SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

CANDIDATE
NAME
CLASS
\square
\square

JC2 Preliminary Examination

Additional Materials: Data Booklet
Optical Mark Sheet (OMS)

READ THESE INSTRUCTIONS FIRST

On the separate multiple choice OMS given, write your name, subject title and class in the spaces provided. Shade correctly your FIN/NRIC number.

There are 30 questions in this paper. Answer all questions.
For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice using a soft pencil on the separate OMS.
Each correct answer will score one mark.
A mark will not be deducted for a wrong answer.
You are advised to fill in the OMS as you go along; no additional time will be given for the transfer of answers once the examination has ended.

Any rough working should be done in this question paper.

Answer all questions

1 An acidified solution of the salt KClO_{x} will oxidise $\mathrm{Fe}^{2+}(\mathrm{aq})$ to $\mathrm{Fe}^{3+}(\mathrm{aq})$ quantitatively, the chlorine being reduced to $\mathrm{Cl}^{-}(\mathrm{aq})$.

When 0.302 g of the salt KClO_{x} was reacted with $0.540 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}(\mathrm{aq})$ in the presence of $\mathrm{H}^{+}(\mathrm{aq})$, $21.0 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{2+}(\mathrm{aq})$ was needed for complete reaction.

Which of the following is the value of x ?
A 1
B 2
C 3
D 4

2 A student made up a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ which she found in the laboratory cupboard and left the solution in an open beaker. A week later, she returned to the laboratory, used the solution for titration with $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and was surprised to discover that her titres were lower than expected.

Which of the following explains why the values were so low?
A Some of the barium hydroxide has reacted with carbon dioxide in the air to form solid barium carbonate.
B Some water had evaporated from the barium hydroxide solution.
C The concentration of HCl was less than the stated $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$.
D The crystals had less water of crystallisation than stated.

3 The type of bonding between two elements can be rationalised and even predicted using a van Arkel triangle. The triangle is based on electronegativity values. Difference in electronegativity is plotted along the y-axis and average electronegativity is plotted along the x -axis.

What is the type of bonding present at each of these bonding extremes, labelled \mathbf{X}, \mathbf{Y} and \mathbf{Z} on the triangle?

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
A	metallic	covalent	ionic
B	covalent	metallic	ionic
C	covalent	ionic	metallic
D	ionic	covalent	metallic

4 Equimolar amounts of aqueous ClO_{2} and hydroxide ions react according to the equation below.

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which statement is correct?
A The shape changes from linear in ClO_{2} to bent in $\mathrm{ClO}_{2}{ }^{-}$.
B The shape changes from bent in ClO_{2} to trigonal planar in $\mathrm{ClO}_{3}{ }^{-}$.
C The bond angle changes from about 120° in ClO_{2} to 107° in $\mathrm{ClO}_{3}{ }^{-}$.
D The bond angle changes from about 105° in ClO_{2} to 107° in $\mathrm{ClO}_{3}{ }^{-}$.

5 Use of the Data Booklet is relevant to this question.
The first ionisation energies of successive elements in the Periodic Table are represented in the graph.

element
Which of the following statements about elements \mathbf{C} to L are correct?
1 E and \mathbf{J}^{-}have half-filled p -orbitals.
2 Chlorides of \mathbf{D} and \mathbf{J} undergo hydrolysis.
3 F and K reacts to form acidic compounds.
$4 \mathbf{D}$ and \mathbf{F} forms compounds with formula $\mathbf{D F}$ and $\mathbf{D F}_{2}$.
$5 \mathbf{G}$ and \mathbf{L} forms compounds with variable oxidation states from -1 to +7 .

A 1 and 4 only
B 2 and 5 only
C 1, 3 and 4 only
D 2, 3 and 5 only

6 Two glass vessels \mathbf{M} and \mathbf{N} are connected by a closed valve.

\mathbf{M} contains helium at $25^{\circ} \mathrm{C}$ at a pressure of $1 \times 10^{5} \mathrm{~Pa}$. \mathbf{N} has been evacuated, and has three times the volume of \mathbf{M}. In an experiment, the valve is opened and the whole set-up placed in boiling water.

