RIVER VALLEY HIGH SCHOOL YEAR 6 PRELIMINARY EXAMINATION II

CANDIDATE NAME

CLASS	6	

| CENTRE |
| :--- | :--- | :--- | :--- | :--- | :--- |
NUMBER		S	3	0	4	4

H2 CHEMISTRY	$9729 / 01$
Paper 1 Multiple Choice	21 Sep 2017
Additional Materials:	Multiple Choice Answer Sheet Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Write your name, class and index number on the Optical Answer Sheet in the spaces provided.
There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the Optical Answer Sheet.

Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is expected, where appropriate.

For each question there are four possible answers, A, B, C and D. Choose the one you consider to be correct.

1 Use of the Data Booklet is relevant to this question.

At room temperature and pressure, a sample of $2 \mathrm{dm}^{3}$ of polluted air was passed through limewater so that all the carbon dioxide present was precipitated as calcium carbonate. The mass of calcium carbonate formed was 0.05 g .
What is the percentage, by volume, of carbon dioxide in the air sample?
A 0.30%
B 0.57%
C 0.60%
D 1.20%

2 When $\mathrm{Tl}^{+}(\mathrm{aq})$ reacts with $\mathrm{VO}_{3}{ }^{-}(\mathrm{aq}), \mathrm{Tl}^{3+}(\mathrm{aq})$ and $\mathrm{V}^{2+}(\mathrm{aq})$ are formed.
Assuming the reaction goes to completion, how many moles of $\mathrm{Tl}^{+}(\mathrm{aq})$ and $\mathrm{VO}_{3}-(\mathrm{aq})$ would result in a mixture containing equal number of moles of $\mathrm{VO}_{3}{ }^{-}(\mathrm{aq})$ and $\mathrm{V}^{2+}(\mathrm{aq})$ once the reaction had taken place?

	Moles of $\mathrm{Tl}^{+}(\mathrm{aq})$	Moles of $\mathrm{VO}_{3}{ }^{-}(\mathrm{aq})$
A	1	2
B	1	3
C	2	3
D	3	4

3 Which of the following statements about the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$, are correct?
1 The carbon atom is sp^{2}-hybridised.
2 The carbon in $\mathrm{CO}_{3}{ }^{2-}$ has an octet electronic configuration.
3 It has the same bond angle as the nitrate ion, $\mathrm{NO}_{3}{ }^{-}$.

A 1 only
B 1 and 2 only
C 2 and 3 only
D 1, 2 and 3 only

4 The diagram represents the melting points of four consecutive elements in the third period of the Periodic Table.

The sketches below represent another two properties, m and n, of the elements.

What are the properties m and n ?

	Property m	Property n
A	third ionisation energy	electronegativity
B	number of valence electrons	boiling point
C	ionic radius	effective nuclear charge
D	electrical conductivity	atomic radius

5 Use of the Data Booklet is relevant to this question.

Species containing one or more unpaired electrons are said to be paramagnetic as they can be attracted by an external magnetic field.

Which of the following species are paramagnetic?
$1 \mathrm{Cr}^{3+}$
$2 \mathrm{Fe}^{2+}$
$3 \mathrm{Cu}^{+}$

A 1 only
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

6 Which pair of compounds meets the criteria below?

- The first compound has a larger bond angle than the second compound.
- The second compound is more polar than the first compound.
A $\mathrm{CO}_{2}, \mathrm{BCl}_{3}$
B $\quad \mathrm{IClF}_{2}, \mathrm{ClO}_{2}$
C $\mathrm{HCN}, \mathrm{SO}_{3}$
D $\mathrm{CO}_{2}, \mathrm{NCl}_{3}$

7 Flask \mathbf{X} contains $1 \mathrm{dm}^{3}$ of helium at a pressure of 2 kPa and flask \mathbf{Y} contains $2 \mathrm{dm}^{3}$ of neon at a pressure of 1 kPa .

If the flasks are connected at constant temperature, what is the final pressure?
A $\quad 1.00 \mathrm{kPa}$
B $\quad 1.33 \mathrm{kPa}$
C $\quad 1.67 \mathrm{kPa}$
D $\quad 2.00 \mathrm{kPa}$

8 When water is stirred with glucose, strong hydrogen bonds are initially formed between glucose molecules and water molecules, but as more water is added, these hydrogen bonds are broken.

Which graph best represents the observed temperature changes?
A

B

C

D

Volume of water added

9 Use of the Data Booklet is relevant to this question.

A student dissolved 8.4 g of sodium fluoride in 250 g of water.
Given the following thermodynamic data,
Lattice energy of $\mathrm{NaF}=-918 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of hydration of $\mathrm{F}^{-}=-457 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of hydration of $\mathrm{Na}^{+}=-390 \mathrm{~kJ} \mathrm{~mol}^{-1}$
What would be the initial temperature of the water if the final temperature of the solution is $20.00^{\circ} \mathrm{C}$?
Assume that the specific heat capacity of water is $4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
A $\quad 6.48{ }^{\circ} \mathrm{C}$
B $\quad 33.08{ }^{\circ} \mathrm{C}$
C $\quad 33.52{ }^{\circ} \mathrm{C}$
D $\quad 47.62{ }^{\circ} \mathrm{C}$

10 Ammonia gas and hydrogen chloride gas react to form ammonium chloride as shown in the equation below:

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \quad \Delta H^{\prime}=-176 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The standard entropy change of this reaction is $-284 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
Which of the following statements is not correct?
A The reaction is spontaneous at 500 K .
B There is an increase in order due to the formation of a solid from gases.
C The reaction becomes non-spontaneous at temperatures higher than 620 K .
D Under standard conditions, $\Delta G==+8.4 \times 10^{7} \mathrm{~J} \mathrm{~mol}^{-1}$.

11 The graph below shows how the fraction of a substance, \mathbf{X}, in an equilibrium mixture varies with temperature at pressures of $2 \times 10^{7} \mathrm{~Pa}$ and $5 \times 10^{7} \mathrm{~Pa}$.

Which underlined compound represents \mathbf{X} ?
A $\quad 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \underline{\mathrm{H}_{2} \mathrm{O}}(\mathrm{g}) \rightleftharpoons 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \Delta H=+1267 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $\quad \mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\underline{\mathrm{CO}}(\mathrm{g})$
$\Delta H=+131 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2{\underline{\mathrm{SO}_{3}}(\mathrm{~g})}^{(}$
$\Delta H=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta H=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$

12 The solubility products of some sparingly soluble silver compounds are shown below. Which compound, in saturated solution, contains the lowest concentration of silver ions?

	Compound	Solubility Product
A	silver arsenate(V), $\mathrm{Ag}_{3} \mathrm{AsO}_{4}$	$1.0 \times 10^{-22} \mathrm{~mol}^{4} \mathrm{dm}^{-12}$
B	silver bromide, AgBr^{2}	$5.0 \times 10^{-13} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
C	silver carbonate, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$8.1 \times 10^{-12} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$
D	silver chromate(VI), $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	$1.1 \times 10^{-12} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$

13 The kinetics of the reaction between iodide and peroxodisulfate can be investigated by varying the volume of the reactants used. The two reactants are mixed in the presence of a known amount of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and a little starch. The time taken for an intense blue colour to be observed is then determined.

Experiment	Volume used/cm ${ }^{3}$			t / s
	$1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ KI	$0.040 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{H}_{2} \mathrm{O}$	
	10.0	5.0	25.0	170
2	15.0	5.0	20.0	113
3	15.0	10.0	15.0	57
4	20.0	20.0	0.0	x

What is the value of x ?
A
21
B
28
C
85
D
63
$14 \mathbf{L}, \mathbf{M}$ and \mathbf{N} react to form \mathbf{P} and \mathbf{Q} as shown.

$$
\mathbf{L}+\mathbf{M}+\mathbf{N} \rightarrow \mathbf{P}+\mathbf{Q}
$$

The rate equation for this reaction is rate $=k[\mathbf{M}][\mathbf{N}]$.

Which of the following graphs is correct of the above reaction, when \mathbf{N} is in excess?
A

B

C

D

15 The silver halides, AgCl and AgBr , are both sparingly soluble in water. AgCl dissolves in dilute $\mathrm{NH}_{3}(\mathrm{aq})$ but AgBr can only dissolve in concentrated NH_{3}.

Which statement helps to explain this observation?
A The complex ion in $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$ is more stable than the complex ion in $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$.

B A higher concentration of NH_{3} ligand is required to form $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$.
C The lattice energy of $\mathrm{AgBr}(\mathrm{s})$ is numerically larger than that of $\mathrm{AgCl}(\mathrm{s})$.
D The solubility product of $\mathrm{AgBr}(\mathrm{s})$ is smaller than that of $\mathrm{AgCl}(\mathrm{s})$.

16 Use of the Data Booklet is relevant to this question.
Hydroxyapatite, a basic calcium phosphate, $\mathrm{Ca}(\mathrm{OH})_{2} \cdot 3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, is the mineral found in bone.

Older people may lose calcium ions from the hydroxyapatite, weakening the bone structure. For such cases, strontium salts are administered to strengthen the bone. The strontium ions replace the lost calcium ions in the hydroxyapatite.

Which statements are correct?
1 Strontium ions have similar ionic radii as calcium ions and so may easily replace them in hydroxyapatite.

2 Strontium hydroxide is more soluble than calcium hydroxide and so will precipitate better in the bone structure.

3 There is ionic and covalent bonding in hydroxyapatite which gives it strength.

A 1 only
B 2 only
C 1 and 3 only
D 1, 2 and 3 only

17 Given weighed samples of the same mixture of magnesium carbonate and barium carbonate, which method will not allow the mole fraction of magnesium carbonate in the mixture to be estimated?

A Add a known volume of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}(\mathrm{aq})$ in excess and back titrate the excess acid.

B Add an excess of $\mathrm{HCl}(\mathrm{aq})$ followed by an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$; filter, dry and weigh the precipitate.

C Add an excess of $\mathrm{HNO}_{3}(\mathrm{aq})$ and measure, at room temperature and pressure, the volume of CO_{2} liberated.

D Heat the mixture at $170^{\circ} \mathrm{C}$ for 10 minutes. Cool and weigh the mass of residue.

18 When aqueous ammonia is added to a solution containing hexaaquairon(III) ions, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, a red-brown precipitate is formed which does not dissolve when excess ammonia is added.

What is the role of ammonia molecules in this reaction?
A Brønsted-Lowry base
B Lewis acid
C Ligand
D Reducing agent

19 Adding concentrated $\mathrm{HCl}(\mathrm{aq})$ to $\mathrm{CuSO}_{4}(\mathrm{aq})$ causes the colour of the solution to change from blue to yellow.

Which row best explains this observation? You are given that in the visible spectrum, red light has the lowest energy and violet light has the highest energy.

	Number of d-electrons around copper	Energy gap between the d-orbitals
A	Remains the same	Increase
B	Remains the same	Decrease
C	Changes	Increase
D	Changes	Decrease

20 Scandium, Sc, is the first of the d-block elements in the Periodic Table.
Which properties of scandium are consistent with this fact?
1 Scandium has an ionic chloride.
2 Scandium readily forms oxidation states of +3 and +4 .
3 Compounds containing Sc^{3+} are coloured.

A 1 only
B 2 only
C 1 and 2 only
D 2 and 3 only

21 Alkynes are a series of non-cyclic hydrocarbons with the general formula, $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$ containing one carbon-carbon triple bond per molecule.

How many alkynes with 6 carbon atoms satisfies the above formula?
A 5
B 6
C 7
D 8

22 During the preparation of many organic compounds, by-products are formed. This usually occurs because the reagents can react in more than one way, depending on the conditions used, or because the products formed may react with the reactants.

2-bromobutane may be prepared by slowly adding concentrated sulfuric acid to sodium bromide to form hydrogen bromide which reacts with butan-2-ol. The reaction mixture is kept cool to optimise the reaction yield.

$$
\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

What could be a by-product of this reaction if the temperature is allowed to rise?
$1 \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
$2 \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$3 \mathrm{CH}_{3} \mathrm{CBr}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

A 1 only
B 1 and 2 only
C 2 and 3 only
D 1, 2 and 3 only

23 Which method is able to separate benzene from a mixture of benzene and an amine?
A Extracting the amine with ethanol
B Nitrating the benzene with a nitrating agent to precipitate the solid
C Shaking the mixture with dilute aqueous acid
D Extracting the benzene with hexane

24 Deuterium is an isotope of hydrogen, ${ }_{1}^{2} H$.
Which compound can be formed by the addition of D_{2} to another molecule, in the presence of platinum catalyst?
$1 \mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{ND}_{2}$

2

3

A 1 only
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

25 The diagram shows a reaction.

What could be the final products, \mathbf{P} ?
A

B

C

D

26 Which salt will give a solution with the lowest pH in aqueous solution?
A $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$
B $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-}$
C $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$
D $\mathrm{K}^{+} \mathrm{Cl}^{-}$

27 Which transformations involve a nucleophile?

2

3

A 1 only
B 3 only
C 1 and 3 only
D 1, 2 and 3 only

Use of the Data Booklet is relevant to Questions 28-30.

