NANYANG JUNIOR CO JC 2 PRELIMINARY EX Higher 2			
CANDIDATE NAME			
CLASS	TUTOR'S NAME		
CHEMISTRY Paper 4 Practical			9729/04 August 202 ⁻ rs 30 minutes
Candidates answer on the Question Paper.			
Additional Materials: As listed in the Co	onfidential Instructions		
READ THESE INSTRUCTIONS FIRST			
Write your name and class on all the work y Give details of the practical shift and laborat	ou hand in. ory where appropriate, in the boxes pro	vided.	
Write in dark blue or black pen.			
You may use an HB pencil for any diagrams Do not use staples, paper clips, glue or corre			Shift
Answer all questions in the spaces provided	on the Question Paper		——————————————————————————————————————
The use of an approved scientific calculator You may lose marks if you do not show your appropriate units.	is expected, where appropriate. working or if you do not use	Lat	poratory
Qualitative Analysis Notes are printed on page At the end of the examination, fasten all your The number of marks is given in brackets [work securely together.		
question.	j at the end of each question or part	For Exam	niner's Use
		1	/ 13
		2	
		2	/ 15
		3	/ 9
		4	/ 18

This document consists of 17 printed pages..

/ 55

Total

1 Determination of the concentration of hydrogen peroxide

FA 1 is a solution of hydrogen peroxide, H₂O₂, of unknown concentration.

In this experiment, you will react hydrogen peroxide with excess potassium iodide solution in an acidic condition to produce iodine as shown in equation 1.

$$H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O$$

equation 1

The iodine produced is then titrated with a standard solution of sodium thiosulfate as shown in equation 2.

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

equation 2

FA 2 is 0.50 mol dm⁻³ sulfuric acid, H₂SO₄.

FA 3 is 0.500 mol dm⁻³ potassium iodide, KI.

FA 4 is 0.200 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃.

Starch solution.

You will determine the concentration of hydrogen peroxide by first reacting a fixed amount of hydrogen peroxide with excess potassium iodide and subsequently titrating the iodine produced with sodium thiosulfate.

(a) In a preliminary experiment, a student pipetted 25.0 cm³ of FA 1 into a conical flask containing FA 2 and FA 3. The resulting solution was titrated against FA 4 from a burette and a very large titre value was obtained. He deduced the concentration of FA 1 was too high and required dilution.

(i) Procedure

 Using the burette labelled FA 1, run between 24.00 cm³ and 24.50 cm³ of FA 1 into a clean 250 cm³ graduated flask.

Set aside this burette labelled FA 1 and its contents for Question 2.

- Record your burette readings to an appropriate level of precision in the space provided below.
- 3. Top up the flask to mark with deionised water. Stopper the flask and mix the contents thoroughly to obtain a homogenous solution. Label this solution as **FA 5**.

Dilution of FA 1

- 4. Fill another clean burette with FA 4.
- 5. Pipette 25.0 cm³ of FA 5 into a 250 cm³ conical flask.
- 6. Using separate measuring cylinders, transfer 50.0 cm³ of **FA 2** and 20.0 cm³ of **FA 3** into the same conical flask. Leave the solution to stand for **7 minutes**.

While you are waiting, prepare another of this solution by repeating steps 5 and 6.

- 7. At the 7th minute, titrate the contents in the conical flask against **FA 4** from the burette until a pale-yellow solution is obtained.
- 8. Add about 5 drops of starch solution and continue titrating until the solution just turns colourless. Ignore any subsequent return of the colour.
- 9. Repeat the titration until consistent results are obtained and record your readings in the space below. Make certain that your results show the precision of your working.

Resu	lts
------	-----

(ii) From your titrations, obtain a suitable volume of **FA 4**, $V_{\text{FA 4}}$, to be used in your calculations. Show clearly how you obtained this volume.

 $V_{\text{FA 4}} = \underline{\qquad} \text{cm}^3 [1]$

(b) (i) Use your answer from 1(a)(ii) to calculate the concentration of hydrogen peroxide in FA 5.

 $[H_2O_2]$ in **FA 5** = _____ mol dm⁻³ [2]

H2 Chemistry 9729/04 NYJC J2/2021 PRELIM.

