutually exclusive events means and hence did not know
	=1-0.15-P(C)	that since $P(A \cap C) = 0$ hence
	=0.85-P(C)	$P(A \cup C) = P(A) + P(C).$
	Since $P(A' \cap C') = 0.52$,	
	0.52 = 0.85 - P(C)	
	P(C) = 0.33	
(p)9	Method 1 $\text{When P}\big(A'\cap B'\cap C'\big) \text{ is maximum,}$	Students who tried solving using method 1 generally found more
	a	success than students who solve using method 2. For both
		more difficulty finding the
	(0.12 (0.03) 0.17) C	maximum $P(A' \cap B' \cap C')$ than
	(9). Constitution of the second of the secon	finding the minimum $P(A' \cap B' \cap C')$.
	0.52	
	Maximum P $(A' \cap B' \cap C') = 1 - 0.15 - 0.17 - 0.16 = 0.52$	When finding the minimum $P(A' \cap B' \cap C')$, a significant
		number of students failed to observe that $P(C) > P(B)$ and
		ended up drawing an incorrect Venn diagram which shows that
		event C being a subset of event B.

incorrect Venn diagram being drawn whereby event A and C Since

11

Hence, $0.35 \le P(A' \cap B' \cap C') \le 0.52$

Method 2

Let $P(B \cap C) = x$

 $0 \le 0.33 - x \le 1$ Consider: $-1 \le x - 0.33 \le 0$ and $0 \le 0.35 + x \le 1$ Consider:

Consider

and

 $-1 \le x - 0.17 \le 0$ $0 \le 0.17 - x \le 1$

 $-0.83 \le x \le 0.17$

 $-0.67 \le x \le 0.33$

 $0 \le x \le 0.65$ $-0.35 \le x \le 0.65$

method I with many students Most students tried solving using

Hence,

Combing results,

 $0 \le x \le 0.17$

 $0.35 \le \mathbb{P}(A' \cap B' \cap C') \le 0.52$

 $0.35 \le x + 0.35 \le 0.17 + 0.35$

7(a)

Method 1

000

Some students who tried the complement method which is not recommended for this part of the question. Few found success with on the complement Case B or had many students either missing out

achieving success

surprise duets and 5 other songs.

3! ways of to arrange within a block of of 3 back-to-back surprise duets 61 ways to arrange 6 blocks consisting of one block of 3 back-to-back Number of ways = $6! \times 3! \times {}^{7}C_{3} \times 3! = 907200$

pre-recorded songs among the 3 chosen positions at least one song, with the hit song being the last song.

Then within the 3 chosen positions, there are 3! ways to arrange the 3 the recorded songs such that are they are all separated from each other by ${}^{7}C_{3} \times 31$: Out of the 7 available positions, choose 3 positions to slot in

Method 2 (Complement Method)

Complement Case A: All three pre-recorded songs are back-to-back

Number of ways = 7!×3!×3!=181440

Complement Case B: Two of the three pre-recorded songs are back-to-

Number of ways = $6! \times 3! \times {}^{7}C_{2} \times 2! \times {}^{3}C_{2} \times 2! = 1088640$

Number of ways without restrictions = $9! \times 3! = 2177280$

Required number of ways = 2177280 - 181440 - 1088640 = 907200

using method 2, some did not consider all cases and hence did For students who tried solving

not get the correct answer.

6! ways to arrange 6 blocks consisting of one block of 3 back-to-back surprise duets and 5 other songs

3! ways of to arrange within a block of 3 back-to-back surprise duets

block of 2 back-to-back pre-recorded songs and a separate block of one block of 2 back-to-back pre-recorded songs and a separate block of one pre-recorded song, with the hit song being the last song. Then within the 2 chosen positions, there are 2! ways to arrange the ${}^{7}C_{2} \times 21$: Out of the 7 available positions, choose 2 positions to slot in a

to permutate among themselves to be back-to-back and then within the 2 chosen songs, they are 2! ways $^{\circ}C_{2} \times 2!$: Out of the 3 pre-recorded songs, choose 2 pre-recorded songs pre-recorded song.