28 When a dilute sulfate solution of a metal \mathbf{J} is electrolysed, the metal \mathbf{J} and a diatomic gas K are produced at the cathode and the anode respectively in the molar ratio 2:1.
In another experiment, the same quantity of electricity is used to electrolyse a saturated sodium chloride solution and a gas L is evolved at the anode.
What is the molar ratio of $\mathbf{J}: \mathbf{K}: \mathbf{L}$?
A $2: 1: 1$
B 2:1:2
C $4: 2: 1$
D 4:2:3

29 Iron(II) salts are often used as a dietary supplement to help cure some forms of anaemia. The amount of iron in such a pill may be estimated by titration with $\mathrm{KMnO}_{4}(\mathrm{aq})$.
A dietary supplement pill was dissolved in $10 \mathrm{~cm}^{3}$ of dilute sulfuric acid and titrated using $0.0200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$. The E Eell was measured against a standard hydrogen electrode and the following graph was obtained.

Which of the following lists appropriate approximate E values, in volts, for the points \mathbf{P} and \mathbf{Y} ?

	Point P	Point Y
A	1.52	1.96
B	0.77	1.52
C	0.75	0.77
D	0.75	1.52

30 Use of the Data Booklet is relevant to this question.
An electrolytic cell containing Mn^{2+} and another metal ion, Y^{3+}, is connected to Mn and Pt electrodes. The reactions that took place are

$$
\begin{gathered}
\mathrm{Mn} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \\
\mathbf{Y}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathbf{Y}
\end{gathered}
$$

Which of the following statements are correct?
1 The Mn electrode is the anode.
2 A possible identity of \mathbf{Y} is aluminium.
3 The number of moles of \mathbf{Y} deposited is 1.5 times the number of moles of Mn^{2+} formed.

A 1 only
B 2 only
C 1 and 2 only
D 1 and 3 only

RIVER VALLEY HIGH SCHOOL YEAR 6 PRELIMINARY EXAMINATION II

CANDIDATE NAME

CLASS \square
CENTRE NUMBER

S	3	0	4	4

INDEX
NUMBER

0	0		

H2 CHEMISTRY

Paper 2 Structured Questions
13 Sep 2017
2 hours

Additional Materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Write your name, class and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This paper consists of 18 printed pages.

Answer all questions in the spaces provided.

1 Among the many pharmaceutical drugs manufactured worldwide, one of the most important types is the painkillers. The structures of three such painkillers are shown.

ibuprofen
($M_{r}=206$)

paracetamol
($M_{\mathrm{r}}=151$)

aspirin
($M_{r}=180$)

Ibuprofen is used to treat arthritis and relieve pain, fever and swelling. It is available over-the-counter in 200 and 400 mg tablets. The recommended dosage varies with body mass and indication, but 1.20 g is considered the maximum daily adult dosage. Long term use of ibuprofen can lead to stomach ulcers. Ibuprofen can be synthesised via the following process:

(a) A man bought some ibuprofen tablets of dosage 200 mg over the counter and consumed one pill 4 times a day. Explain if this level of consumption safe for the man.
\qquad
\qquad
(b) State the type of reaction that converts Compound \mathbf{A} to \mathbf{B}.
(c) In the laboratory, Compound C can be converted to ibuprofen using a 3-step synthesis route.
Suggest reagents and conditions for each step, and draw the structures of all intermediates.
(d) Young children often find it difficult to swallow tablets. Thus, ibuprofen is supplied as an "infant formula" emulsion.
Given that ibuprofen and water are immiscible, an emulsifier such as polysorbate 80 is used to create a homogeneous mixture.

polysorbate 80
Explain why this molecule is able to act as an emulsifier.
\qquad
\qquad
\qquad
(e) A certain pharmaceutical brand claims that the ibuprofen tablets it manufactures are 95.0% pure by mass.
To investigate this claim, 5.00 g of a sample was crushed and dissolved in $250 \mathrm{~cm}^{3}$ of $0.450 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{KOH} .25 .0 \mathrm{~cm}^{3}$ of this solution was withdrawn and titrated against sulfuric acid. The unreacted KOH in this solution required $25.50 \mathrm{~cm}^{3}$ of $0.180 \mathrm{~mol} \mathrm{dm}^{-3}$ of sulfuric acid for complete neutralisation.

Showing relevant calculations, deduce if the claim is valid.
(f) Compare the acidity of ibuprofen and aspirin. Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(g) Describe two simple chemical tests to distinguish between ibuprofen, paracetamol and aspirin.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 (a) Gaseous ethane can be used as a fuel for campers. A company manufactures compressed gaseous ethane in $400 \mathrm{~cm}^{3}$ metal canisters. A typical metal canister at room temperature contains compressed gaseous ethane at a pressure of 4.00 atm .
(i) Suggest a reason why gaseous ethane in the metal canister does not behave like an ideal gas.
\qquad
\qquad
\qquad
(ii) One metal canister is used for heating water and the pressure decreases from 4.00 atm to 1.50 atm . Assuming that the compressed ethane behaves ideally, calculate the mass of water at room temperature that could be brought to boiling if the process is 80% efficient. The enthalpy change of combustion of ethane is $-1420 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(iii) Suggest a reason why butane is a better fuel for campers compared to ethane.
\qquad
\qquad
(b) Calcium fluoride is used for dental protection. It dissolves readily in water with an enthalpy change of solution of $-125 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It is given that the lattice energy of calcium fluoride is $-2350 \mathrm{~kJ} \mathrm{~mol}^{-1}$ while the enthalpy change of hydration of calcium ion is $-1560 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

With the aid of a labelled energy level diagram, calculate the enthalpy change of hydration of fluoride ion.
(c) Liquid hydrazine reacts with oxygen to form nitrogen and steam which could involve the following energy cycle shown below.

(i) Given that the enthalpy change of vapourisation of hydrazine is $+58.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, use appropriate bond energies from the Data Booklet to calculate the enthalpy change of reaction between liquid hydrazine and oxygen.
(ii) The reaction shown above has a positive ΔS value. Account for its significance.
\qquad
\qquad
\qquad
(iii) Hence, under what conditions of temperature will the reaction be spontaneous?
\qquad
\qquad
\qquad
\qquad

3 An experiment was set up to investigate how the cell potential of a cell containing a metal, M, in contact with an aqueous solution of its ions, $M^{n+}(a q)$, changed as $\mathrm{M}^{\mathrm{n+}}(\mathrm{aq})$ was diluted.
Since a standard hydrogen half-cell was not available, a half-cell consisting of $\mathrm{Cl}^{-}, \mathrm{ClO}^{-}$in alkaline medium under standard conditions was used to connect to the half-cell with M in contact with $\mathrm{M}^{\mathrm{n}+}(\mathrm{aq})$.
(a) Draw the setup of the galvanic cell as described above.

The cell potential was measured for various concentrations of $\mathrm{M}^{\mathrm{n+}}(\mathrm{aq})$ and the results of cell potential against $\log \left[\mathrm{M}^{\mathrm{n}+}\right]$ obtained are plotted in the graph as shown below.

(b) It is known that the cell potential of a cell, $E_{\text {cell, }}$, is related to the standard electrode potential, E^{\ominus} cell, by the equation:

$$
E_{\text {cell }}=E^{\ominus}{ }_{\text {cell }}-\frac{0.06 \lg \left[M^{n+}\right]}{n}
$$

(i) Use your graph to determine the gradient and the charge, n , of the $\mathrm{M}^{\mathrm{n+}}$ ions.
(ii) Use your graph to determine the E^{\ominus} cell, showing your working clearly.
(iii) In the determination of standard electrode potential of a half-cell, the polarity of standard hydrogen electrode can either be positive or negative.

The standard electrode potential for $\mathrm{Cl}^{-}, \mathrm{ClO}^{-}$in alkaline conditions is +0.80 V .

Hence, calculate the standard electrode potential of the metal, M, and suggest its identity.
(iv) Suggest one purpose of a salt bridge in a galvanic cell.
\qquad
\qquad
(v) A student suggested the use of aqueous potassium sulfate in the salt bridge. Do you think his choice is wise? Explain your reasoning.
\qquad
\qquad
(c) Using Le Chatelier's Principle and relevant equations, explain why AgCl is soluble in excess aqueous ammonia.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 Viridian is a blue-green pigment used commonly in paints, inks, and stained glasses. The major constituent of viridian is the compound chromium(III) oxide, $\mathrm{Cr}_{2} \mathrm{O}_{3}$, that gives its characteristic colour.

Alumina, which is the common name for the chemical aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, is a white solid which is commonly used as abrasive owing to its high hardness rating.
(a) Define the term transition element.
\qquad
\qquad
(b) In terms of structure and bonding, explain why alumina has a high hardness rating.
\qquad
\qquad
\qquad
\qquad
(c) Both $\mathrm{Cr}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ are amphoteric oxides. Describe the observations and write balanced equations when $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is dissolved in $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$. You can assume that the coordination number of chromium in $\mathrm{NaOH}(\mathrm{aq})$ is 6 .

In $\mathrm{HCl}(\mathrm{aq})$
Equation:

Observation:
\qquad

In NaOH (aq)
Equation:

Observation:

(d) Explain why the resultant solution is coloured when $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is dissolved in acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Another chromium-containing compound, CrCl_{3}, also exhibits similar properties to AlCl_{3}.
Predict the pH of the solution when a solid sample of CrCl_{3} is dissolved in water. Use equations to justify your answer where possible.
\qquad
\qquad
\qquad
\qquad
(f) Use of the Data Booklet is relevant to this question.

The element chromium shows a relatively similar increase in the $1^{\text {st }}, 2^{\text {nd }}$, $3^{\text {rd }}$ and $4^{\text {th }}$ ionisation energy. Aluminium, however, shows a significant difference between its $3^{\text {rd }}$ and $4^{\text {th }}$ ionisation energy.
(i) By means of an equation, express the $2^{\text {nd }}$ ionisation energy of chromium.
(ii) Explain fully why the $4^{\text {th }}$ ionisation energy of aluminium has a significantly larger magnitude compared to its $3^{\text {rd }}$ ionisation energy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 Caftaric acid is a compound found in grapes and is responsible for the yellowish-gold colour seen in some white wines.

(a) Deduce the molecular formula of caftaric acid.
\qquad
(b) (i) State the type(s) of stereoisomerism exhibited by caftaric acid.
\qquad
(ii) Hence, state the total number of stereoisomers of caftaric acid.
\qquad
(c) The level of caftaric acid can be used to estimate the oxidation levels that a wine has undergone. Wines that undergo a high degree of oxidation, such as pressed wine, will have little to no caftaric acid in them.

Suggest the carbon-containing products formed when caftaric acid is heated with excess acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$.
(d) On heating with dilute aqueous acid, caftaric acid produces two compounds \mathbf{A} and \mathbf{B}.

(i) State the type of reaction caftaric acid is undergoing when \mathbf{A} and B are formed.
\qquad
(ii) There are three types of molecules of \mathbf{A}, one of which has no effect on plane polarised light.

Suggest the structure of the molecule and explain why it has no effect on plane polarised light.
\qquad
\qquad
\qquad
(e) Under suitable conditions, the carboxylic acid functional group in compound \mathbf{B} can be converted to its methyl ester.

B
(i) State the type of reaction undergone by B above.
\qquad
(ii) Suggest the reagents and conditions for the above reaction.
\qquad
(f) Another method for conversion of carboxylic acids to their methyl esters involves the reaction with diazomethane, $: \overline{\mathrm{C}} \mathrm{H}_{2}-\stackrel{+}{N} \overline{=} \mathrm{N}$, in an inert solvent.

$$
\mathrm{RCO}_{2} \mathrm{H}+\mathrm{CH}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{RCO}_{2} \mathrm{CH}_{3}+\mathrm{N}_{2}
$$

This reaction occurs via a two-step mechanism.

- The carboxylic acid reacts with diazomethane to form a carboxylate ion intermediate in the first step.
- N_{2} is formed in the second step.

Suggest the mechanism for this reaction. Show any relevant lone pairs, dipoles and charges, and indicate the movement of electron pairs with curly arrows.

END OF PAPER

 YEAR 6 PRELIMINARY EXAMINATION II
CANDIDATE

NAME

CLASS \square
CENTRE
NUMBER \square INDEX
NUMBER \square

H2 CHEMISTRY

Paper 3 Free Response
19 September 2017
2 hours
Candidates answer on separate paper.
Additional Materials: Answer Paper
Cover Page
Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, class, centre number and index number on all the work you hand in.
Write in dark blue or black pen on both sides of paper.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.

Begin each question on a fresh sheet of paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided. Do not write anything on it.
You are reminded of the need for good English and clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together, with the cover page on top.

This document consists of $\mathbf{1 4}$ printed pages and $\mathbf{2}$ blank pages.

Section A

Answer all the questions in this section.