Turn Over

[4]

	(ii)	Henc	e, calc	ulate th	e conce	entration	n of hyd	rogen pe	eroxide iı	ո FA 1 .			
							[H ₂	O ₂] in F A	4 1=			_mol dm	⁻³ [1]
(c)	be e	xpress	ed in v	olume s	strength	7.						n⁻³, it can	
	volu solut	me str tion co	ength r mpletei	efers to y decoi	the vo	lume of at room	oxyger temper	formed ature ar	when 1. nd pressu	00 cm³ ıre.	of hydro	gen pero	xide
	Whe deco	n 1.00 mpose) cm³ e at roo	of a 10 m temp	00 volu erature	ume hy and pr	drogen essure,	peroxid 100 cm	le sampi ³ of oxyg	le is al en gas i	lowed to	o comple ced.	etely
	Calcu press	ulate t sure th	he volu at you	me stre	ength c	of the hy	/droger)(ii).	peroxic	de in FA	1 at ro	om tem	perature	and
										٠.			

Volume strength of **FA 1** = _____volume [2]

(a)	state and explain how the use of a measuring cylinder to measure the volume of FA 3 in step 6 will affect the accuracy of the titration result.
	[1]
(e)	Based on the procedure in $1(a)(i)$, the value you obtained in $1(b)(ii)$ for concentration of H_2O_2 in FA 1 differs from the actual concentration. Explain with evidence how the procedure in $1(a)(i)$ will impact the calculated concentration of H_2O_2 in FA 1 .
	Impact:
	[1]
	Evidence:
	[1]
	[Total: 13]

2 Determination of the enthalpy change of decomposition of hydrogen peroxide

Decomposition of hydrogen peroxide occurs spontaneously but slowly at room temperature. The heat evolved from the decomposition is not significant hence is not measurable. By increasing the rate of decomposition, temperature changes of the reaction become more measurable and the enthalpy change of decomposition can be determined experimentally.

FA 6 is 0.250 mol dm⁻³ sodium hydroxide, NaOH.

You will determine the enthalpy change for the decomposition of hydrogen peroxide by mixing FA 1 and FA 3 from Question 1 together with FA 6 and measuring the temperature of the solution over a period of time.

(a) Procedure

- 1. Using a clean 50 cm³ measuring cylinder, measure 48.0 cm³ of **FA 3** followed by 2.0 cm³ of **FA 6**. Stir the solution with a glass rod.
- 2. Using the burette labelled **FA 1** from **Question 1**, transfer 50.00 cm³ of **FA 1** into a polystyrene cup. Place the cup inside a 250 cm³ beaker.
- 3. Stir the solution in the cup with a thermometer and measure its temperature, *T*, and start the stopwatch. This is the temperature when time, *t* = 0 min. Record this temperature in a suitable format in the space below. Repeat the measurement at one-minute interval for the next three minutes.
- 4. At the 4th minute, pour the contents of the measuring cylinder into the polystyrene cup and stir the solution. **Do not** read the temperature at the 4th minute.
- 5. Stir the solution continuously and record the temperature at the 5th minute and every half-minute interval till the 12th minute. Record all the temperatures measured.

Temperature readings

(b) Plot a graph of temperature, T, on the y-axis, against time, t, on the x-axis on the grid. Draw a best–fit straight line taking into account all of the points before t = 4.0 min. Draw another best–fit straight line taking into account all of the points after the temperature of the mixture has started to fall steadily. Extrapolate both lines to t = 4.0 min.

Temperature change, $\Delta T =$ ____oC [4]

(c)	De ΔF	etermine the heat change, q , for your experiment and hence calculate the enthalpy of $\mathcal{H}_{\text{decomp}}$, for the decomposition of H_2O_2 .	hange
	Yo	 concentration of H₂O₂ in FA 1 is 0.950 mol dm⁻³; decomposition of H₂O₂ in FA 1 is complete; specific heat capacity of the solution is 4.18 J g⁻¹ K⁻¹; density of the solution is 1.00 g cm⁻³. 	
		q =	
		$\Delta \mathcal{H}_{decomp} = $	[3]
(d)	The	e following is a proposed mechanism for the decomposition of H_2O_2 .	[O]
		$I^{-}(aq) + H_2O_2(aq) \downarrow HOI(aq) + OH^{-}(aq)$ step 1	
		$HOI(aq) + OH^{-}(aq) \downarrow H_2O(I) + OI^{-}(aq)$ step 2	
		$OI^{-}(aq) + H_2O_2(aq) \downarrow I^{-}(aq) + H_2O(I) + O_2(g)$ step 3	
	(i)	Give the overall equation for the decomposition of H_2O_2 , including state symbols.	
			[1]
	(ii)	Deduce the role of iodide ions in the mechanism. Explain your reasoning.	