What is the final pressure in the system?
A $3.13 \times 10^{4} \mathrm{~Pa}$
B $\quad 3.76 \times 10^{4} \mathrm{~Pa}$
C $\quad 1.00 \times 10^{5} \mathrm{~Pa}$
D $1.33 \times 10^{5} \mathrm{~Pa}$

7 Consider the following equilibrium system:

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{FeO}(\mathrm{~s}) \quad \Delta H=+\mathrm{ve}
$$

Given that $K_{p}=K_{c}(\mathrm{RT})^{\Delta n}$, where $\Delta \mathrm{n}$ is the sum of gaseous products - sum of gaseous reactants.
Which of the following statements are correct?
$1 K_{c}=K_{p}$ for this system.
2 The equilibrium constant, K_{c}, for this reaction has no units.
3 Adding FeO causes the position of equilibrium to shift to the left.
4 Increasing the temperature causes the position of equilibrium to shift to the right.
A 1 and 2 only
B 1 and 3 only
C 2, 3 and 4 only
D 1, 2 and 4 only

8 In an experiment to measure the enthalpy change of neutralisation, $20 \mathrm{~cm}^{3}$ of aqueous sulfuric acid containing 0.02 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is placed in a plastic cup of negligible heat capacity.

A $20 \mathrm{~cm}^{3}$ sample of aqueous sodium hydroxide containing 0.04 mol of NaOH , at the same initial temperature, is added and the temperature rises by 15 K .

If the heat capacity per unit volume of the final solution is $4.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~cm}^{-3}$, what is the enthalpy change of neutralisation?

A $\quad-\left(\frac{20 \times 4.2 \times 15}{0.04 \times 1000}\right) \mathrm{kJ} \mathrm{mol}^{-1}$
B $\quad-\left(\frac{40 \times 4.2 \times 15}{0.04 \times 1000}\right) \mathrm{kJ} \mathrm{mol}^{-1}$
C $\quad-\left(\frac{20 \times 4.2 \times 15}{0.02 \times 1000}\right) \mathrm{kJ} \mathrm{mol}^{-1}$
D $\quad-\left(\frac{40 \times 4.2 \times 15}{0.02 \times 1000}\right) \mathrm{kJ} \mathrm{mol}^{-1}$

9 The conversion of graphite into diamond is a non-spontaneous reaction at 298 K . The entropy change of this reaction is negative at 298 K .

$$
\mathrm{C} \text { (graphite) } \rightarrow \mathrm{C} \text { (diamond) } \quad \Delta G=+3.08 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S=-3.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

With reference to the enthalpy change, ΔH, of the reaction above, which statements are correct?
1 Enthalpy change of atomisation of diamond is more endothermic than that of graphite.
2 Enthalpy change of combustion of diamond is more exothermic than that of graphite.
3 Bond energy of carbon-carbon bonds in graphite is greater than that in diamond.
4 The activation energy to convert graphite to diamond is lower than the activation energy for the reverse reaction.

A 1 and 4 only
B 2 and 3 only
C 1, 2 and 3 only
D 2,3 and 4 only

10 The reaction between acidified KI and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ involves the following steps:

$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-}$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}+\mathrm{OI}^{-}$	slow
$\mathrm{OI}^{-}+\mathrm{H}^{+}$	\rightarrow	HOI	fast
$\mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-}$	\rightarrow	$\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$	fast

Which graph would be obtained?
A

B

C

D

11 Compounds of beryllium are amphoteric, like compounds of aluminium.
In which equations is the beryllium-containing reactant acting as a Brønsted-Lowry acid?
A $\mathrm{BeO}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}(\mathrm{aq})$
B $\mathrm{BeCl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}+2 \mathrm{Cl}^{-}$
C $2 \mathrm{Be}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BeO}$
D $\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Be}(\mathrm{OH})_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
$1225 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ of the fully protonated form of compound \mathbf{L} was titrated against a standard sodium hydroxide solution of a similar concentration and the following titration curve was obtained.

Which of the following compounds is a possible identity of compound \mathbf{L} ?
A $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \mathrm{COOH}$
B $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{COOH}$
C $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right) \mathrm{COOH}$
D $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right) \mathrm{COOH}$

13 A sparingly soluble calcium salt dissociates in solution according to the equation:

$$
\mathrm{Ca}_{3} \mathbf{Q}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathbf{Q}^{3-}(\mathrm{aq})
$$

If the solubility product of $\mathrm{Ca}_{3} \mathbf{Q}_{2}$ is p, what is the concentration of \mathbf{Q}^{3-} at equilibrium in a saturated solution of $\mathrm{Ca}_{3} \mathbf{Q}_{2}(\mathrm{aq})$?