1 (a) Under suitable conditions, SCl_{2} reacts with water to produce a yellow solid and an acidic solution A. Solution A contains a mixture of $\mathrm{SO}_{2}(\mathrm{aq})$ and another compound.
(i) State the oxidation number of S in SCl_{2}.
(ii) Construct an equation for the reaction between SCl_{2} and water.
(iii) In the Contact Process, one important step is the conversion of SO_{2} to SO_{3} as shown below.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A 2.00 L flask was filled with $0.0400 \mathrm{~mol} \mathrm{SO}_{2}$ and $0.0200 \mathrm{~mol} \mathrm{O}_{2}$. At equilibrium, the flask contained 0.0296 mol of SO_{3}. Determine the value of K_{c}, stating its unit.
(b) During the electrolysis of dilute sulfuric acid using a current of 0.75 A for 90 min and platinum electrodes, the volume of oxygen gas collected was recorded and is shown in Table 1.1 below.

Table 1.1

Time / min	Volume of $\mathrm{O}_{2} \mathrm{gas} / \mathrm{cm}^{3}$
20	55
40	110
60	165
80	220

(i) Plot a graph of volume of O_{2} gas over time.

Use x axis: 2 cm for 10 min ; y axis: 2 cm for $50 \mathrm{~cm}^{3}$
(ii) Give equations for the reactions that occur at each electrode in the electrolysis of sulfuric acid.
(iii) On the same graph, draw and label a line $\left(\mathrm{H}_{2}\right)$ to predict the volume of hydrogen that would be given off during the same experiment.
(iv) On the same graph, draw and label a line $\left(\mathrm{O}_{2}\right)$ to predict the volume of oxygen that would be given off if a current of 0.3 A was used instead in the original experiment.
(v) In a second experiment, the platinum electrodes were replaced with graphite electrodes. The volume of gas collected at the anode was $150 \mathrm{~cm}^{3}$ while the volume of hydrogen gas collected was $220 \mathrm{~cm}^{3}$.

The difference in volume of gas collected at the anode between the two experiments was due to the production of CO gas at the anode. Calculate the volume of CO gas produced at the anode.
(c) About 100 years ago, in a reaction discovered by German chemist Karl Fries, compound B was converted into compound C when heated with AlCl_{3}.

B
Compound \mathbf{C} is a structural isomer of \mathbf{B}.
It is insoluble in water but dissolves in aqueous sodium hydroxide.
It gives a yellow ppt with alkaline aqueous iodine and a white ppt with aqueous bromine.
(i) Suggest the structure for compound \mathbf{C}.

The various reactions of compound \mathbf{C} can be represented as follows:

(ii) Suggest the structures for \mathbf{D} to \mathbf{G}.

Compound \mathbf{H}, as shown below, is another structural isomer of \mathbf{B}.
It has a ether functional group whose general formula is $\mathrm{R}-\mathrm{O}-\mathrm{R}$ '.
Compound \mathbf{H} can be formed via a reaction between a substituted phenoxide ion and an alkyl halide molecule.

H
(iii) Describe the mechanism when compound \mathbf{H} is formed as described above.

BLANK PAGE

2 In the late 1940s, Willard Libby developed the radiocarbon dating method for determining the age of an object containing organic material by using the properties of radiocarbon $\left({ }^{14} \mathrm{C}\right)$, a radioactive isotope of carbon. The principle of carbon dating is as such:
During its life, a plant or animal is exchanging carbon with its surroundings, so the carbon it contains will have the same proportion of ${ }^{14} \mathrm{C}$ as the atmosphere. Once it dies, it ceases to acquire ${ }^{14} \mathrm{C}$, but the ${ }^{14} \mathrm{C}$ within its biological material at that time will continue to decay, and so the ratio of ${ }^{14} \mathrm{C}$ to ${ }^{12} \mathrm{C}$ in its remains will gradually decrease.
Because ${ }^{14} \mathrm{C}$ decays with first order kinetics, the proportion of radiocarbon can be used to determine how long it has been since a given sample stopped exchanging carbon - the older the sample, the less ${ }^{14} \mathrm{C}$ will be left.
(a) A sample of carbon dioxide gas (that contained both ${ }^{12} \mathrm{CO}_{2}$ and ${ }^{14} \mathrm{CO}_{2}$) was analysed to determine the proportion of ${ }^{14} \mathrm{CO}_{2}$ found within. Analysis results showed that there is one ${ }^{14} \mathrm{CO}_{2}$ molecule for every $10^{12} \mathrm{CO}_{2}$ molecules.
(i) Calculate the number of ${ }^{14} \mathrm{CO}_{2}$ molecules in a $10.0 \mathrm{dm}^{3}$ carbon dioxide gas sample, measured under s.t.p.
(ii) Calculate the mass of ${ }^{14} \mathrm{CO}_{2}$ in the $10.0 \mathrm{dm}^{3}$ sample.
(iii) Hence, explain why it would be difficult to determine the proportion of ${ }^{14} \mathrm{CO}_{2}$ by means of mass measurement.
(b) To more accurately determine the proportion of ${ }^{14} \mathrm{C}$ in a sample of graphite, the graphite is vaporised and ionised to $\mathrm{C}^{+}(\mathrm{g})$ ions. These ions were then passed through 2 electric plates.
Given that H^{+}is deflected with an angle of 8.4°, what is the angle of deflection for ${ }^{14} \mathrm{C}^{+}$ions under the same experimental set-up?
(c) The half-life of ${ }^{14} \mathrm{C}$ is 5730 years. Determine the time that has elapsed for a piece of wood from a dead tree to contain 30.0% of its original ${ }^{14} \mathrm{C}$.
(d) The age of crude oil is far older than what could be determined from radiocarbon dating.
To measure the age of a crude oil sample, a method involving the measurement of the relative amount of oleanane is used instead.

Oleanane
(i) What is the number of chiral carbons in an oleanane molecule?
(ii) Free radical substitution of oleanane with Cl_{2} produces a mixture of various products.

Given that tertiary hydrogen atoms are the most reactive towards free radical substitution, suggest the structures of two possible mono-chlorinated oleanane which are formed in high proportions.
(e) Benzene is obtained from the fractional distillation of crude oil. It can be converted to a series of different useful chemicals such as phenylamine. The formation of phenylamine involves the direct reaction of nitrobenzene and hydrogen gas in the presence of a heterogeneous catalyst.

A series of experiments were carried out at a specific temperature to investigate the kinetics of this reaction:

Experiment	[nitrobenzene] / $\mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{H}_{2}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate / $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.010	0.010	4.50×10^{-5}
2	0.015	0.010	6.74×10^{-5}
3	0.020	0.020	1.80×10^{-4}
4	0.030	x	4.05×10^{-4}

(i) Define the term heterogeneous catalyst.
(ii) Determine the order of reaction with respect to nitrobenzene and H_{2}.
(iii) Calculate the rate constant, stating its units.
(iv) Hence, determine the value of x.
(f) Benzene is made to undergo a series of reactions as shown:

(i) Suggest the structures of \mathbf{J} and \mathbf{K}.
(ii) Given that compound L is neutral, suggest the reagent used in the final step and the structure of \mathbf{L}.

BLANK PAGE

3 Chromium is a transition metal commonly found in the earth's crust. It is usually mined as chromite.

Period 4 Element	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
Atomic radius $/ \mathrm{nm}$	0.132	0.122	0.117	0.117	0.116	0.116	0.115	0.117

(a) Explain why the atomic radius for transition elements remains relatively constant.
(b) (i) Write the electronic configuration for Cr^{3+} ion.
(ii) Chromium forms octahedral complexes with the general formula $\mathrm{CrCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$. One of them dissolves in water to form a violet solution which turned green upon warming. An excess of aqueous silver nitrate was added separately to solutions containing 0.0100 mol of each complex. The violet complex gave 1.50 g of precipitate, while the green complex gave 4.40 g of precipitate.
Deduce the formulae of the two complex ions.
Write the equation for the conversion of the violet complex to the green complex.
(iii) Using the Cartesian axes, like those shown below,

draw fully-labelled diagrams of the following :

- One of the d orbital at the lower energy level in an octahedral complex. Label this diagram "Lower energy level".
- One of the d orbital at the upper energy level in an octahedral complex. Label this diagram "Upper energy level".
(c) When sodium carbonate is added to a dichromate(VI) solution, the solution turned yellow.

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{CrO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \text { orange } \\
& \text { yellow }
\end{aligned}
$$

Using a relevant equation, explain the above observation.
(d) Ethylenediamine tetraacetate, [EDTA] ${ }^{4-}$, is a ligand that acts as a chelating agent. It is widely used to remove transition metal ions such as those of chromium from aqueous solutions.
A possible reaction scheme used to synthesise [EDTA] ${ }^{4-}$ from methanal is given below.

(i) Suggest the reagents and conditions in steps I, II and III.
(ii) Draw the displayed formulae of intermediates \mathbf{Q} and \mathbf{R}.
(iii) State the type of reaction when \mathbf{T} is converted to [EDTA] ${ }^{4-}$.

Give a reason why a limited amount of 1,2-diaminoethane is used.
(iv) Define the term ligand. State the number of coordinate bonds that a [EDTA] ${ }^{4-}$ ligand can form with a central metal ion.

Section B

Answer one question from this section.
4 This question concerns the chemistry of the oxides of some elements.
(a) The oxides of Period 3 show different reactions with water.

Describe the reactions, if any, of the oxides SiO_{2} and SO_{3} with water.
Include the approximate pH value of any resulting solutions, and write equations for any reactions that occur.
(b) Carbon combusts in oxygen to form two common oxides, CO and CO_{2}. These oxides are also formed when solid magnesium oxalate, $\mathrm{MgC}_{2} \mathrm{O}_{4}$, is heated strongly.
(i) Write an equation, with state symbols, to represent the thermal decomposition of solid magnesium oxalate.
(ii) Explain why magnesium oxalate decomposes at a lower temperature than barium oxalate, $\mathrm{BaC}_{2} \mathrm{O}_{4}$.

Carbon also forms compounds with other Group 16 elements like sulfur and selenium. The properties of some of these compounds, along with CO_{2}, are given in Table 4.1.

Table 4.1

Compound	Structure	Dipole moment	Boiling point $/{ }^{\circ} \mathrm{C}$
CO_{2}	$\mathrm{O}=\mathrm{C}=\mathrm{O}$	0	sublimes
CS_{2}	$\mathrm{~S}=\mathrm{C}=\mathrm{S}$	0	46
COS	$\mathrm{S}=\mathrm{C}=\mathrm{O}$	0.71	-50
COSe	$\mathrm{Se}=\mathrm{C}=\mathrm{O}$	0.73	-22

(iii) Explain, in terms of structure and bonding, the difference in the boiling point of CS_{2} and COS.
(iv) Explain why

- CO_{2} has no overall dipole moment.
- COSe has a greater dipole moment than COS.
(c) Aside from the common oxides, carbon forms a series of reactive oxocarbons. One such compound is tricarbon monoxide, $\mathrm{C}_{3} \mathrm{O}$, a reactive molecule found in space.
(i) Suggest a structure of tricarbon monoxide. Indicate clearly any lone pairs present.

Tricarbon monoxide is isoelectronic to cyanogen, $(\mathrm{CN})_{2}$. The molecule of cyanogen contains a $\mathrm{C}-\mathrm{C}$ single bond.
(ii) Draw the dot-and-cross diagram of cyanogen. In your diagram, you should distinguish the electrons originating from each of the two carbon atoms and those from the two nitrogen atoms.
(iii) Suggest the shapes of tricarbon monoxide and cyanogen.
(d) Another oxycarbon is pentacarbon dioxide, $\mathrm{C}_{5} \mathrm{O}_{2}$. It can be obtained by heating compound $\mathbf{X}, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$, at a high temperature. \mathbf{X} exists in equilibrium with its isomer, \mathbf{Y}.
\mathbf{X} does not react with aqueous bromine. \mathbf{X} also gives an orange precipitate with $2,4-$ DNPH but does not give a silver mirror with Tollens' reagent. When reacted with limited bromine under ultraviolet light, X produced only one mono-brominated compound.
Y reacts with dilute nitric acid to form only one mono-nitrated compound, Z.

Suggest the structures of compounds \mathbf{X}, \mathbf{Y} and \mathbf{Z}. Explain your reasoning.

5 (a) Hydroformylation is an industrial process for the formation of aldehydes from alkenes.

propene
butanal
(i) Determine the oxidation numbers of carbon-1, carbon-2 and carbon-4 in butanal.
(ii) The hydroformylation of propene can result in the formation of two isomeric products. Given that the mechanism of hydroformylation resembles the electrophilic addition of alkenes, suggest the structure of the other isomer apart from butanal.
(iii) Write the K_{p} expression for the reaction above, stating its units.
(iv) When an equimolar mixture of propene, CO and H_{2} at an initial pressure of 120 Pa was allowed to reach equilibrium at 550 K , the partial pressure of butanal was found to be 38.5 Pa.