	(iii)	A similar decomposition experiment was carried out using aqueous iron(III) ions instead of iodide ions.
		By considering the bonds formed and broken between H ₂ O ₂ molecules and iron(III) ions, suggest how will this enthalpy change of decomposition of H ₂ O ₂ compare with that when
		H_2O_2 molecules and iodide ions were used in 2(a) . Explain your answer.
		[2]
(e)	(i)	A student decided to use half the volumes of all reagents in 2(a) so that he can repeat the experiment to obtain two sets of data to increase the reliability of his results. Comment if his method would lead to a more reliable result.
		[1]
	(ii)	The same student carried out the experiment while the fans were turned on. Comment if his ΔT value obtained will be reliable due to cooling by the draught.
		[1]
		[Total: 15]

3 (a) Planning

The order of decomposition reaction with respect to hydrogen peroxide cannot be determined from the mechanism in **2(d)** unless the slow step is known. A student suggested the order of decomposition could be first order.

You are to plan a series of experiments to verify the decomposition reaction is first order with respect to hydrogen peroxide using a continuous sampling method.

In this method, decomposition of H_2O_2 will run for approximately 25 min once it is mixed with solid MnO₂. A fixed volume of the reaction mixture is then sampled shortly after mixing and diluted with deionised water while noting the time interval from the start of the reaction. The sample is then analysed to determine the amount of H_2O_2 remaining.

Further samples are withdrawn at timed intervals and analysed in the same way to obtain sufficient data for a graph to be drawn. You will use the graph to verify if the reaction is first order with respect to H_2O_2 .

You may assume you are provided with:

- solid manganate(IV) oxide, MnO₂,
- aqueous potassium manganate(VII), KMnO₄,
- aqueous sulfuric acid, H₂SO₄,
- apparatus normally found in a school or college laboratory.

Your plan should include brief details of:

· the quantities of reagents you would use (concentration of reagents is not required),

the method to determine the amount of H₂O₂ remaining in each sample.

- · the apparatus you would use,
- the procedure to sample the reaction mixture at timed intervals,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
***************************************	••••••	•	*		************	•••••••		*************		
					••••••••	· · · · · · · · · · · · · · · · · · ·	·····	····	•	••••••
		********			•••					
									***********	•••••
	••••••	•••	•••••••	·		·	•••••		•••••••	•••
		••	•••••						•••••	••••••••••••••••••••••••••••••••••••••
		*********		************				••••••		
		·····	······		••••••				*********	
***************************************	**********	••	**********				•••••••		••••••	•••
*					•••••	•••••	•			
						•••••••••••••••••••••••••••••••••••••••	••	• • • • • • • • • • • • • • • • • • • •		
			·	•••••••••			•••••			
hydrogen perc	oxide is f	irst ord	er.	nu expia	ain now	you wou	iu verny	in the Q	ccomp	SILIO
hydrogen perc	oxide is f	irst ord	er.	па ехріг	ain now	you wou	iu vemy	n the d	ccomp	osilio
hydrogen perc	oxide is f	irst ord	er.	по ехріг	ain now	you wou	iu veriiy	· ii the q	ccomp	osilio
hydrogen perc	oxide is f	irst ord	er.	пи ехры	ain now	you wou	iu veriiy	in the C	coomp	JSHO
hydrogen perc	exide is f	irst ord	er.	пи ехріг	ain now	you wou	iu verily		coomp	JSIIIO
hydrogen perc	oxide is f	irst ord	er.	пи ехріг	ain now	you wou	iu verny		Coomp	JSILIO
hydrogen perc	exide is f	îrst ord	er.	пи ехріг	ain now	you wou	iu verily		Coomp	JSILIO
hydrogen perc	exide is f	irst ord	er.	пи ехріг	ain now	you wou	u verny	n uie u	Coomp	JSILIO
hydrogen perc	oxide is f	îrst ord	er.	пи ехріг	ain now	you wou	u verny	n uie u	Coomp	JSHIO
hydrogen perc	exide is f	îrst ord	er.	пи ехріг	ain now	you wou	u verny	n uie u	Coomp	JSHIO
hydrogen perc	oxide is f	îrst ord	er.	пи ехріг	ain now	you wou	u verny	n uie u	Coomp	JSHIO
hydrogen perc	exide is f	irst ord	er.	пи ехріг	ain now	you wou	u verny	• H Uie U	Coomp	JSHIO
plan. Indicate hydrogen perc	oxide is f	irst ord	er.	пи ехріг	ain now	you wou	u verny	→ •		JSHIO
hydrogen perc	exide is f	îrst ord	er.	пи ехріг	ain now	you wou	u verny	• H UIE U		JSHIO
hydrogen perc	exide is f	irst ord	er.	пи ехріа	ain now	you wou	u verny	• H Ule U		JSHIO
hydrogen perc	exide is f	irst ord	er.	пи ехріг	ain now	you wou	u verny	• H Uie U		JSHO
hydrogen perc	exide is f	irst ord	er.	пи ехріа	ain now	you wou	u verny	THE CO		JSHIO
hydrogen perc	exide is f	irst ord	er.	nu expia	ain now	you wou		THE U		