A $2 p^{\frac{1}{5}}$
B

$$
2\left(\frac{p}{36}\right)^{\frac{1}{5}}
$$

C

$$
2\left(\frac{p}{72}\right)^{\frac{1}{5}}
$$

D

$$
2\left(\frac{p}{108}\right)^{\frac{1}{5}}
$$

14 A transition metal cation can exist in a 'high spin' or 'low spin' state while exposed to different ligands in an octahedral complex.

A 'high-spin' state has the electrons occupying all the d-orbitals singly first, before pairing in the lower energy d-orbitals.

A 'low-spin' state has the lower energy d-orbitals filled first, pairing up if necessary, before the higher energy d-orbitals are filled.

Which cation would have the largest number of unpaired electrons?
A 'High-spin' Mn^{3+}
B 'High-spin' Fe^{3+}
C 'Low-spin' Co^{2+}
D 'Low-spin' Ni^{4+}

15 Which of the following is not a result of the small energy gap between 3 d and 4 s orbitals?
A Transition metals have higher electrical conductivity than aluminium.
B Transition metals can exhibit variable oxidation states.
C Transition metals have higher melting point than calcium.
D Transition metals ions are usually coloured.

16 Use of the Data Booklet is relevant to this question.
Two catalysed reactions and their respective catalysts are shown below.

Reaction

Equation

$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Catalyst
Fe^{3+}
Mn^{2+}

Which statements about the reactions and the catalysts are correct?
$1 \mathrm{Mn}^{2+}$ is an auto-catalyst in reaction II.
$2 \mathrm{Fe}^{2+}$ could replace Fe^{3+} as a heterogeneous catalyst in reaction \mathbf{I}.
$3 \mathrm{Mn}^{2+}$ could replace Fe^{3+} as a homogeneous catalyst in reaction I.
4 Both catalysts increase the energetic feasibility of their respective reactions.
A 1 and 3 only
B 2 and 3 only
C 1, 2 and 4 only
D 2, 3 and 4 only

17 Use of the Data Booklet is relevant to this question.
Impure copper obtained from copper ores can be purified by electrolysis as shown below. The cell potential is adjusted such that copper of the impure copper electrode dissolves and impurities such as silver, iron and zinc can be removed through this process.

Which statement is not correct regarding the above electrolytic process?
A Reduction occurs at electrode \mathbf{T}.
B Electrode \mathbf{R} contains impure copper.
C Zinc impurity goes into the solution as Zn^{2+} ions.
D Iron and silver impurities fall to the bottom as sludge.

18 Use of the Data Booklet is relevant to this question.
Three electrochemical cells are set up as shown below. The e.m.f in volts is shown on each voltmeter.

These e.m.f indicate the order of reactivity of the metals. The order of the weakest to the strongest reducing agent is

A $\mathbf{X}, \mathrm{Y}, \mathrm{Cu}, \mathbf{Z}$
B $\mathbf{C u}, \mathbf{Z}, \mathbf{X}, \mathbf{Y}$
C $\mathbf{Z}, \mathrm{Cu}, \mathbf{X}, \mathbf{Y}$
D $\mathbf{Y}, \mathbf{X}, \mathbf{Z}, \mathrm{Cu}$

19 Valine is a naturally occurring amino acid.

Valine
3-aminopropanoic acid
Which statement about valine and 3-aminopropanoic acid is correct?
A Both compounds are able to form zwitterions.
B Both compounds are able to react with ethanoic acid to give amide.
C Both compounds are able to react with NaBH_{4} in methanol to give alcohol.
D Both compounds are soluble in water due to the formation of intermolecular hydrogen bonding.

20 Which of the following statements are correct about compound \mathbf{U} ?

compound \mathbf{U}
1 The bond angles in compound \mathbf{U} increase in the order $\boldsymbol{x}<\boldsymbol{y}<\boldsymbol{z}$.
2 There is only one sp hybridised carbon atom in compound \mathbf{U}.
3 There are 26σ and 5π bonds.
4 Compound \mathbf{U} is planar.
A 1 and 2 only
B 1 and 3 only
C 1,2 and 4 only
D 2, 3 and 4 only

21 Deuterium (D or ${ }^{2} \mathrm{H}$) is a heavy isotope of hydrogen. A deutero-hydrocarbon has the part structural formula shown below.

$$
\mathrm{CDH}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}
$$

What is the total number of isomers with the above part-structural formula?
A 2
B 4
C 8
D 10

22 The molecule of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ is a regular hexagon in which the π electrons are described as delocalised.