Calculate a value of K_{p} at 550 K .
(v) Hence, predict the sign of ΔG for the reaction. Explain your reasoning taking into account the thermodynamic considerations of the reaction.
(b) Other important use of hydrocarbons include fuels, plastics, paints and solvents. In some countries, where crude oil is either scarce or expensive, biofuels such as ethanol are also increasingly being used for fuels instead of hydrocarbons.
(i) James carried out an experiment to determine the enthalpy change of combustion of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, using the apparatus shown in the diagram.

These are the results that James obtained:
Volume of water $=1000 \mathrm{~cm}^{3}$
Initial temperature of water $=29.6^{\circ} \mathrm{C}$
Highest temperature of water $=50.0^{\circ} \mathrm{C}$
Initial mass of burner and octane $=59.35 \mathrm{~g}$
Final mass of burner and octane $=53.77 \mathrm{~g}$
Heat capacity of calorimeter $=770 \mathrm{~J} \mathrm{~K}^{-1}$

Use these results and data from the Data Booklet to determine the experimental enthalpy change of combustion of octane.
(ii) The accurate experimental enthalpy change of combustion of three hydrocarbons are given in Table 5.1.

Table 5.1

Alkane	Formula	$\Delta H_{c} / \mathrm{kJ} \mathrm{mol}^{-1}$
Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	-4817
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	-5470
Nonane	$\mathrm{C}_{9} \mathrm{H}_{20}$	-6125

Suggest what the regular increase in the values of ΔH_{c} given in the table represents.
(iii) Draw a pair of enantiomers of heptane.
(iv) Alkanes are also used in dry cleaning of clothing and textiles. Dry cleaning involves soaking the clothes in a solvent other than water. Recently, the use of supercritical carbon dioxide as a dry cleaning solvent has also been gaining popularity. Supercritical carbon dioxide is a fluid state of carbon dioxide which is maintained at or above its critical temperature.

Suggest two possible reasons why supercritical carbon dioxide is a better solvent than organic solvents like hexane.
(c) Many modern methods of chemical analysis rely on the use of sophisticated instruments. For many years, scientists relied on traditional laboratory apparatus for chemical analysis.

Many qualitative tests and some volumetric analysis used depended on an application of the principles of solubility product.

Data for use in this question are given in Table 5.2.
Table 5.2

	Colour	Solubility $/ \mathrm{mol} \mathrm{dm}^{-3}$	$K_{\text {sp }}\left(25^{\circ} \mathrm{C}\right)$
AgCl	White	1.42×10^{-5}	2.02×10^{-10}
AgI	Yellow	8.95×10^{-9}	8.01×10^{-17}
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	Red	9.10×10^{-5}	3.01×10^{-12}

(i) Aqueous AgNO_{3} is added to solutions containing $0.100 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ $\mathrm{Cl}^{-}(\mathrm{aq})$ or $0.0100 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})$. What concentration of Ag^{+} must be present to cause the precipitation of
I: AgCl
II: $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
(ii) Standard solutions of silver nitrate can be used in volumetric analysis to determine the concentration of chloride ions in a sample of water. When the titration is carried out, $\mathrm{AgNO}_{3}(\mathrm{aq})$ of known concentration is added slowly to the solution that contains Cl^{-}ions. A small quantity of aqueous potassium chromate(VI), $\mathrm{K}_{2} \mathrm{CrO}_{4}\left(0.01 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ is also added as an indicator.

Using the data given in Table 5.2 and your answers in (c)(i), predict using calculations what you would see at the beginning of the titration and at the end-point and explain why $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$ can be used as an indicator in this titration.

RIVER VALLEY HIGH SCHOOL YEAR 6 PRACTICAL EXAMINATION H2 CHEMISTRY 9729

$23^{\text {RD }}$ AUG 2017

2 hour 30 minutes

NAME
CLASS \square
INDEX NO.
INSTRUCTIONS TO CANDIDATES
DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.
Read these notes carefully.
Write your name, class and index number in the spaces at the top of this page.
Give details of the practical shift and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graph.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.

Shift
Laboratory

The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Qualitative Analysis Notes are printed on pages 15 and 16.

For Examiner's Use	
1	121
2	$/ 15$
3	$/ 9$
4	110
Total	155

Answer all the questions in the spaces provided.

1 Determine the the percentage by mass of sodium ethanedioate in a mixture of sodium ethanedioate and ethanedioic acid.

This experiment involves two steps.
In step one, you will carry out a titration to find the amount of acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, present in FB 3.
In step two, you will carry out a second titration to find the total amount of ethanedioate ion, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, present in FB 3.
Finally, you will use the values found in the two steps to calculate the percentage by mass of sodium ethanedioate in FB 3.

FB 1 is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
FB 2 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}
FB 3 is a mixture of aqueous sodium ethanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, and ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
FB 4 is approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid
thymolphthalein indicator
Read through the whole method before starting any practical work.
(a) Method

Step 1

1. Fill the burette labelled FB $\mathbf{1}$ with $\mathbf{F B} \mathbf{1}$.
2. Pipette $25.0 \mathrm{~cm}^{3}$ of $\mathbf{F B} \mathbf{3}$ into a conical flask.
3. Add 1 dropper full of thymolphthalein.
4. Titrate FB $\mathbf{3}$ in the conical flask with FB $\mathbf{1}$ until a pale blue colour is seen.
5. Carry out as many accurate titrations as you think necessary to obtain consistent results.
6. Record in a suitable form below all of your burette readings and the volume of FB 1 added in each accurate titration.

Step 2

1. Pipette $25.0 \mathrm{~cm}^{3}$ of $\mathbf{F B} 3$ into a conical flask.
2. Using a measuring cylinder, add about $25 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, FB 4, to the flask.
3. Place the conical flask on a hotplate and heat to about $65^{\circ} \mathrm{C}$.
4. Fill the burette labelled FB 2 with FB 2.
5. Use an appropriate method to carefully transfer the hot conical flask onto a white tile under the burette.
6. Titrate the mixture in the conical flask with FB 2 until a permanent pale pink colour is seen. If a permanent brown colour is seen, stop the titration and begin Step 2 again.
7. Carry out as many accurate titrations as you think necessary to obtain consistent results.
8. Record in a suitable form below all of your burette readings and the volume of FB 2 added in each accurate titration.

M1	
M2	
M3	

(b) (i) From your titration results in Step 1, obtain a suitable value to be used in your calculations. Show clearly how you have obtained this value.

M4	
M5	

$25.0 \mathrm{~cm}^{3}$ of FB 3 required \qquad cm^{3} of FB 1
(b) (ii) Write an equation for the reaction between sodium hydroxide and ethanedioic acid to give sodium ethanedioate and water.
(b) (iii) Use your answer from (b)(i) to calculate the amount of sodium hydroxide, FB 1, required to react with $25.0 \mathrm{~cm}^{3}$ of FB 3 in Step 1.

Amount of $\mathrm{NaOH}=$ \qquad
(b) (iv) Use your answer to (b)(iii) to determine the amount of ethanedioic acid in $25.0 \mathrm{~cm}^{3}$ of FB 3.

Amount of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in $25.0 \mathrm{~cm}^{3}$ of $\mathrm{FB} 3=$
[1]
(c) (i) From your titration results in Step 2, obtain a suitable value to be used in your calculations. Show clearly how you have obtained this value.

M9	
M10	
M11	

\qquad cm^{3} of FB 2.
(c) (ii) Use your answer from (c)(i) to calculate the amount of potassium manganate(VII), FB 2, required to react with $25.0 \mathrm{~cm}^{3}$ of FB 3 in Step 2.

Amount of $\mathrm{KMnO}_{4}=$ \qquad
(c) (iii) The equation for the reaction between acidified manganate(VII) ions and ethanedioate ions is shown below.
$2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate the total amount of ethanedioate ions in $25.0 \mathrm{~cm}^{3}$ of FB 3.
(c) (iv) Use your answers to (b)(iv) and (c)(iii) to calculate the amount of ethanedioate ions which came from the sodium ethanedioate dissolved in $25.0 \mathrm{~cm}^{3}$ of FB 3.

Amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ from $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in $25.0 \mathrm{~cm}^{3}$ of $\mathrm{FB} 3=$ \qquad
(d) (i) Use your answer to (b)(iv) to calculate the mass of ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, in $25.0 \mathrm{~cm}^{3}$ of FB 3.
[$\left.A_{\mathrm{r}:} \mathrm{H}, 1.0 ; \mathrm{C}, 12.0 ; \mathrm{O}, 16.0\right]$ (If you were unable to answer (b)(iv), you may assume that the amount of ethanedioic acid is $6.51 \times 10^{-4} \mathrm{~mol}$.)
(d) (ii) Use your answer to (c)(iv) to calculate the mass of sodium ethanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in $25.0 \mathrm{~cm}^{3}$ of FB 3 . [$A_{\mathrm{r}}: \mathrm{C}, 12.0 ; \mathrm{O}, 16.0 ; \mathrm{Na}, 23.0$] (If you were unable to answer (c)(iv), you may assume that the amount of sodium ethanedioate is $4.13 \times 10^{-4} \mathrm{~mol}$.)

Mass of sodium ethanedioate $=$ \qquad
(d) (iii) Calculate the percentage by mass of sodium ethanedioate in FB 3.

Percentage by mass of sodium ethanedioate is \qquad
(e) (i) A student suggested that using a burette to measure the $25.0 \mathrm{~cm}^{3}$ of acid would give a more accurate result than using a pipette.
The percentage error of a $25.0 \mathrm{~cm}^{3}$ pipette is 0.24%. Is the student correct?
Explain your answer.
\qquad
\qquad
(e) (ii) A student decided to use a $25.0 \mathrm{~cm}^{3}$ pipette instead of a measuring cylinder to measure the volume of FB 4 in Step 2.
State and explain whether this alteration will improve the accuracy of the calculation of the percentage by mass of sodium ethanedioate in the mixture.

BLANK PAGE

2 Investigate how the rate of the following reaction varies with the concentration of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The rate of the reaction above can be found by measuring how long it takes for the solid sulfur formed to obscure the printing on the insert provided.

Care should be taken to avoid inhalation of $\mathrm{SO}_{2}(\mathrm{~g})$ that is given off during this reaction.

FC 5 is $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
FC 6 is $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

(a) Method

1. Using the $50 \mathrm{~cm}^{3}$ measuring cylinder, transfer $45 \mathrm{~cm}^{3}$ of FC 6 into a $100 \mathrm{~cm}^{3}$ beaker.
2. Using the $25 \mathrm{~cm}^{3}$ measuring cylinder, measure $10 \mathrm{~cm}^{3}$ of FC 5 .
3. Tip the FC 5 into the FC 6 in the beaker and immediately start the stopwatch.
4. Stir the mixture once with a glass rod and place the beaker on top of the printed insert. Cover the beaker with a petri dish.
5. View the printed insert from above so that it is seen through the mixture.
6. Record the time, to the nearest second, when the printing on the insert just disappears.
7. Empty and rinse the beaker. Shake out as much of the water as possible and dry the inside of the beaker.
You will repeat the experiment to find out how the time for the printing on the insert to disappear changes when a different volume of FC 6 is used.
8. Using the $50 \mathrm{~cm}^{3}$ measuring cylinder, transfer $20 \mathrm{~cm}^{3}$ of FC 6 and $25 \mathrm{~cm}^{3}$ of distilled water into the $100 \mathrm{~cm}^{3}$ beaker.
9. Using the $25 \mathrm{~cm}^{3}$ measuring cylinder, add $10 \mathrm{~cm}^{3}$ of FC 5 to the mixture and immediately start timing.
10. Stir the mixture once with a glass rod and place it on top of the printed insert.
11. View the printed insert from above so that it is seen through the mixture.
12. Record the time, to the nearest second, when the printing on the insert just disappears.
13. Select suitable volumes of FC 6 and distilled water for two further experiments to investigate the effect of volume of sodium thiosulfate on the time taken for the printing on the insert to just disappear. The volume of FC 6 used should range from $0 \mathrm{~cm}^{3}$ to $45 \mathrm{~cm}^{3}$.

In the space below, record, in an appropriate form, all measurements of volume, time, and 1/time.

M1	
M2	
M3	
M4	
M5	

(b) Plot 1/time against the volume of FC 6. Draw the most appropriate line, taking into account all the points.

(c) Why was the total volume of solution kept constant in the experiments?
\qquad
(d) Using the graph of 1/time against the volume of FC 6, draw a conclusion about the relationship between the concentration of sodium thiosulfate used and the rate of reaction. Hence, state the order of reaction with respect to sodium thiosulfate.
[2]
\qquad
\qquad
\qquad
(e) In the four experiments, which value of the time measured had the greatest error? Explain your answer.
\qquad
(f) Another student conducts another experiment for the same reaction where the sodium thiosulfate is in large excess. The concentration of acid is monitored as the reaction progresses. His results are as shown below.

M14	
M15	

Deduce the order of reaction with respect to sulfuric acid.
\qquad
\qquad
\qquad

Before starting parts (a) and (b), half-fill a $250 \mathrm{~cm}^{3}$ beaker with water and heat with a hotplate to approximately $60^{\circ} \mathrm{C}$. You will use this as a hot water bath.
(a) FD 7, FD 8 and FD 9 are solutions each containing a single compound which could be ethanol, ethanal or propanone. To identify each compound you will react the samples with Tollens' reagent and with acidified potassium manganate(VII).