4 Qualitative Analysis

(a) Solid FA 7 is a salt containing two cations and one anion.

You are provided with an aqueous solution of FA 7, labelled FA 7 solution.

You will devise a series of simple tests, based on the Qualitative Analysis Notes on pages 16–17, to identify the anion present in FA 7 solution.

FA 7 does not contain sulfite ions, SO_3^{2-} , nitrite ions, NO_2^- , or nitrate ions, NO_3^- .

(i)	Describe three different tests , using only the bench reagents provided, which will allow you to identify the anion. State how you will decide if the test result is positive.
	test 1
	test 2
	test 3

Perform the tests you described in 4(a)(i), using the FA 7 solution provided.				
Record your observations and hence deduce the	identity of the anion in solid	d FA 7		
Any test requiring heating MUST be performe	d in a boiling tube.			
test 1		-		
		•		
test 2				
	·····			
test 3				
Perform the tests in Table 4.1 and record your o	observations. If there is no	obser		
Perform the tests in Table 4.1 and record your of change, write no observable change . Hence ded	observations. If there is no	obser the id		
Perform the tests in Table 4.1 and record your of change, write no observable change . Hence dedor of solid FA 7 .	observations. If there is no	obser the id		
Perform the tests in Table 4.1 and record your change, write no observable change . Hence ded of solid FA 7 . Table 4.1 Test Add 2 cm ³ of FA 7 into a boiling tube	observations. If there is no luce the cations present and	obser the id		
Perform the tests in Table 4.1 and record your of change, write no observable change . Hence ded of solid FA 7 . Table 4.1	observations. If there is no luce the cations present and	obser the id		
Perform the tests in Table 4.1 and record your change, write no observable change . Hence ded of solid FA 7 . Table 4.1 Test Add 2 cm ³ of FA 7 into a boiling tube	observations. If there is no luce the cations present and	obser		
Perform the tests in Table 4.1 and record your change, write no observable change . Hence ded of solid FA 7 . Table 4.1 Test Add 2 cm ³ of FA 7 into a boiling tube	observations. If there is no luce the cations present and	obser the id		
Perform the tests in Table 4.1 and record your change, write no observable change. Hence ded of solid FA 7. Table 4.1 Test Add 2 cm³ of FA 7 into a boiling tube followed by aq NaOH dropwise.	observations. If there is no luce the cations present and	obser		
Perform the tests in Table 4.1 and record your change, write no observable change. Hence ded of solid FA 7. Table 4.1 Test Add 2 cm³ of FA 7 into a boiling tube followed by aq NaOH dropwise.	observations. If there is no luce the cations present and	obser		
Perform the tests in Table 4.1 and record your change, write no observable change. Hence ded of solid FA 7. Table 4.1 Test Add 2 cm³ of FA 7 into a boiling tube followed by aq NaOH dropwise.	observations. If there is no luce the cations present and	obser		
Perform the tests in Table 4.1 and record your ochange, write no observable change. Hence ded of solid FA 7. Table 4.1 Test Add 2 cm³ of FA 7 into a boiling tube followed by aq NaOH dropwise. Warm the mixture.	observations. If there is no luce the cations present and Observation	obser		
Test Add 2 cm³ of FA 7 into a boiling tube followed by aq NaOH dropwise.	observations. If there is no luce the cations present and Observation	obser		

(b) (i) FA 8 and FA 9 are aqueous solutions of covalently bonded compounds. Perform the tests for FA 8 and FA 9 described in Table 4.2 and record your observations. If there is no observable change, write no observable change.

All heating should be carried out in a hot water bath.