Which of the following statements support this structure?
1 Benzene is a good conductor of electricity.
2 Addition reactions of benzene take place more easily than substitution.
3 All $\mathrm{C}-\mathrm{C}$ bonds lengths in benzene are intermediate between $\mathrm{C}-\mathrm{C}$ bond in an alkane and $\mathrm{C}=\mathrm{C}$ bond in an alkene.

4 The enthalpy change of hydrogenation of benzene is less exothermic than that predicted for cyclohexatriene.

A 1 and 3 only
B 3 and 4 only
C 1, 2 and 3 only
D 1, 2 and 4 only
$23 \mathrm{PGE}_{2}$ is a prostaglandin that has pharmacological activity.

Which of the following is incorrect?

Reducing agent

> Number of hydrogen atoms incorporated per molecule of PGE_{2}

A
$\mathrm{H}_{2} / \mathrm{Ni}$
6
B $\quad \mathrm{Na}$ in ethanol 8
C NaBH_{4} in methanol 6
D LiAlH_{4} in dry ether 4

24 A mechanism for the reaction between ammonia and ethanoyl chloride is given below.

Which of the following statements are correct?

1 The ammonia behaves as a nucleophile.
2 The loss of proton in step 3 is shown incorrectly.
3 The ammonia attacks an electron-deficient carbon atom.
4 The rate of reaction will increase if ethanoyl bromide is used.

A 1, 2, 3 and 4
B 1, 3 and 4 only
C 1 and 3 only
D 2 and 4 only

25 Diols formed on the same carbon atom are generally unstable and will undergo the following reaction.

$$
\mathrm{RCR}^{\prime}(\mathrm{OH})_{2} \rightarrow \mathrm{RCOR}^{\prime}+\mathrm{H}_{2} \mathrm{O}
$$

Compounds \mathbf{V} and \mathbf{W} are both reacted with hot aqueous NaOH followed by dilute HCl at room temperature.

Compound V

Compound W

Which reagents could be used to distinguish the final products of \mathbf{V} and \mathbf{W} ?
1 2,4-DNPH
2 Fehling's solution
3 Sodium carbonate
4 Hot acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
5 lodine in aqueous NaOH

A 1 and 2 only
B 3 and 4 only
C 1, 4 and 5 only
D 2, 3 and 5 only

26 The ozone depletion potential (ODP) of a chemical compound is the relative amount of degradation to the ozone layer it can cause, with trichlorofluoromethane being fixed at an ODP of 1.0.

Which of the following compounds has an ODP of greater than 1.0 ?
A methane
B dichlorodifluoromethane
C chlorotrifluoromethane
D bromotrifluoromethane

27 Azo coupling is an organic reaction between a diazonium compound and another aromatic compound that produces an azo compound.

diazonium
Which of the following correctly represents the type of reaction and the role of diazonium compound?

Type of reaction

A nucleophilic substitution
B electrophilic substitution
C nucleophilic substitution
D electrophilic substitution

Role of diazonium

nucleophile
electrophile
electrophile
nucleophile

28 What is the order of increasing pH of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ of each organic compound?
A $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CHO}$
B $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, \mathrm{HOCH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
C $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$
D $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, \mathrm{HOCH}_{2} \mathrm{CHO}$

29 Which reaction gives the best yield of products?
[(alc) indicates an alcoholic solution.]
A

B

C

D

30 The Alder-ene reaction is a reaction between two alkenes and is capable of forming new carbon-carbon bonds. An example of the Alder-ene reaction is given below:

Note: W, X, Y \& Z are carbon atoms and other hydrogens are not shoו
The Alder-ene reaction typically produces many products as the roles of the two alkenes can be exchanged.

Which compound will not be formed when the following compound undergoes Alder-ene reaction?

A

B

C

D

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

CANDIDATE NAME

CLASS
\square
\square

CHEMISTRY

JC2 Preliminary Examination

Paper 2 Structured Questions
Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part questions.