Preparation of Tollens' reagent

1. To approximately 2 cm depth of aqueous silver nitrate in a boiling tube, add approximately 0.5 cm depth of aqueous sodium hydroxide.
2. Add aqueous ammonia a little at a time with continuous shaking until the brown precipitate just dissolves. Do not add an excess of ammonia.

Complete the table below.

test	observations		
	FD 7	FD 8	FD 9
To a 1 cm depth of each solution in a clean test-tube, add a few drops of the Tollens' reagent that you have prepared. Do not shake the tube.			
If no reaction is seen, warm the tube in the hot water bath.			
To a 1 cm depth of each solution in a test-tube, add 1 cm depth of dilute sulfuric acid. Then add a few drops of aqueous manganate(VII).			
If no reaction is seen, warm the tube in the hot water bath.			
Identity			

M1	M2	M3	M4

(b) FD 10 is an aqueous solution of an organic compound. Carry out the following tests.

test	
To a 1 cm depth of FD 10 in a test-tube, add 1 cm depth of dilute sulfuric acid.	
Then add a few drops of	
aqueous potassium	
manganate(VII).	

M5	M6

(c) State the type(s) of reactions that FD 10 have undergone in (b).
\qquad
(d) You are given that the M_{r} of FD 10 is 46.0. State the identity of FD 10.
[A_{r} : C, 12.0; O, 16.0; H, 1.0; Cl, 35.5; N, 14.0]

4 Planning

When heated, aqueous hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, decomposes to form oxygen and water.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

The decomposition can also occur at room temperature if a suitable catalyst is added. Both of the solids, manganese(IV) oxide and lead(IV) oxide, will catalyse the decomposition.

You are provided with:

- $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrogen peroxide
- a syringe with a capacity of $100 \mathrm{~cm}^{3}$
- apparatus normally found in a school laboratory
(a) (i) Using the information given above, you are required to write a plan to determine the more efficient catalyst for the decomposition of aqueous hydrogen peroxide. Your plan should include:
- a fully labelled diagram of the apparatus to be used
- a calculation of the volume in cm^{3} of the aqueous hydrogen peroxide that could be used such that an appropriate volume of oxygen could be collected.
- the measurements you would take that and how you would use them to deduce which catalyst is more efficient.

The molar volume of a gas at $20^{\circ} \mathrm{C}$ is $24.0 \mathrm{dm}^{3}$.
\qquad

M1	M2	M3	M4	M5	M6	M7	M8	M9

(ii) What other feature of the catalyst should be controlled during the experiment?
\qquad

9 Qualitative Analysis Notes [ppt. = precipitate]

9(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}{ }^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}$(aq)	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right.$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3^{3}}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}), \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess
$\begin{gathered} \text { iron(III) } \\ \mathrm{Fe}^{3+}(\mathrm{aq}) \end{gathered}$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
$\begin{aligned} & \text { magnesium, } \\ & \mathrm{Mg}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

9(b) Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride. $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{*}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2{ }^{2+}}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite. $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in dilute strong acids)

9(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

9(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, C_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

For each candidate
$25 \mathrm{~cm}^{3}$ pipette
\times burette stand and clamp $1 \times$ funnel (for filling burette) $2 \times 250 \mathrm{~cm}^{3}$ conical flask $2 \times 250 \mathrm{~cm}^{3}$ beaker
$1 \times 50 \mathrm{~cm}^{3}$ measuring cylinder $\times 25 \mathrm{~cm}^{3}$ measuring cylinder
\times white insert with cross
\times white inse
\qquad \times hotplate
$1 \times$ spatula
6 clean test-tubes
\times boiling tube
\times test-tube rack
\times test-tube holder
\times glass rod
\times teat/dropping pipette
$1 \times$ wash bottle containing distilled water
x thermometer $\left(-10^{\circ} \mathrm{C}\right.$ to $+110^{\circ} \mathrm{C}$ at 1 \times stopwatch
paper towels
access to a balance reading to at least 0.1 g
For each candidate

hazard	label	per candidate	identity	notes (hazards given in this column are for the raw materials)
[H]	FB 1	$100 \mathrm{~cm}^{3}$	$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide	Dissolve $4.0 \mathrm{~g} \mathrm{NaOH}[\mathrm{C}]$ in each dm_{3} of solution.
[N]	FB 2	$120 \mathrm{~cm}^{3}$	$0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII)	Dissolve $3.16 \mathrm{~g} \mathrm{KMnO}_{4}[\mathrm{~N}][\mathrm{O}][\mathrm{H}]$ in each dm_{3} of solution.
	FB 3	$230 \mathrm{~cm}^{3}$	solution containing a mixture of ethanedioic acid and sodium ethanedioate	Dissolve $3.80 \mathrm{~g} \mathrm{HOOCCOOH} .2 \mathrm{H}_{2} \mathrm{O}[\mathrm{H}]$ and $2.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}[\mathrm{H}]$ in each dm^{3} of solution.
[C]	FB 4	$150 \mathrm{~cm}^{3}$	2.0 mol dm ${ }^{-3}$ sulfuric acid	Cautiously pour $110 \mathrm{~cm}^{3}$ of concentrated (98\%) sulfuric acid [C] into $800 \mathrm{~cm}^{3}$ of distilled water with continuous stirring. Make the solution up to $1 \mathrm{dm}^{3}$ with distilled water. Care - concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is very corrosive.
[F]	thymolphthalein indicator	$5 \mathrm{~cm}^{3}$	thymolphthalein	.
[H]	FC 5	$100 \mathrm{~cm}^{3}$	1.0 mol dm ${ }^{-3}$ sulfuric acid	Cautiously pour $55 \mathrm{~cm}^{3}$ of concentrated (98\%) sulfuric acid [C] into 500 cm^{3} of distilled water with continuous stirring. Make the solution up to 1 dm^{3} with distilled water Care: concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is very corrosive.
	FC 6	$180 \mathrm{~cm}^{3}$	$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate	Dissolve 24.8 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of solution. The solid should be dissolved in boiled distilled water that has been cooled in a closed vessel. This prevents oxidation of the thiosulfate by dissolved oxygen.
	FD 7	$10 \mathrm{~cm}^{3}$	$0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ magnesium sulfate	Dissolve 24.6 g of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of solution.
*[F] [H]	FE 8	$5 \mathrm{~cm}^{3}$	$1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ glucose	Dissolve 180 g of glucose in each dm^{3} of solution. This should be provided in a stoppered container.
${ }^{*}[\mathrm{~F}][\mathrm{H}]$	FE 9	$5 \mathrm{~cm}^{3}$	distilled water	Provided in a stoppered container.
[F] [H]	FE 10	$5 \mathrm{~cm}^{3}$	ethanol	Ethanol [F], or IMS, Industrial Methylated Spirits [F] [H]. Provided in a stoppered container.
[C]	FE 11	$5 \mathrm{~cm}^{3}$	$3.0 \mathrm{~mol} \mathrm{dm}^{-3}$ methanoic acid	Dilute $126 \mathrm{~cm}^{3}$ of HCOOH , methanoic acid (90%) [C] to $1 \mathrm{dm}^{3}$ with distilled water.

Bench reagents

hazard	Label	notes
[H]	dilute hydrochloric acid	All concentrations to be around $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$
[C]	dilute nitric acid	Except sulfuric acid ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$)
[H]	dilute sulfuric acid	
[H]	aqueous ammonia	
[C]	aqueous sodium hydroxide	
[H]	0.1 mol dm ${ }^{-3}$ barium nitrate	
[H] [N]	$0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate	
[H]	limewater	
[N$]$	$0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII)	
	$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium iodide	
	Red \& Blue litmus paper	

Answers to Paper 1

1	C	11	B	21	C
2	D	12	B	22	B
3	D	13	A	23	C
4	A	14	B	24	C
5	B	15	D	25	A
6	D	16	C	26	C
7	B	17	D	27	D
8	C	18	A	28	B
9	C	19	A	29	B
10	D	20	A	30	A

RIVER VALLEY HIGH SCHOOL

 YEAR 6 PRELIMINARY EXAMINATION IICANDIDATE NAME

CLASS \square
CENTRE NUMBER

S	3	0	4	4

INDEX NUMBER

0	0		

Additional Materials:
Data Booklet

READ THESE INSTRUCTIONS FIRST.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Write your name, class and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This paper consists of $\mathbf{X X}$ printed pages.

Answer all questions in the spaces provided.

1
Among the many pharmaceutical drugs manufactured worldwide, one of the
most important types is the painkillers. The structures of three such painkillers
are shown.
lbuprofen is used to treat arthritis and relieve pain, fever and swelling. It is
available over-the-counter in 200 and 400 mg tablets. The recommended
dosage varies with body mass and indication, but 1.20 g is considered the
maximum daily adult dosage. Long term use of ibuprofen can lead to stomach
ulcers.
lbuprofen can be synthesised via the following process:
(Mbuprofen

(c)	In the laboratory, Compound Can be converted to ibuprofen using a 3-step synthesis route. Suggest reagents and conditions for each step, and draw the structures of all intermediates.	
		[5]
(d)	Young children often find it difficult to swallow tablets. Thus, ibuprofen is supplied as an "infant formula" emulsion. Given that ibuprofen and water are immiscible, an emulsifier such as polysorbate 80 is used to create a homogeneous mixture. polysorbate 80 Explain why this molecule is able to act as an emulsifier.	
	The - OH polar groups allow the molecule to be soluble in water, while the non-polar hydrocarbon groups allow the molecule to be soluble in oil / nonpolar liquids.	[1]
(e)	A certain pharmaceutical brand claims that the ibuprofen tablets it manufactures are 95.0% pure by mass.	

	To investigate this claim, 5.00 g of a sample was crushed and dissolved in $250 \mathrm{~cm}^{3}$ of $0.450 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{KOH} .25 .0 \mathrm{~cm}^{3}$ of this solution was withdrawn and titrated against sulfuric acid. The unreacted KOH in this solution required $25.50 \mathrm{~cm}^{3}$ of $0.180 \mathrm{~mol} \mathrm{dm}^{-3}$ of sulfuric acid for complete neutralisation. Showing relevant calculations, deduce if the claim is valid.	
	$\begin{aligned} \text { Amount of } \mathrm{H}_{2} \mathrm{SO}_{4} & =\frac{25.50}{1000} \times 0.180 \\ & =0.00459 \mathrm{~mol} \end{aligned} \begin{aligned} \text { Amount of unreacted } \mathrm{KOH} & =0.00459 \times 2 \\ & =0.00918 \mathrm{~mol} \end{aligned}$ $\begin{aligned} & \text { Amount of unreacted } \mathrm{KOH}\left(\text { in } 250 \mathrm{~cm}^{3}\right)=0.0918 \mathrm{~mol} \\ & \begin{aligned} \text { Amount of } \mathrm{KOH} \text { reacted with ibuprofen sample } & =\frac{250}{1000} \times 0.450-0.0918 \\ & =0.0207 \mathrm{~mol} \end{aligned} \end{aligned}$ $\begin{aligned} & \text { Since ibuprofen } \equiv \mathrm{KOH}, \\ & \text { Amount of ibuprofen }=0.0207 \mathrm{~mol} \\ & \begin{aligned} \text { Mass of ibuprofen } & =0.0207 \times[13(12.0)+18(1.0)+2(16.0)] \\ & =4.26 \mathrm{~g} \\ \text { Percentage purity } & =\frac{4.26}{5.00} \times 100 \% \\ & =85.2 \% \end{aligned} \end{aligned}$ Hence, the claim is invalid.	[3]
(f)	Compare the acidity of ibuprofen and aspirin. Explain your answer.	
	Aspirin is a stronger acid than ibuprofen. The anion of aspirin, is more stable than the anion of ibuprofen, , as the negative charge is delocalised over the COO^{-}group and into the benzene ring.	[2]
(g)	Describe two simple chemical tests to distinguish between ibuprofen, paracetamol and aspirin.	
	Test: Add neutral $\mathrm{FeCl}_{3}(\mathrm{aq})$	[4]

$\left.\begin{array}{|l|l|ll|l|}\hline & \begin{array}{l}\text { Observations: Violet colouration forms for paracetamol. No violet } \\ \text { colouration forms for ibuprofen and aspirin. } \\ \text { Test: Heat with acidified } \mathrm{KMnO}_{4}(\mathrm{aq})\end{array} & \\ \hline \begin{array}{l}\text { Observations: Purple } \mathrm{KMnO}_{4} \text { turns colourless for ibuprofen. } \\ \text { remains purple for paracetamol and aspirin. }\end{array} & \mathrm{KMnO}_{4}\end{array}\right]$

2	(a)	Gaseous ethane can be used as a fuel for campers. A company manufactures compressed gaseous ethane in $400 \mathrm{~cm}^{3}$ metal canisters. A typical metal canister at room temperature contains compressed gaseous ethane at a pressure of 4.00 atm .		
		(i)	Suggest a reason why gaseous ethane in the metal canister does not behave like an ideal gas.	
			Due to high pressure in the canister, volume of the ethane molecules is not negligible compared to volume of the metal canister / intermolecular forces of attraction between ethane molecules are not negligible	[1]
		(ii)	One metal canister is used for heating water and the pressure decreases from 4.00 atm to 1.50 atm . Assuming that the compressed ethane behaves ideally, calculate the mass of water at room temperature that could be brought to boiling if the process is 80% efficient. The enthalpy change of combustion of ethane is $-1420 \mathrm{~kJ} \mathrm{~mol}^{-1}$.	
			Using $\mathrm{pV}=\mathrm{nRT}$, $\begin{aligned} & (2.50 \times 101325)\left(400 \times 10^{-6}\right)=n(8.31)(293) \\ & \mathrm{n}=\text { amount of ethane used } \\ & \quad=0.0416 \mathrm{~mol} \end{aligned}$ $\begin{aligned} & \text { Heat evolved from combustion of ethane }=0.0416 \times 1420 \\ & \qquad=59.1 \mathrm{~kJ} \\ & 0.80 \times 59.1 \times 10^{3}=\text { Mass of water } \times 4.18 \times(100-20) \\ & \text { Mass of water }=141 \mathrm{~g} \end{aligned}$	[3]
		(iii)	Suggest a reason why butane is a better fuel for campers compared to ethane.	