`		?	
	TATCAMOU	•	

4 dancers	3 dancers	3 dancers	Case 3
5 dancers	3 dancers	2 dancers	Case 2
4 dancers	4 dancers	2 dancers	Case 1
3rd Country	2 nd Country	1st Country	

Case 3: ${}^5C_3 \times {}^5C_3 \times {}^5C_4 \times \frac{3!}{2!} = 10 \times 10 \times 5 \times 3 = 1500$ Case 2: ${}^5C_2 \times {}^5C_3 \times {}^5C_5 \times 3! = 10 \times 10 \times 1 \times 6 = 600$ Case 1: ${}^5C_2 \times {}^5C_4 \times {}^5C_4 \times \frac{51}{2!} = 10 \times 5 \times 5 \times 3 = 750$

Total no. of ways = ${}^{6}C_{3} \times [750 + 600 + 1500] = 20 \times 2850 = 57000$

omitting $\frac{3!}{2!}$ students who did method 1 with workings. many students being able to made by The most common mistakes consider the three main cases Generally well attempted by students involve or 3! in their

⁶C₁ ³C₁ ⁴C₁ will result in repeated students did not realise that ⁶C₁ ⁵C₁ ⁴C₁ instead of ⁶C₃. These involves Another combinations of 3 countries common students writing mistake

chosen from the 6 countries.

	Method 2 (Complement)	
	Complement 1st Country 2sd Country 3sd Country	Studento who did the
	5 dancers 5 dancers	complement method were
	Case 1: ${}^5C_5 \times {}^5C_4 \times {}^5C_4 \times {}^3[-1 \times 5 \times 5 \times 3]=150$	generally successful and those who did not get the correct answer made similar mistakes
	Case 2: ${}^{5}C_{5} \times {}^{5}C_{5} \times {}^{5}C_{0} \times \frac{3!}{2!} = 1 \times 1 \times 1 \times 3 = 3$	mentioned in method 1.
	Total no. of ways = ${}^6C_3 \times \left[{}^{15}C_{10} - 150 - 3\right] = 20 \times 2850 = 57000$.	
2(c)	Total no. of ways $= \left[{}^{10}C_5 \times 51 \right] \times \left[{}^{5}C_5 \times (5-1)! \right] = \left[252 \times 120 \right] \times 24 = 725760.$	This part is not as well attempted as the earlier two parts. Common mistales include.
		$\begin{bmatrix} {}^{10}C_5 \times 5! \end{bmatrix} + \begin{bmatrix} {}^{5}C_5 \times (5-1)! \end{bmatrix}$
		19.5×4!
8(a)	Unbiased estimate of the population variance	Most students can recall and
	$s^{2} = \frac{1}{45 - 1} \left(17.08 - \frac{(-4.3)^{2}}{45} \right) = 0.378843 = 0.379 $ (3 sf)	apply the correct formulas.
	$\bar{x} = \frac{-4.3}{45} + 12 = 11.904 = 11.9 (3 sf)$	
8 (b)	To test $H_0: \mu = 12$ Against $H_1: \mu < 12$ at 5% sig level	Some students do not know how to properly define μ
	where μ represents the population mean lifespan of a refrigerator	Some students made the mistake
	Under H ₀ , $\vec{X} \sim N \left(12, \frac{0.378845}{45} \right)$ approx. by Central Limit	of putting the sample mean value 11.9 in the distribution. Should
	Theorem since $n = 45$ is large	be $\bar{X} \sim N \left(12, \frac{0.378845}{45} \right)$.
	Value of test statistic, $z = \frac{11.90444 - 12}{\sqrt{0.378843}} = -1.04$ (3 sf)	Some students got up to the
	p - value = 0.14883 > 0.05 : Do not reject Ho.	wongly.
	There is insufficient evidence at 5% sig level, to conclude that the mean lifespan of the refrigerator is less than 12 years.	Some students left out the 5% sig. level at the conclusion part.
(C)	Unbiased estimate for population variance = $\frac{n}{n-1}(4.1)$	Some students did not realise that this is a sample variance and
	To test $H_0: \mu = 12$ Against $H_1: \mu \neq 12$ at 5% level of significance	need to find the unbiased estimate for the population variance.