Table 4.2

Test	Obs	ervation
	FA 8	FA 9
Add 2 cm ³ of aqueous sulfuric acid and FA solution into a		
test–tube followed by 1 cm ³ of potassium manganate(VII) solution.		
Warm the test-tube.		
2. Add 1 cm ³ of aqueous sulfuric		
acid and FA 8 solution into a		
test–tube followed by 1 cm ³ of FA 7.		
Add aqueous ammonia.		
3. Add 1 cm³ of FA solution into		្ត្រាយមួយ មានប្រជាជាមួយ មានក្នុង មានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ ប ប្រជាជាធិបតី បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជាជាធ្វើ បានប្រជ
a test–tube followed by 2 cm³ of aqueous iodine. Add	e u	
aqueous sodium hydroxide dropwise until the yellow colour just disappears. Warm		
the test-tube.		
4. Add 1 cm ³ of FA 9 into a test–	ikin — 1. — — — — — — — — — — — — — — — — —	
tube followed by 1 cm ³ of 2,4–DNPH and warm.	and the contract of the contra	
5. To 1 cm³ of aqueous silver		
nitrate, add 2 drops of	e Pierri Grappe Dellector e representationer de l'acceptant de 1985 : L'imperiore de la communicació de l'acceptant de l'acceptant de l'acceptant de l'acceptant de l'acceptant de 1985 : L'imperiore de la communicació de l'acceptant de l'acceptant de l'acceptant de l'acceptant de l'accept	
aqueous sodium hydroxide.	n dagan - malandar - m	
Add aqueous ammonia		
dropwise until the precipitate just dissolves.	Marian managaran da managaran da Managaran da managaran da managar	
Add 1 cm ³ of FA 9 to the	ng Pilanggan Paulan angga (Pilang mingga) Radan sangan pata _{mang} a Sasa Panga Pangangga	
resulting mixture and warm.	or a planta in the state of the	
The same and walli.		

(ii)	Using your results in 4(b)(i), state and explain the redox nature of FA 8.					
		[1]				
(iii)	FA 9 contains a 4–carbon organic compound.	ound. Suggest two possible structures for this				
	Structure 1	Structure 2				

[1]

[Total: 18]

Qualitative Analysis Notes [ppt. = precipitate]

(a) Reactions of aqueous cations

cation		reaction with
	NaOH(aq)	NH₃(aq)
aluminium, A <i>l</i> ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	ammonia produced on heating	-
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), Cu ^{2⁺} (aq),	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess
ron(III), ⁼ e ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
nanganese(II), ∕In²⁺(aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess
inc, n ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess

(b) Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C≀⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br (aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in NH₃(aq))
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO₃¯(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>I</i> foil
nitrite, NO ₂ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and AI foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result		
ammonia, NH ₃	turns damp red litmus paper blue		
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)		
chlorine, Cl ₂	bleaches damp litmus paper		
hydrogen, H ₂	"pops" with a lighted splint		
oxygen, O ₂	relights a glowing splint		
sulfur dioxide, SO ₂	tums aqueous acidified potassium manganate(VII) from purple to colourless		

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple

Chemical Name	Qty per	Mass / Concentration / Preparation method	Label	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	student			_
Question 1				Т
Hydrogen peroxide, H ₂ O ₂	120 cm ³	0.800 mol dm ⁻³ Using 19% H ₂ O ₂ , dilute 129 cm ³ with deionised water to 1 dm ³ Using 3% H ₂ O ₂ , dilute 817 cm ³ with deionised water to 1 dm ³	FA 1	T
Sulfuric acid, H₂SO₄	180 cm ³	0.50 mol dm ⁻³	FA 2	\top
Potassium iodide, KI	150 cm ³	0.500 mol dm ⁻³	FA 3	\neg
Sodium thiosulfate, Na ₂ S ₂ O ₃	120 cm ³	0.200 mol dm ⁻³	FA 4	
Starch solution	10 cm ³	1%	Starch solution	\neg
Question 2				$\overline{}$
aq NaOH	5 cm ³	0.250 mol dm ⁻³ sodium hydroxide.	FΔ R	\neg
Aqueous ammonium iron(II) sulfate	15 cm ³	0.2 mol dm ⁻³ ammonium iron(II) sulfate Dissolve 78.4 g of (NH4)2Fe(SO4)2.6H2O in each dm ³ of solution	FA 7	
0.1-141				
Question 4		Print	- Apply of the state of the sta	Т
H ₂ O ₂ (FA 1 from Qn 1)	10 cm ³	0.800 mol dm ⁻³	FA 8	\top
Ethanol + Propanone	10 cm ³	5 cm³ ethanol + 5 cm³ propanone		
Bench reagents				
	10 cm ³			_
sodium hydroxide		2.0 mol dm ⁻³ sodium hydroxide		
aqueous silver nitrate		0.05 mol dm ⁻³ silver nitrate	silver nitrate	┰ -
barium chloride or barium nitrate		(approximately 0.2 mol dm ⁻³)	barium chloride or	т—
aqueous	,	0.2 mol dm-3 iron(II) stulfate Dissolve 55 8 a FeSO4 7H2O in each dm3 of 1	Daliulii fiitate	
iron(II) sulfate	ာ ငယ _်	mol dm ⁻³ sulfuric acid. This solution should be prepared shortly before use.	equeous iron(II) sulfate	
limewater		(a saturated solution of calcium hydroxide)		
aqueous sodium hydroxide		(approximately 2.0 mol dm ⁻³)		
aqueous ammonia		(approximately 2.0 mol dm ⁻³)	Aq NH ₃	,
		The state of the s		_