	(i)	Given that the enthalpy change of vapourisation of hydrazine is $+58.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, use appropriate bond energies from the Data Booklet to calculate the enthalpy change of reaction between liquid hydrazine and oxygen.	
		$\begin{aligned} \Delta H_{r}= & \Delta H_{\text {vap }}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)+[\mathrm{BE}(\mathrm{~N}-\mathrm{N})+4 \mathrm{BE}(\mathrm{~N}-\mathrm{H})+\mathrm{BE}(\mathrm{O}=\mathrm{O})] \\ & -[\mathrm{BE}(\mathrm{~N} \equiv \mathrm{~N})+4 \mathrm{BE}(\mathrm{O}-\mathrm{H})] \\ = & +58+[(+160)+4(+390)+(+496)]-[(+944)+4(+460)] \\ = & -510 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	[2]
	(ii)	The reaction shown above has a positive ΔS value. Account for its significance.	
		There is an increase in disorder of the system. The amount of gaseous molecules increases from 1 mol to 3 mol as the reaction proceeds.	[1]
	(iii)	Hence, under what conditions of temperature will the reaction be spontaneous?	
		$\Delta G=\Delta H-T \Delta S$ Since ΔS is positive, $-T \Delta S$ is negative. Given that the calculated ΔH is negative, $\Delta \mathrm{G}$ is negative and the reaction is spontaneous at all temperatures.	[2]
[Total: 14]			

3 An experiment was set up to investigate how the cell potential of a cell containing a metal, M , in contact with an aqueous solution of its ions, $\mathrm{M}^{\mathrm{n+}}(\mathrm{aq})$, changed as $\mathrm{M}^{\mathrm{n+}}(\mathrm{aq})$ was diluted.

	(i)	Use your graph to determine the gradient and the charge, n, of the $\mathrm{M}^{\mathrm{n}+}$ ions.	
		$\begin{aligned} & \text { Gradient }=-0.0300 \\ & -0.06 / n=-0.0300 \\ & n=2 \end{aligned}$	[2]
	(ii)	Use your graph to determine the E^{\ominus} cell, showing your working clearly.	
		$\begin{aligned} & \log _{10} 1=0 \\ & y \text {-intercept }=0.93 \mathrm{~V} \text { or uses equation to calculate } \end{aligned}$	[2]
	(iii)	In the determination of standard electrode potential of a half-cell, the polarity of standard hydrogen electrode can either be positive or negative. The standard electrode potential for $\mathrm{Cl}^{-}, \mathrm{ClO}^{-}$in alkaline conditions is +0.80 V . Hence, calculate the standard electrode potential of the metal, M, and suggest its identity.	
		$\begin{aligned} E^{\ominus} \text { for } M & =0.80-0.93 \\ & =-0.13 \mathrm{~V} \end{aligned}$ M is Pb .	[2]
	(iv)	Suggest one purpose of a salt bridge in a galvanic cell.	
		To allow movement of ions / complete the circuit OR To maintain electrical neutrality / charge or ion balance	[1]
	(v)	A student suggested the use of aqueous potassium sulfate in the salt bridge. Do you think his choice is wise? Explain your reasoning.	
		Not wise PbSO_{4} is insoluble/ is a ppt. Will affect E values.	[2]
(c)	Usi is	Le Chatelier's Principle and relevant equations, explain why AgCl uble in excess aqueous ammonia.	
	Ag Ag^{+} Wh	$\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ $\mathrm{q})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq})$ excess NH_{3} is added, diammine silver complex is formed.	[2]

| | | POE in (1) is shifted to the right as $\left[\mathrm{Ag}^{+}\right]$decreases.
 AgCl dissolves. | |
| :--- | :--- | :--- | :--- | :--- |
| | | [Total: 14] | |

4	Viridian is a blue-green pigment used commonly in paints, inks, and stained glasses. The major constituent of viridian is the compound chromium(III) oxide, $\mathrm{Cr}_{2} \mathrm{O}_{3}$, that gives its characteristic colour. Alumina, which is the common name for the chemical aluminium oxide (Al${ }_{2} \mathrm{O}_{3}$), is a white solid which is commonly used as abrasive owing to its high hardness rating.		
	(a)	Define the term transition element.	
		A transition element is a d-block element which forms at least one stable ion (compound) with a partially filled d subshell.	[1]
	(b)	In terms of structure and bonding, explain why alumina has a high hardness rating.	
		Alumina has a giant ionic structure. Strong electrostatic forces of attractions between Al^{3+} and O^{2-} ions which is difficult to overcome.	[2]
	(c)	Both $\mathrm{Cr}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ are amphoteric oxides. Describe the observations and write balanced equations when $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is dissolved in $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$. You can assume that the coordination number of chromium in $\mathrm{NaOH}(\mathrm{aq})$ is 6 .	
		In $\mathrm{HCl}(\mathrm{aq})$ Equation: $\mathrm{Cr}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{CrCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ Observation: (Blue)-green solid dissolves in $\mathrm{HCl}(\mathrm{aq})$ to give a green solution In NaOH (aq) Equation: $\mathrm{Cr}_{2} \mathrm{O}_{3}+6 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}_{3}\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]$ Observation: (Blue)-green solid dissolves in $\mathrm{NaOH}(\mathrm{aq})$ to give a dark green solution	[4]
	(d)	Explain why the resultant solution is coloured when $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is dissolved in acid.	
		The solution contains Cr^{3+} which has a partially filled 3 d subshell. In the presence of $\mathrm{H}_{2} \mathrm{O}$ ligands, the 3 d orbitals are split into 2 sets of orbitals with	[3]

	different energy level. The difference in energies (ΔE) between these 2 sets of non-degenerate 3d orbitals is small and radiation from the visible region of the electromagnetic spectrum is absorbed when an electron is promoted from a lower energy d-orbital to another unfilled/partially-filled d orbital of higher energy. The colour observed is the complement of the colour absorbed.	
(e)	Another chromium-containing compound, CrCl_{3}, also exhibits similar properties to AlCl_{3}. Predict the pH of the solution when a solid sample of CrCl_{3} is dissolved in water. Use equations to justify your answer where possible.	
	pH of solution $=3.0$ $\begin{aligned} & \mathrm{CrCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-} \\ & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}^{+}} \end{aligned}$ OR $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$	[2]
(f)	Use of the Data Booklet is relevant to this question. The element chromium shows a relatively similar increase in the $1^{\text {st }}, 2^{\text {nd }}$, $3^{\text {rd }}$ and $4^{\text {th }}$ ionisation energy. Aluminium however, shows a significant difference between its $3^{\text {rd }}$ and $4^{\text {th }}$ ionisation energy.	
	(i) By means of an equation, express the $2^{\text {nd }}$ ionisation energy of chromium.	
	$\mathrm{Cr}^{+}(\mathrm{g}) \rightarrow \mathrm{Cr}^{2+}(\mathrm{g})+\mathrm{e}^{-} \quad \Delta H=2^{\text {nd }} \mathrm{IE}$	[1]
	(ii) Explain fully why the $4^{\text {th }}$ ionisation energy of aluminium has a significantly larger magnitude compared to its $3^{\text {rd }}$ ionisation energy.	
	$\begin{aligned} & \mathrm{Al}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1} \\ & \mathrm{Al}^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} \end{aligned}$ Fourth electron is removed from an inner principal quantum shell which is closer to the nucleus while the $3^{\text {rd }}$ electron is removed from the outermost shell. The fourth electron in the inner shell ($2 p$ subshell) also experiences a greater effective nuclear charge/ less shielding effect compared to the electron in the outermost shell (3p subshells).	[2]

5	Caft yell	ric wish	id is a compound found in grapes and is responsible for the old colour seen in some white wines. caftaric acid	
	(a)	Ded	e the molecular formula of caftaric acid.	
		C_{13}		[1]
	(b)	(i)	State the type(s) of stereoisomerism exhibited by caftaric acid.	
			Enantiomerism and cis-trans isomerism	[1]
		(ii)	Hence, state the total number of stereoisomers of caftaric acid.	
			8 (2^{2} enantiomers $\times 2$ cis-trans)	[1]
	(c)	The a suc Sug hea	vel of caftaric acid can be used to estimate the oxidation levels that has undergone. Wines that undergo a high degree of oxidation, as pressed wine, will have little to no caftaric acid in them. the carbon-containing products formed when caftaric acid is d with excess acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$.	
				[3]

END OF PAPER

RIVER VALLEY HIGH SCHOOL YEAR 6 PRELIMINARY EXAMINATION II

CANDIDATE
NAME

CLASS

CENTRE
NUMBER \square INDEX
NUMBER

H2 CHEMISTRY

Paper 3 Free Response
19 September 2017
2 hours
Candidates answer on separate paper.
Additional Materials: Answer Paper
Cover Page
Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, class, centre number and index number on all the work you hand in.
Write in dark blue or black pen on both sides of paper.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.
Begin each question on a fresh sheet of paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided. Do not write anything on it.
You are reminded of the need for good English and clear presentation in your answers.
The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together, with the cover page on top.

This document consists of $\mathbf{X X}$ printed pages.

Section A

Answer all the questions in this section.

	$\mathrm{V}_{\mathrm{CO}}=2(40)=80 \mathrm{~cm}^{\mathbf{3}}$	
(c)	About 100 years ago, in a reaction discovered by German chemist Karl Fries, compound B was converted into compound C when heated with AlCl3. Compound \mathbf{C} is a structural isomer of \mathbf{B}. It is insoluble in water but dissolves in aqueous sodium hydroxide. It gives a yellow ppt with alkaline aqueous iodine and a white ppt with aqueous bromine.	
	(i) Suggest the structure for compound C.	[1]
	The various reactions of compound \mathbf{C} can be represented as follows:	

2
In the late 1940s, Willard Libby developed the radiocarbon dating method for determining the age of an object containing organic material by using the properties of radiocarbon (${ }^{14} \mathrm{C}$), a radioactive isotope of carbon. The principle of carbon dating is as such:

During its life, a plant or animal is exchanging carbon with its surroundings, so the carbon it contains will have the same proportion of ${ }^{14} \mathrm{C}$ as the atmosphere. Once it dies, it ceases to acquire ${ }^{14} \mathrm{C}$, but the ${ }^{14} \mathrm{C}$ within its biological material at that time will continue to decay, and so the ratio of ${ }^{14} \mathrm{C}$ to ${ }^{12} \mathrm{C}$ in its remains will gradually decrease.
Because ${ }^{14} \mathrm{C}$ decays with first order kinetics, the proportion of radiocarbon can be used to determine how long it has been since a given sample stopped exchanging carbon - the older the sample, the less ${ }^{14} \mathrm{C}$ will be left.