13

		14
	Under H_0 , $\overline{Y} \sim N\left(12, \frac{4.1}{n-1}\right)$ approx. by Central Limit Theorem,	Some students made the mistake of putting the sample mean value 12.4 in the distribution. Should
	Since n is large Value of test statistic, $z = \frac{12.4 - 12}{\sqrt{4.1}}$	be $\overline{Y} \sim N\left(12, \frac{4.1}{n-1}\right)$. Some forgot to quote Central limit
		Theorem.
	$\frac{2}{r} > 1.95996$ or $\frac{12}{r}$	Many students were able to get the z-values ±1.95996.
	$\sqrt{n-1}$ $\sqrt{\frac{4.1}{n-1}} < \frac{0.4}{1.95996}$ $\sqrt{n-1} < \frac{4.1}{1.95996}$ $\sqrt{n} > 99.4(3sf)$ or $n \ge 100$	To reject H ₀ , the test-stats should be at the tail-ends i.e. $\frac{12.4-12}{4} > 1.9599 \text{ or}$
	$\frac{GC \text{ method:}}{12.4 - 12} - 1.95996 > 0$	$\frac{\sqrt{n-1}}{12.4-12} < -1.9599$ $\sqrt{\frac{4.1}{n-1}}$
	$\sqrt{n-1}$ Let $y = \frac{12.4 - 12}{\sqrt{n-1}}$ 1.95996	
	Y 1 When $n = 99$, $y = -0.004$ 97 1.8.24 When $n = 190$, $y = 0.0056 > 0$	
	100 8.0855 100 where $n \in \mathbb{Z}$.	
9(a)	Let M denote the amount of time taken by a male runner to complete a run for the training programme $P(M > 180) = 0.74751$	Some students could not understand the question and did find $P(M > 180)$.
	= 0.748 (3 sf) Expected number = 0.74751×80	Many did not realise that E(X) is
	= 59.8 (3 st)	a statistical value and should be rounded off to 3sf and not a whole number.
(P)	$P(M \le a) \le 0.1$	
	# 5.103.24 = 165 (nearest minute)	Most students can do (b).
(c)	Let F denote the amount of time taken by a female runner to complete a run for the training programme	Most students can do (c).
	$M_1 + F_1 + F_2 + F_3 \sim N(196 + 210 \times 3, 24^2 + 30^2 + 30^2 + 30^2)$ $M_1 + F_1 + F_2 + F_3 \sim N(826, 3276)$	A mistake is at the variance of the $F_1 + F_2 + F_3$ which should be 3×30^2 and not $3^2\times30^2$

₽P~38

	9(d)			10(a)			10(b)	
$P(700 < M_1 + F_1 + F_2 + F_3 < 800) = 0.31097$ = 0.311 (3 sf)	Let $T = 0.94(F_1 + F_2) - 1.9M$ E $(T) = 0.94(210 + 210) - 1.9(196) = 22.4$ Var $(T) = 0.94^2(30^2 + 30^2) + 1.9^2(24^2) = 3669.8$	P(T <17)	= P(-17 < T < 17) $= 0.207 (3 sf)$	560	•	15 (8000, 10) V	The influencer should observe from the scatter diagram which a curvilinear (non-linear) relationship between f and v . As v increases, f increases at a decreasing rate (f increases by decreasing amounts).	arnounts).
	Some student mis-read the question and left out the modulus part.	Some students misread and did 0.05 of M or 0.06 of F instead of 0.95 of M and 0.94 of F.	Some students factored in the discount for the Mean and forgot to do that for the Variance.	Most students can do (a), with a few missing out the instructions to circle the outlier.	While the scatter plot did not state the axes, students should identify the independent/dependent variable based on the context.			A portion of the students calculated the r value even though question stated to use the scatter diagram.