Chemicals

(approximately 2.0 mol dm ⁻³)	(approximately 2.0 mol dm ⁻³)	(approximately 1.0 mol dm ⁻³)		
hydrochloric acid	nitric acid	sulfuric acid	aq iodine	

Apparatus

Per student		
1 × burette labelled FA 1	Sticker labels	1 × Lightor
1 × burette (unlabelled)	1 × wash bottle with deionised water	1 × Tripod oftend one in the
1 x retort stand and burette clamp	5 plastic dropping pipettes / droppers	1 x motol contrib
1 x 250 cm³ graduated flask	1 x safety godgles	1 × 250 cm3 harden (62
2 × 250 cm ³ conical flask	1 x Polystyrene cup	A 230 on Deaker (lot water bath)
1 x 100 cm³ waste beaker	1 x 250 cm³ beaker for polystyrene cup	
3 × plastic funnel	1 x Thermometer 0.2 °C div	
1 × 25.0 cm³ pipette	1 × white tile	
1 × pipette filler	1 x stopwatch	
1 × 50 cm³ measuring cylinder	1 x glass rod	
1 × 25 cm³ measuring cylinder	1 x test-tube holder	
6 x medium test-tubes	1 x test-tube rack	
Wooden splint	2 x boiling tubes	
red and blue litmus paper or Universal Indicator paper	1 x Bunsen burner	

NYJC J2 H2 Chemistry Prelim Answers

Paper 4 Answers

ין י	(a)	(i)	Dilution of FA 1	,	· · · · · · · · · · · · · · · · · · ·	
			Final burette reading for FA 1 / cm ³			
			Initial burette reading for FA 1 / cm ³			
			Volume of FA 1 used / cm ³	24.20		
				2 d.p.	1	
			Titration Results			
	i		Final burette reading for FA 4 / cm ³	·		
			Initial burette reading for FA 4 / cm ³			
			Volume of FA 4 used / cm ³	19.15	19.05	_
				2 d.p.	2 d.p.	
			Correct 6	orrect header avaluation and	and units for be precision for be	oth tables [1] oth tables [1]
			scaled mean titre = 24.25 x me	an titre		
		(ii)	scaled mean titre = 24.25 x me Volume diluted Scaled mean titre = 19.10 (2 d.p.)	an titre $an titre diff \le \pm 0$	0.5 cm³ [2] or ≤	±1.0 cm³ [1]
		(ii)	Scaled mea	an titre diff ≤ ±0	· .	
	(b)		Ave titre value = 19.10 (2 d.p.) Choice of titre values are cons	an titre diff ≤ ±0	· .	
	(b)		Scaled mea Ave titre value = 19.10 (2 d.p.) Choice of titre values are cons	istent and aver 10^{-3} mol	· .	
	(b)		Scaled mean Scale	an titre diff ≤ ±0 istent and aver 10 ⁻³ mol	· .	
	(b)		Scaled mean scale and scaled mean scaled mean scale and scaled mean scaled mean scale and scaled mean scale and scale and scaled mean scaled	istent and aver 10^{-3} mol	· .	
	(b)		Scaled mean scale and scaled mean scaled mean scale and scaled mean scaled mean scale and scaled mean scale and scale and scaled mean scaled	istent and aver 10^{-3} mol med 32×10^{-3} mol 10^{-3} mol [1]	· .	
			Scaled means of the state of t	istent and aver 10^{-3} mol med $32 \times 10^{-3} \text{ mol}$ $10^{-3} \text{ mol} [1]$ $3 [1]$ ecf for	· .	evaluated [1]

(c) $2H_2O_2 \rightarrow 2H_2O + O_2$

 $\rm n_{\rm O_2}$ evolved from 1 $\rm dm^3$ of FA 1

 $=\frac{1}{2} \times 0.789$

= 0.394 mol

n_o, evolved from 1 cm³ of **FA 1** at r.t.p.