For Examiner's Use	
$\mathbf{1}$	$/ 8$
$\mathbf{2}$	$/ 18$
$\mathbf{3}$	$/ 25$
$\mathbf{4}$	$/ 24$
TOTAL	$/ 75$

The size of an atom can be measured using the distance between the nuclei of two atoms.
For example, the 'metallic radius' of the Na atom is half the distance between two Na atoms in the crystal lattice of the metal. The 'covalent radius' of the Cl atom is taken to be half the distance between the nuclei in a Cl_{2} molecule. Finally, the 'van der Waals' radius' of the A_{r} atom is assumed to be half the distance between two atoms in the solid state.

These three types of radius are commonly known as 'atomic radii' and the corresponding values for Period 3 elements can be found in the Data Booklet.
(a) (i) Explain the general trend in atomic radius across Period 3 .
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a reason for the anomaly in the measurement of atomic radius for argon.
\qquad
\qquad
\qquad
(b) (i) State the general relationship between atomic radius and first ionisation energy across Period 3.
\qquad
\qquad
\qquad
(ii) Explain why the relationship does not hold from P to S .
\qquad
\qquad
\qquad
\qquad
(c) Across period 3, the elements changes from metallic to non-metallic nature. Correspondingly, the difference in electronegativity between the elements and the oxide decreases, giving rise to different types of oxides.

A, B and C are Period 3 elements, from Na to S , inclusive.

- A has the highest melting point among Period 3 elements.
- B has the highest electrical conductivity in Period 3.
- $\quad \mathbf{C}$ burns in air with a coloured flame.
- B and \mathbf{C} can show the same oxidation state in their compounds.

Identify A, B and C and hence, write equations, including state symbols, to show the acid-base properties of their oxides.
[Give the chemical formulae for only the highest oxide formed.]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 Benzoic acid occurs naturally in many plants and it has many uses. It is an important precursor for the industrial synthesis of many organic substances.
(a) The benzoic acid and sodium benzoate buffer is commonly used as food preservatives in many acidic foods such as salad dressings and carbonated drinks.
(i) With the aid of relevant chemical equations, explain how the system can control pH when a small amount of base is added.
\qquad
\qquad
\qquad
\qquad
(ii) Given that the acid dissociation constant for benzoic acid is $6.3 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, calculate the mass of solid sodium benzoate required to be added to $250 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ of benzoic acid to form a buffer solution with an initial pH 4.
(iii) To achieve the optimal buffering capacity of a $25 \mathrm{~cm}^{3}$ sample of the buffer prepared in (a)(ii), a standard solution of $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide was added. Calculate the volume of sodium hydroxide needed.
(b) The presence of benzoic acid in plant extracts can be confirmed using neutral iron(III) chloride according to the following equation.

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})
$$

When $50 \mathrm{~cm}^{3}$ iron(III) chloride is added to an equal volume of the plant extract, 0.0532 g of iron(III) benzoate, $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}$ precipitate is formed.

The resultant mixture has a pH value of 2.33.
(i) Calculate the amount of benzoic acid that has reacted with neutral iron(III) chloride solution and H^{+}in the mixture.
(ii) Assuming that the H^{+}ions in solution are formed from the dissociation of benzoic acid and the reaction of benzoic acid with iron(III) chloride, calculate the concentration of benzoate ions in the equilibrium mixture.
(iii) Calculate the $\mathrm{K}_{\text {sp }}$ of iron(III) benzoate, given that the concentration of iron(III) ions in the mixture is $1.83 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ at equilibrium.
(c) Benzoic acid is involved in the reaction scheme below:

D

excess $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux

E

A crystalline solid
(i) Draw the structures for \mathbf{D}, \mathbf{E} and \mathbf{G} in the boxes below.

D	E
G	

(ii) Suggest the reagents and conditions for reactions I and II.

Reaction I: \qquad
Reaction II: \qquad
(iii) Compound \mathbf{F} was heated with aqueous sodium hydroxide and excess carbon dioxide was bubbled through the solution.

Given the acid dissociation constants below, suggest the products that would be formed after the introduction of carbon dioxide.

acid	formula	$\mathrm{K}_{\mathbf{a}} / \mathbf{m o l ~ d m}^{-3}$
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.5×10^{-7}
benzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}^{2}$	6.3×10^{-5}
ethylamine salt	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$	1.6×10^{-11}

\qquad
\qquad
\qquad
\qquad

3 Grignard reagents are organomagnesium halides, RMgX commonly used in organic synthesis. The R in $R M g X$ behaves like an anion, R^{-}and is a strong Lewis base. It can be made by the reaction between halogenoalkane and magnesium under anhydrous conditions, using ether as a solvent.

$$
\mathrm{R}-\mathrm{X}+\mathrm{Mg} \longrightarrow \mathrm{R}-\mathrm{MgX}
$$

where $\mathrm{R}=$ alkyl group, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I
In a Grignard reaction, the Grignard reagent behaves as a nucleophile and may be added to a carbonyl compound for the formation of an alcohol. This reaction is useful for the formation of carbon-carbon bonds.