(a)	A sample of carbon dioxide gas (that contained both ${ }^{12} \mathrm{CO}_{2}$ and ${ }^{14} \mathrm{CO}_{2}$) was analysed to determine the proportion of ${ }^{14} \mathrm{CO}_{2}$ found within. Analysis results showed that there is one ${ }^{14} \mathrm{CO}_{2}$ molecule for every $10^{12} \mathrm{CO}_{2}$ molecules.		
	(i)	Calculate the number of ${ }^{14} \mathrm{CO}_{2}$ molecules in a $10.0 \mathrm{dm}^{3}$ carbon dioxide gas sample, measured under s.t.p.	[2]
		$\text { Number of moles of } \begin{aligned} \mathrm{CO}_{2} & =\frac{10}{22.7} \\ & =0.441 \mathrm{~mol} \end{aligned}$ $\text { Number of } \begin{aligned} { }^{14} \mathrm{CO}_{2} \text { molecules } & =0.441 \times \frac{6.02 \times 10^{23}}{10^{2}} \\ & =2.65 \times 10^{11} \text { molecules } \end{aligned}$	
	(ii)	Calculate the mass of ${ }^{14} \mathrm{CO}_{2}$ in the $10.0 \mathrm{dm}^{3}$ sample.	[1]
		$\text { Mass of } \begin{aligned} { }^{14} \mathrm{CO}_{2} & =\frac{2.65 \times 10^{11}}{6.02 \times 10^{23}} \times(14.0+16.0 \times 2) \\ & =2.03 \times 10^{-11} \mathrm{~g} \end{aligned}$	
	(iii)	Hence, explain why it would be difficult to determine the proportion of ${ }^{14} \mathrm{CO}_{2}$ by means of mass measurement.	[1]
		The amount/mass of ${ }^{14} \mathrm{CO}_{2}$ is too small to be accurately measured.	
(b)		re accurately determine the proportion of ${ }^{14} \mathrm{C}$ in a sample of graphite, aphite is vaporised and ionised to $\mathrm{C}^{+}(\mathrm{g})$ ions. These ions were then d through 2 electric plates. that H^{+}is deflected with an angle of 8.4°, what is the angle of tion for ${ }^{14} \mathrm{C}^{+}$ions under the same experimental set-up?	[1]
		flected by $\left(\frac{1}{14}\right)(8.4)=0.60^{\circ}$	
(c)		alf-life of ${ }^{14} \mathrm{C}$ is 5730 years. Determine the time that has elapsed for of wood from a dead tree to contain 30.0% of its original ${ }^{14} \mathrm{C}$.	[2]
		number of half-life be n $\begin{aligned} & \binom{1}{2}^{n} \\ & \frac{\binom{30.0}{100}}{g\left(\frac{1}{2}\right)} \\ & 74[1] \end{aligned}$ taken $=5730 \times 1.74=9970$ years	
(d)	The radi	ge of crude oil is far older than what could be determined from arbon dating.	

(the age of a crude oil sample, a method involving the

		$\begin{aligned} & 4.50 \times 10^{-5}=k(0.01)(0.01) \\ & \mathrm{k}=0.450 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \end{aligned}$	
	(iv)	Hence, determine the value of x.	[1]
		$\begin{aligned} & 4.05 \times 10^{-4}=(0.45)(0.03) x \\ & x=0.0300\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	
(f)	Benzene is made to undergo a series of reactions as shown:		
	(i)	Suggest the structures of \mathbf{J} and \mathbf{K}.	[2]
		J: K:	
	(ii)	Given that compound L is neutral, suggest the reagent used in the final step and the structure of \mathbf{L}.	[2]
		$\begin{aligned} & \mathrm{PCl}_{5} \text { or } \mathrm{SOCl}_{2} \\ & \text { Structure of } \mathrm{L} \text { : } \end{aligned}$	

3	Chromium is a transition metal commonly found in the earth's crust. It is usually mined as chromite.											
	Period 4 Element			Ti	V	Cr	Mn	Fe	Co	Ni	Cu	
	Atomic radius / nm			0.132	0.122	0.117	0.117	0.116	0.116	0.115	0.117	
	(a)	Explain why the atomic radius for transition elements remains relatively constant.										[2]
		Across the transition elements, nuclear charge increases but screening effect also increases due to electrons added to the inner 3d subshell. Therefore, the effective nuclear charge is approximately the same. The attraction between the nucleus and the valence electrons remain about the same. Thus, atomic radius remains almost constant.										
	(b)	(i) V	Write the electronic configuration for Cr^{3+} ion.									[1]
		$\mathrm{Cr}^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$										
		(ii) $\begin{aligned} & \text { C } \\ & \\ & \\ & \\ & \\ & \text { w } \\ & \text { e } \\ & \text { th } \\ & \\ & \end{aligned}$	Chromium forms octahedral complexes with the general formula $\mathrm{CrCl} 3_{3} .6 \mathrm{H}_{2} \mathrm{O}$. One of them dissolves in water to form a violet solution which turned green upon warming. An excess of aqueous silver nitrate was added separately to solutions containing 0.0100 mol of each complex. The violet complex gave 1.50 g of precipitate, while the green complex gave 4.40 g of precipitate. Deduce the formulae of the two complex ions.									[3]

	Lower energy level $\mathrm{d}_{2}{ }^{2}$ or Upper energy level	
(c)	When sodium carbonate is added to a dichromate(VI) solution, the solution turned yellow. $\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{CrO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \text { orange } \quad \text { yellow } \end{aligned}$ Using a relevant equation, explain the above observation.	[2]
	When $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added, the concentration of OH^{-}increased. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ The equilibrium position will shift to the right to remove some of the added OH^{-}, changing the solution to yellow.	
(d)	Ethylenediamine tetraacetate, [EDTA] ${ }^{4-}$, is a ligand that acts as a chelating agent. It is widely used to remove transition metal ions such as those of chromium from aqueous solutions. A possible reaction scheme used to synthesise [EDTA] ${ }^{4-}$ from methanal is given below.	

	(i)	Suggest the reagents and conditions in steps I, II and III.	[3]
		Step I : HCN with small amount of NaCN Step II : $\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}$ Step III : $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ heat under reflux	
	(ii)	Draw the displayed formulae of intermediates \mathbf{Q} and \mathbf{R}.	[2]
		 Q R	
	(iii)	State the type of reaction when \mathbf{T} is converted to [EDTA] ${ }^{4-}$. Give a reason why a limited amount of 1,2-diaminoethane is used.	[2]
		Nucleophilic substitution To enable multiple substitution on the amine group.	
	(iv)	Define the term ligand. State the number of coordinate bonds that a [EDTA] ${ }^{4-}$ ligand can form with a central metal ion.	[2]

| | | A ligand is an ion or molecule which contains at least one atom
 bearing a lone pair of electrons which can be donated into the
 low-lying vacant orbital of the central metal atom or ion forming a co-
 ordinate (dative) bond.
 6 coordinate bonds. |
| :--- | :--- | :--- | :--- |
| | [Total: 19] | |

Section B

Answer one question from this section.

4	This question concerns the chemistry of the oxides of some elements.		
	(a)	The oxides of Period 3 show different reactions with water. Describe the reactions, if any, of the oxides SiO_{2} and SO_{3} with water. Include the approximate pH value of any resulting solutions, and write equations for any reactions that occur.	[3]
		SiO_{2} does not react with water/is insoluble in water. Hence, pH remains at 7. SO_{3} reacts/hydrolyse with water to give acidic solutions ($\mathrm{pH}=2$). $\mathrm{SO}_{3}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	
	(b)	Carbon combusts in oxygen to form two common oxides, CO and CO_{2}. These oxides are also formed when solid magnesium oxalate, $\mathrm{MgC}_{2} \mathrm{O}_{4}$, is heated strongly.	

		the dipole moment of C and $\mathrm{C}=\mathrm{Se}$.	O and $\mathrm{C}=\mathrm{S}$ than that between $\mathrm{C}=\mathrm{O}$	
(c)	Aside from the common oxides, carbon forms a series of reactive oxocarbons. One such compound is tricarbon monoxide, $\mathrm{C}_{3} \mathrm{O}$, a reactive molecule found in space.			
	(i)	Suggest a structure of tricarbon monoxide. Indicate clearly any lone pairs present.		[1]
	$\mathrm{C}=\mathrm{C}=\mathrm{C}=\ddot{\mathrm{O}}:$			
	Tricarbon monoxide is isoelectronic to cyanogen, $(C N)_{2}$. The molecule of cyanogen contains a C-C single bond.			
	(ii)	Draw the dot-and-cross diagram of cyanogen. In your diagram, you should distinguish the electrons originating from each of the two carbon atoms and those from the two nitrogen atoms.		[1]
	(iii)	Suggest the shapes of tricarbon monoxide and cyanogen.		[1]
	They are both linear.			
(d)	Another oxycarbon is pentacarbon dioxide, $\mathrm{C}_{5} \mathrm{O}_{2}$. It can be obtained by heating compound $\mathbf{X}, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$, at a high temperature. \mathbf{X} exists in equilibrium with its isomer, \mathbf{Y}. \mathbf{X} does not react with aqueous bromine. \mathbf{X} also gives an orange precipitate with 2,4-DNPH but does not give a silver mirror with Tollens' reagent. When reacted with limited bromine under ultraviolet light, X produced only one mono-brominated compound. Y reacts with dilute nitric acid to form only one mono-nitrated compound, Z. Suggest the structures of compounds \mathbf{X}, \mathbf{Y} and \mathbf{Z}. Explain your reasoning.			[7]
	Information/Reaction Deduction			
	X / Y has C:H ratio of 1:1 X/Y might contain a benzene ring.			
	X does not undergo electrophilic substitution nor electrophilic addition with $\mathrm{Br}_{2}(\mathrm{aq})$		X does not contain a phenol nor a $C=C$.	
	X undergoes condensation with 2,4-DNPH but does not undergo oxidation with Tollens' reagent.		X is a ketone.	

	(iii)	Write the K_{p} expression for the reaction above, stating its units.	[1]
		$K_{\mathrm{p}}=\frac{P_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}}}{P_{\mathrm{CH}_{3} \mathrm{CH} \mathrm{CH} \mathrm{CH}_{2}} P_{\mathrm{CO}} P_{\mathrm{H}_{2}}} \quad \text { Units: } \mathrm{atm}^{-2} / \mathrm{Pa}^{-2}$	
	(iv)	When an equimolar mixture of propene, CO and H_{2} at an initial pressure of 120 atm was allowed to reach equilibrium at 550 K , the partial pressure of butanal was found to be 38.5 atm . Calculate a value of K_{p} at 550 K .	[2]
		$\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CO}+\mathrm{H}_{2}$ $\rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ Initial partial pressure $/ \mathrm{Pa}$ 40 40 40 0 Eqm partial $40-38.5$ $=40-38.5$ $40-38.5$ 38.5 pressure $/ \mathrm{Pa}$ 1.5 $=1.5$ $=1.5$ $K_{p}=\frac{38.5}{1.5 \times 1.5 \times 1.5}=11.4 \mathrm{~Pa}^{-2}$	
	(v)	Hence, predict the sign of ΔG for the reaction. Explain your reasoning taking into account the thermodynamic considerations of the reaction.	[2]
		ΔG is negative due to K_{p} is large (greater than 1) and position of equilibrium lies very much to the right.	
(b)	Othe solv biofu of hy	important use of hydrocarbons include fuels, plastics, paints and ts. In some countries, where crude oil is either scarce or expensive, s such as ethanol are also increasingly being used for fuels instead rocarbons.	

RIVER VALLEY HIGH SCHOOL YEAR 6 PRACTICAL EXAMINATION H2 CHEMISTRY 9729

$23^{\text {RD }}$ AUG 2017

2.5 HOURS

NAME
CLASS \square
INDEX NO.
INSTRUCTIONS TO CANDIDATES
DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Read these notes carefully.

Write your name, class and index number in the spaces at the top of this page.
Give details of the practical shift and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graph.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Qualitative Analysis Notes are printed on pages 14 and 15.

For Examiner's Use	
1	$/ 21$
2	$/ 15$
3	$/ 9$
4	$/ 10$
Total	$/ 55$

This experiment involves two steps.
In step one, you will carry out a titration to find the amount of acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, present in FB 3.
In step two, you will carry out a second titration to find the total amount of ethanedioate ion, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, present in FB 3.
Finally, you will use the values found in the two steps to calculate the percentage by mass of sodium ethanedioate in FB 3.

FB 1 is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH .
FB 2 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FB 3 is a mixture of aqueous sodium ethanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, and ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$.
FB 4 is approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid.
thymolthalein indicator
Read through the whole method before starting any practical work.

(a) Method

Step 1

1. Fill the burette labelled FB $\mathbf{1}$ with FB 1.
2. Pipette $25.0 \mathrm{~cm}^{3}$ of FB 3 into a conical flask.
3. Add 1 dropper full of thymolphthalein.
4. Titrate FB $\mathbf{3}$ in the conical flask with FB 1 until a pale blue colour is seen.
5. Carry out as many accurate titrations as you think necessary to obtain consistent results.
6. Record in a suitable form below all of your burette readings and the volume of FB 1 added in each accurate titration.

Step 2

1. Pipette $25.0 \mathrm{~cm}^{3}$ of FB 3 into a conical flask.
2. Using a measuring cylinder, add about $25 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, FB 4, to the flask.
3. Place the conical flask on a hotplate and heat to about $65^{\circ} \mathrm{C}$.
4. Fill the burette labelled FB 2 with FB 2.
5. Use an appropriate method to carefully transfer the hot conical flask onto a white tile under the burette.
6. Titrate the mixture in the conical flask with FB 2 until a permanent pale pink colour is seen. If a permanent brown colour is seen, stop the titration and begin Step 2 again.
7. Carry out as many accurate titrations as you think necessary to obtain consistent results.
8. Record in a suitable form below all of your burette readings and the volume of FB 2 added in each accurate titration.
(b) (i) From your titration results in Step 1, obtain a suitable value to be used in your calculations. Show clearly how you have obtained this value.