 $= \frac{0.3946}{1000} = 3.946 \times 10^{-4} \text{ mol [1]}$

 V_{O_2} evolved from 1 cm³ of **FA 1** at r.t.p.

= 3.946 x 10⁻⁴ mol x 24000 cm³ mol⁻¹

 $= 9.47 \text{ cm}^3 [1]$

Hence 1 cm 3 of **FA 1** gives 9.47 cm 3 of O $_2$ \Rightarrow Vol strength of **FA 1** is 9.47

- (d) H₂O₂ in FA 5 is the limiting reagent while FA 3 is measured in excess. Using a measuring cylinder to measure FA 3 will not affect the amount of I2 produced hence will not affect the volume / accuracy of FA 4 used.
- (e) Impact: The oxidation of I by H₂O₂ is incomplete when titration is carried out as the oxidation reaction is slow hence the concentration of H₂O₂ calculated is smaller than expected.[1]

Evidence: The reaction mixture needs to stand for at least 7 minutes before titration. OR slow return of the blue black colour at end point suggest oxidation of I⁻ still continues.[1]

2 (a) Temperature readings

Time / min	Temperature / °C	Time / min	Temperature / °C
0	29.3	7 1/2	36.2
1	29.3	8	36.4
2	29.2	8 ½	36.4
3	29.2	9	36.4
4		9 1/2	36.4
5	32.0	10	36.3
5 ½	33.8	10 1/2	36.3
6	34.6	11	36.2
6 1/2	35.4	111/2	36.1
7	36.0	12	36.0

Correct heading and units [1]

Record time to nearest half minute and temp to 1 d.p except at 4th min.[1]

		Temperature change, $\Delta T = $ ^ \circ C [
	Drew	Correctly labelled axes and units, no odd scale used [Correctly plotted all points within $\frac{1}{2}$ sq except at 4^{th} min [and extrapolated 2 best–fit lines to the 4^{th} min, allowing 1 anomalous pt after mixing [Correctly determined and labelled ΔT clearly [
(c)) q	$= mc\Delta T$
	ŀ	= 100 x 4.18 x Ans fr 2(b) J [1] including units
		m c ΔT
	$\int \Delta H_i$	$_{\text{decomp}} = -\frac{\text{mc}\Delta T}{\text{n}_{\text{H}_2\text{O}_2}}$
		_ 100 x 4.18 x Ans fr 2(b)
		$= -\frac{100 \times 4.18 \times \text{Ans fr } 2(b)}{\frac{50}{1000} \times 0.950 [1]}$
		= -8800 x Ans fr 2(b) J mol ⁻¹ [1] with sign and units
(d)	(i)	$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
	(ii)	lodide is acting as a catalyst. It is reacted in step 1 but regenerated in step 3 hence is not involved in the overall decomposition reaction.[1]
	(iii)	The enthalpy changes for both experiments will be the same / very similar.[1]
		Energy evolved in forming bonds between H ₂ O ₂ and the ions will require the same amount of energy to eventually break it up hence both catalysts are not involved in the overall reaction.[1]
(e)	(i)	The results would be equally reliable. Enthalpy change of reaction, ΔH_{rxn} , and specific heat capacity, c , remain the same, while the mass of reactants, m, and the amount of reactants, n, used are half the original quantity hence ΔT would remain the same.[1]
		$\Delta H_{xxn} = \frac{\frac{1}{2}(100) \times 4.18 \times \Delta T}{\frac{1}{2}n}$
	(ii)	The ΔT value would still be reliable as cooling happened throughout the experiment at a constant rate hence extrapolating the cooling portion of the graph to the point of mixing would compensate for the heat loss due to cooling.[1]