11(ai) Th con Th ind	10(f) All reg	10(e) This eith the	10(d) Who	suitt Furt mod bettu $f = f$	For f Since
The probability of a candy bar containing a lucky draw ticket is constant for all candy bars. The event that a candy bar containing a lucky draw ticket is independent of another candy bar.	All the data points of this male influencer lie on the least squares regression line.	This is because the distances (residuals) which are used could either be positive or negative and summing them up might cause the values to cancel out. Hence the values need to be squared.	When $\nu=100000$, $f=-976.691+138.580\ln\left(100000\right)=619~(3s.f)$ This estimate is not reliable as $\nu=100000$ does not lie within the ν data range $\left(1000 \le \nu \le 60000\right)$. Hence, there is extrapolation when calculating f .	suitable model. Suitable model. Furthermore, the product moment correlation coefficient of the model $f = a + b \ln \nu$ is closer to one, hence, $f = a + b \ln \nu$ is a better model. $f = -976.6912461 + 138.5796656 \ln \nu$ $f = -976.691 + 138.580 \ln \nu$ (3 d.p)	For $f = a + bv$: $r = 0.92312 = 0.923(3 \text{ s.f.})$ For $f = a + b \ln v$: $r = 0.99271 = 0.993(3 \text{ s.f.})$ Since the scatter diagram shows a curvilinear (non-linear) relationship between f and v , hence $f = a + bv$ will not be a
Students should take note of the phrasing that they used and not be confused by the definition between random (equal probability for any trial) and probability of any trial being constant.	Students linked the value to either the r value or gradient. Students should also answer the question directly by describing the data points and not the variables.	Some students indicated that distances cannot be negative, while not taking note that differences in distance can be negative. Students need to clear state what will happen instead of saying there will be a different impact.	Most students can do (d), students are reminded to state the range of values.	Students should also take note of the correct phrasing, to state that the r value is closer to 1 or -1 when comparing values instead of higher/stronger/weaker.	follow the instructions stated to omit the circled data in the passage, thus obtaining wrong r values.

11(aii)	r(0.04)(1-0.04) = 1.92 r = 50	Most students can do (aii). Students who did not attempt should know that the formula is in the booklet for reference.
11(b)	Let <i>X</i> be the number of tickets obtained, out of <i>n</i> candy bars. $X \sim B(k, 0.04)$ $P(X > 3) \ge 0.34$ $1 - P(X \le 3) \ge 0.34$ $P(X \le 3) \ge 0.66$ $R = R = R = R = R = R = R = R = R = R =$	While most students can identify the distribution to be binomial, there were a number of careless mistakes when changing P(X > 3) to the correct inequality. A portion of the students approached the question using normal distribution instead. Students should also take note and present the table in their answer instead.
11(c)	2 0 -	This part is not well attempted as students either left it blank or did not include the permutation of the numbers. Most students could identify all the 8 cases. A good reminder that students can check their working by ensuring that the total probability adds up to 1.
11(d)	ast 4 vouchers) = $\frac{P(A=5,6 \text{ or } 7)}{P(A=3,5,6 \text{ or } 7)}$ = $\frac{10}{10} + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} + \frac{2}{10} + \frac{2}{10} + \frac{1}{10} + \frac{2}{10} + \frac{2}{10$	This part is not well attempted. For those who attempted, they might have either neglected the conditional probability, or confused themselves by considering the taking of 4 vouchers as $P(A = 4)$.