Shift 1	Shift 2	Shift 3
$15.20 \mathrm{~cm}^{3}$	$15.20 \mathrm{~cm}^{3}$	$15.20 \mathrm{~cm}^{3}$

	$25.0 \mathrm{~cm}^{3}$ of FB 3 required cm^{3} of FB 1 [2]
(b) (ii)	Write an equation for the reaction between sodium hydroxide and ethanedioic acid to give sodium ethanedioate and water. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ \qquad [1]
(b) (iii)	Use your answer from (b)(i) to calculate amount of sodium hydroxide, FB 1, required to react with $25.0 \mathrm{~cm}^{3}$ of FB 3 in Step 1. $\text { (b) (i) } \times 0.10\} / 1000$ Amount of $\mathrm{NaOH}=$ \qquad
(b) (iv)	Use your answer to (b)(iii) to determine the amount of ethanedioic acid in $25.0 \mathrm{~cm}^{3}$ of FB 3. (iii)/2 Amount of $\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2}$ in $25.0 \mathrm{~cm}^{3}$ of $\mathrm{FB} 3=$
(c) (i)	From your titration results in Step 2, obtain a suitable value to be used in your calculations. Show clearly how you have obtained this value.
	$22.60 \mathrm{~cm}^{3}$ $22.75 \mathrm{~cm}^{3}$ $22.60 \mathrm{~cm}^{3}$
	$25.0 \mathrm{~cm}^{3}$ of FB 3 required \qquad cm^{3} of FB 2.
(c) (ii)	Use your answer from (c)(i) to calculate amount of potassium manganate(VII), FB 2, required to react with $25.0 \mathrm{~cm}^{3}$ of FB 3 in Step 2. $\text { (c)(i) } \times 0.02 / 1000$
	Amount of $\mathrm{KMnO}_{4}=$ \qquad
(c) (iii)	The equation for the reaction between acidified manganate(VII) ions and ethanedioate ions is shown below. $2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Calculate the total amount of ethanedioate ions in $25.0 \mathrm{~cm}^{3}$ of FB 3. $\text { (c)(ii) } \times 5 / 2$ Total amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}$ of $\mathrm{FB} 3=$ \qquad
(c) (iv)	Use your answers to (b)(iv) and (c)(iii) to calculate the amount of ethanedioate ions which came from the sodium ethanedioate dissolved in $25.0 \mathrm{~cm}^{3}$ of FB 3. (c)(iii) - (b)(iv)

\qquad

(d) (i)	Use your answer to (b)(iv) to calculate the mass of ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, in $25.0 \mathrm{~cm}^{3}$ of FB 3. [Ar: H, 1.0; C, 12.0; O, 16.0] (If you were unable to answer (b)(iv), you may assume that the amount of ethanedioic acid is $6.51 \times 10^{-4} \mathrm{~mol}$.) $\text { (b)(iv) } \times 90.0$
	Mass of ethanedioic acid =
(d) (ii)	Use your answer to (c)(iv) to calculate the mass of sodium ethanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in $25.0 \mathrm{~cm}^{3}$ of FB 3. [Ar: C, 12.0; O, 16.0; Na, 23.0] (If you were unable to answer (c)(iv), you may assume that the amount of sodium ethanedioate is $4.13 \times 10^{-4} \mathrm{~mol}$.) $\text { (c)(iv) } \times 134.0$
(d) (iii)	Calculate the percentage by mass of sodium ethanedioate present in FB 3. $\begin{aligned} & \left\{\text { mass } \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \text { in (ii)/total mass }\right\} \times 100 \\ & \text { total mass }=(\mathrm{d})(\text { (i) }+(\mathrm{d})(\text { ii) }] \end{aligned}$
	Percentage by mass of sodium ethanedioate present is
(e) (i)	A student suggested that using a burette to measure the $25.0 \mathrm{~cm}^{3}$ of acid would give a more accurate result than using a pipette. The percentage error of a $25.0 \mathrm{~cm}^{3}$ pipette is 0.24%. Is the student correct? Explain your answer. [2] Student is incorrect use of burette: $\{0.10 / 25\} \times 100=0.40 \%$ compared to 0.24% or apparatus error of pipette is ± 0.06 compared with apparatus error of burette is ± 0.10
(e) (ii)	A student decided to use a $25.0 \mathrm{~cm}^{3}$ pipette instead of a measuring cylinder to measure the volume of FB 4 in Step 2. State and explain whether this alteration will improve the accuracy of the calculation of the percentage by mass of sodium ethanedioate in the mixture.

2	Investigate how the rate of the following reaction varies with the concentration of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ The rate can be found by measuring how long it takes for the solid sulfur formed to obscure the printing on the insert provided. Care should be taken to avoid inhalation of $\mathrm{SO}_{2}(\mathrm{~g})$ that is given off during this reaction. FC 5 is $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$ FC 6 is $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (a) Method 1. Using the $50 \mathrm{~cm}^{3}$ measuring cylinder transfer $45 \mathrm{~cm}^{3}$ of FC 6 into a $100 \mathrm{~cm}^{3}$ beaker. 2. Using the $25 \mathrm{~cm}^{3}$ measuring cylinder measure $10 \mathrm{~cm}^{3}$ of FC 5 . 3. Tip the FC 5 into the FC 6 in the beaker and immediately start timing. 4. Stir the mixture once with a glass rod and place the beaker on top of the printed insert. Cover the beaker with a petri dish. 5. View the printed insert from above so that it is seen through the mixture. 6. Record the time, to the nearest second, when the printing on the insert just disappears. 7. Empty and rinse the beaker. Shake out as much of the water as possible and dry the outside of the beaker. You will repeat the experiment to find out how the time for the printing on the insert to disappear changes when a different volume of FC 6 is used. 8. Using the $50 \mathrm{~cm}^{3}$ measuring cylinder transfer $20 \mathrm{~cm}^{3}$ of FC 6 and $25 \mathrm{~cm}^{3}$ of distilled water into the $100 \mathrm{~cm}^{3}$ beaker. 9. Using the $25 \mathrm{~cm}^{3}$ measuring cylinder, add $10 \mathrm{~cm}^{3}$ of FC 5 to the mixture and immediately start timing. 10. Stir the mixture once with a glass rod and place it on top of the printed insert. 11. View the printed insert from above so that it is seen through the mixture. 12. Record the time, to the nearest second, when the printing on the insert just disappears. 13. Select suitable volumes of FC 6 and distilled water for two further experiments to investigate the effect of volume of sodium thiosulfate on the time taken for the printing on the insert to just disappear. The volume of FC 6 used should range from $0 \mathrm{~cm}^{3}$ to 45 cm^{3}. In the space below, record, in an appropriate form, all measurements of volume, time, and 1/time.
	(b) \quadPlot 1/time against the volume of FC 6. Draw the most appropriate line, taking into account all the points.

	Volume of FC 6 is directly proportional to its concentration (if total volume is constant)
(d)	Using the graph of 1/time against the volume of FC 6, draw a conclusion about the relationship between the concentration of sodium thiosulfate used and the rate of reaction. Hence, state the order of reaction with respect to sodium thiosulfate. [2] Rate of reaction is proportional to concentration of FC 6 (allow directly proportional). Order of reaction is 1 .
(e)	In the four experiments, which value of the time measured had the greatest error? Explain your answer. [2] Either shortest time as greatest percentage/ fractional error or longest time as greatest uncertainty in judging when printing is obscured
(f)	Another student conducts another experiment for the same reaction where the sodium thiosulfate is in large excess. The concentration of acid is monitored as the reaction progresses. His results are as shown below. Deduce the order of reaction with respect to sulfuric acid. [2] The constant gradient indicates a constant rate of reaction. Zero order with respect to sulfuric acid
	[Total: 13]

3 Organic Analysis

Before starting parts (a) and (b), half-fill a $250 \mathrm{~cm}^{3}$ beaker with water and heat with a hotplate to approximately $60^{\circ} \mathrm{C}$. You will use this as a hot water bath.
(a) FD 7, FD 8 and FD 9 are solutions each containing a single compound which could be ethanol, ethanal or propanone. To identify each compound you will react the samples with Tollens' reagent and with acidified potassium manganate(VII).

Preparation of Tollens' reagent

1. To approximately 2 cm depth of aqueous silver nitrate in a boiling tube, add approximately 0.5 cm depth of aqueous sodium hydroxide.
2. Add aqueous ammonia a little at a time with continuous shaking until the brown precipitate just dissolves. Do not add an excess of ammonia.

Complete the table below

test	observations		
	FD 7	FD 8	FD 9
To a $1 \quad \mathrm{~cm}$ depth of each solution in a clean, dry test- tube add a few drops of the Tollens' reagent that you have prepared. Do not shake the tube.	silver mirror/black or brown or grey ppt	No ppt	No ppt
If no reaction is seen, warm the tube in the hot water bath.			
To a 1 cm depth of each solution in a test-tube, add a 1 cm depth of dilute sulfuric acid. Then add a few drops of aqueous potassium manganate(VII).	Purple KMnO turns colourless/ decolourised	Purple KMnO remains purple	Purple KMnO4 turns colourless/ decolourised
If no reaction is seen, warm the tube in the hot water bath.			
Identity			

(b) FD 10 is an aqueous solution of an organic compound. Carry out the following tests. You do not need to identify FD 10.

test	observations
To a 1 cm depth of FD 10 in a test-tube add a 1 cm depth of dilute sulfuric acid. Then add a few drops of aqueous potassium manganate(VII). If no reaction is seen, place the test-tube in the hot water bath and leave to stand.	Purple KMnO_{4} turns coless/ decolourises
To a 1 cm depth of FD 10 in a test-tube, carefully add a small spatula measure of sodium hydrogen carbonate.	Effervescence/fizzing/bubbles Colourless, odourless gas evolved that gives a white ppt with limewater

(c) State the type(s) of reactions that FD 10 have undergone in (b).

	Oxidation Acid-carbonate	
(d)	Given that the Mr of FD 10 is 46.0. State its identity. [Ar: C, 12.0; O, 16.0; H, 1.0; Cl, 35.5; N, 14.0]	$[1]$
	HCOOH	

4 Planning

When heated, aqueous hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, decomposes to form oxygen and water.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

The decomposition can also occur at room temperature if a suitable catalyst is added. Both of the solids, manganese(IV) oxide and lead(IV) oxide, will catalyse the decomposition.

You are provided with:

- $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrogen peroxide
- a syringe with a capacity of $100 \mathrm{~cm}^{3}$
- apparatus normally found in a school laboratory
(a) (i) Using the information given above, you are required to write a plan to determine the more efficient catalyst for the decomposition of aqueous hydrogen peroxide. Your plan should include:
- a fully labelled diagram of the apparatus to be used
- a calculation of the volume in cm^{3} of the aqueous hydrogen peroxide that could be used such that an appropriate volume of oxygen could be collected.
- the measurements you would take and how you would use them to deduce which catalyst is more efficient.

The molar volume of a gas at $20^{\circ} \mathrm{C}$ is $24.0 \mathrm{dm}^{3}$.

- Diagram shows a container with both chemicals named and attached to a syringe connected without leaks.
- Container shows the catalyst and hydrogen peroxide separated and ready to mix.
- Rubber bung
- Well-greased $100 \mathrm{~cm}^{3}$ syringe (labelled)
$250 \mathrm{~cm}^{3}$ conical flask (labelled)
Delivery tube
At least half the capacity of syringe for M4
Amt of oxygen in $100 \mathrm{~cm}^{3}$ of oxygen $=100 / 24000=0.00417 \mathrm{~mol}$
Amt of $\mathrm{H}_{2} \mathrm{O}_{2}=2 \times 0.00417=0.00834 \mathrm{~mol}$
Volume of hydrogen peroxide $=(0.00834 \times 1000) / 0.15=55.6 \mathrm{~cm}^{3}$

1. Measure $55.0 \mathrm{~cm}^{3}$ of aqueous hydrogen peroxide into a $250 \mathrm{~cm}^{3}$ conical flask using a $100 \mathrm{~cm}^{3}$ measuring cylinder.
2. Weigh accurately 0.10 g (acceptable range: 0.1 to 1 g) of solid manganese(IV)
oxide into a plastic vial using the weighing balance.
3. Setup the experiment as shown in the diagram above.
4. Shake the conical flask to topple the solid into the aqueous hydrogen peroxide and start the stopwatch.
5. Record the time taken when $90 \mathrm{~cm}^{3}$ (at least half the capacity of the collecting vessel) of gas is collected (when solid manganese(IV) oxide is used.)
6. Repeat the above steps using lead(IV) oxide instead.
7. The more efficient catalyst is the solid that requires the shorter time to collect 90.0 cm^{3} of gas.

Alternative method:

- Record volume of gas in time intervals of less than 1 min and plot graphs
(ii) What other feature of the catalyst should be controlled?

Surface area