3 | (a) | Planning

- Fill a burette with aq KMnO₄ solution.
- Using a 100 cm³ measuring cylinder, transfer 100 cm³ of H₂O₂ into a 250 cm³ conical flask (allow beaker).
- 3. Add a small spatula of MnO₂ into the conical flask, swirl the mixture and start the stopwatch at the same time. Allow the mixture to stand. [1]
- Before 2 minutes, use a 10.0 cm³ pipette to transfer a sample into a clean 250 cm³ conical flask.
 step 1 + step 4 [1]
- 5. At 2 min, use a clean beaker to transfer 100 (to 150) cm³ of deionised water into the conical flask (containing the 10 cm³ sample) and record the timing. [1]
- 6. Using a 25.0 cm³ measuring cylinder, add 20.0 (to 25) cm³ of H₂SO₄ into the conical flask.
- 7. Titrate the resulting solution against KMnO₄ from the burette until 1 drop gives a permanent pink colour. [1]
- 8. Repeat steps 4 to 7 for another 4 (or 5) times but at time intervals of approximately 4 (to 5) min.
- Calculate the amount of H₂O₂ remaining at each timing using the volume of KMnO₄.

Sketch labelled graph of V_{KMnO4} against time with units, downward sloping curve [1]

If the decomposition is first order with respect to H_2O_2 , the graph would show constant half–life when volume of $KMnO_4$ decreases by half.

Note: V_{KMnO4} reacted α n_{KMnO4} reacted α n_{H2O2} reacted α $[H_2O_2]$

Explains constant half-life and marked out on graph [1]

4 ((a) (i)	If effervesce	FA 7 in a test–tub nce observed ar limewater, carbor	nd white ppt is	-4 cm^3 of H_2SO_4 / HCI / HNO_3 . s formed when gas evolved is resent.
		AgNO₃ follow is soluble in e is partially so	red by aq NH₃ dro excess aq NH₃, C	opwise till in ex Fions are pres aq NH ₃ , Brio	³ of HNO ₃ and) add 1 cm ³ of access. If white ppt is formed and sent. If cream ppt is formed and are present. If yellow ppt is ions are present.
		test 3 To 1 cm ³ of F aq HNO ₃ / HO present.	A 7 in a test–tub	e, add 1 cm³ c formed and is i	of aq BaCl ₂ followed by 2 cm³ of insoluble in acid, SO ₄ ²- ions are
	(ii)	test 1: No effervescen	ce observed		
		test 2: No ppt observe	d.		
		added, green p	pt is formed and is in air.) The prese m.	s insoluble in e nce of AgNO ₃	contains Fe^{2+} . When aq NH $_3$ is xcess aq NH $_3$. (Ppt turns brown and aq NH $_3$ may also cause a
		identity of anion: SO ₄ 2-			
	(iii)	, , , , , , , , ,			
		Test		ble 4.1	
		Add 2 cm ³ of FA 7 int	o a bailing tube		Observation
-		followed by aq NaOH			rmed and is insoluble in aOH. Ppt turns brown upon ir. [1]
		Warm the mixture.		Gas evolved blue.[1]	turns damp red litmus paper
		Cations present in aquilibriantity of solid FA 7:			and Fe ²⁺ [1]
/h)	(2)	Tooming of John 1771.	(14) 14)21 6(0	004)2	[1]
(a)) (i)				
	-		Table 4	.2	
		test		observ	vation
-	A	0 3	FA	<u> </u>	FA 9
1.	sulfu into 1	2 cm³ of aqueous uric acid and FA solution a test–tube followed by cm³ of potassium ganate(VII) solution.	'	Gas evolved	No observable change

	rm the test-tube.	No further / observable change	decolourised.
sulf solu follo	I 1 cm ³ of aqueous uric acid and FA 8 ation into a test—tube owed by 1 cm ³ of FA 7.		d
Add	l aqueous ammonia.	Red-brown ppt formed insoluble in excess NH ₃ (aq)	
a to cm³ aqu drop cold War	I 1 cm ³ of FA solution into est–tube followed by 2 of aqueous iodine. Add eous sodium hydroxide bwise until the yellow our just disappears. In the test–tube.	Yellow / colourless solution formed.	
test	1 cm ³ of FA 9 into a -tube followed by 1 cm ³ ,4–DNPH and warm.		Orange ppt formed
nitra aqu Add drop just Add	1 cm ³ of aqueous silver ate, add 2 drops of eous sodium hydroxide. aqueous ammonia owise until the precipitate dissolves. 1 cm ³ of FA 9 to the alting mixture and warm.		No grey ppt / silver mirro formed.
(ii) FA 8 is both an oxidising (Fe ²⁺ in) FA 7 in test 2.		and reducing agent. It reduc	es KMnO₄ in test 1 and oxidis
1		Structure 2	Structure 3
(iii)	Structure 1		