(a) (i) Suggest, with an equation, why the synthesis of Grignard reagent has to be done under anhydrous conditions.
\qquad
\qquad
\qquad
\qquad
(ii) Besides organomagnesium compounds, organolithium compounds can be formed between lithium and relevant organic substances. Account for the similarity in the reactions involving lithium and magnesium.
\qquad
\qquad
\qquad
\qquad

The preparation and set up of Grignard synthesis of 2-methylhexan-2-ol is described below:
Table 3.1

Compound	Melting pt $/{ }^{\circ} \mathrm{C}$	Boiling pt $/{ }^{\circ} \mathrm{C}$	Molar mass $/ \mathrm{g} \mathrm{mol}^{-1}$	Density $/ \mathrm{g} \mathrm{cm}^{-3}$	Solubility in water
1-bromobutane	-11.2	101.4	136.9	1.27	Insoluble
Magnesium	651	1100	24.3	1.74	Insoluble
Diethyl ether	-116.3	34.6	74.0	0.713	Insoluble
Propanone	-94.7	56.1	58.0	0.785	Soluble
Sulfuric acid	10.3	337	98.1	1.84	Soluble
2-methylhexan-2-ol	-	143	116.0	0.82	Soluble

Preparation of Grignard reagent, RMgX

1. Add 15 g of 1 -bromobutane and 3 g of magnesium into the $250 \mathrm{~cm}^{3}$ two-neck round bottom flask.
2. Add $50 \mathrm{~cm}^{3}$ of anhydrous diethyl ether using the addition funnel. Gently stir the mixture under reflux for 30 minutes. The reaction is exothermic and will boil without external heat.
3. When the reaction is complete, cool the reaction mixture using an ice bath.
(b) (i) With reference to Table 3.1, suggest why a reflux set up is necessary in this organic synthesis.
\qquad
\qquad
\qquad
(ii) On the diagram on page 10, label and account for the direction of water flow.
\qquad
\qquad
(iii) Some heating may be required at the beginning as the initial rate of formation of RMgX is slow. Magnesium metal has to be scrapped or sliced into smaller pieces to increase the reaction rate.

Write an equation to suggest why magnesium may not be as reactive as expected.
\qquad
(iv) Excess diethyl ether is added to keep the Grignard reagent at a low concentration. This will prevent the Grignard reagent from reacting with unreacted 1-bromobutane. Draw the structure of the organic by-product.

Synthesis of alcohol

4. Using the addition funnel, add 6.5 g (dissolved in $15 \mathrm{~cm}^{3}$ of diethyl ether) of propanone to the Grignard reagent.
5. To a separate $250 \mathrm{~cm}^{3}$ beaker, add $100 \mathrm{~cm}^{3}$ of ice water and $4 \mathrm{~cm}^{3}$ of concentrated sulfuric acid and mix well.
6. When the reaction with propanone is completed, add the reaction mixture into a $250 \mathrm{~cm}^{3}$ beaker, sitting in an ice bath. Carefully transfer sulfuric acid solution from step 5 into reaction mixture. Stir gently to mix well.
(c) (i) Using Table 3.1, calculate the theoretical mass of 2-methylhexan-2-ol.
(ii) The actual yield for 2-methylhexan-2-ol is 4 g . Calculate the percentage yield for this reaction.
(iii) Suggest why the addition of sulfuric acid has to be carried out in an ice bath in step 6.
\qquad

Solvent extraction

7. Add the mixture from step 6 into a $500 \mathrm{~cm}^{3}$ separation funnel and add $10 \mathrm{~cm}^{3}$ of diethyl ether. Shake the separation funnel, releasing any gas formed. Allow the layers to separate and collect both layers separately.
8. Repeat step 7 with the aqueous layer and a fresh sample of $10 \mathrm{~cm}^{3}$ diethyl ether. Collect and combine each ether layer.
9. The combined ether layer is poured back to the separation funnel and mixed with several $20 \mathrm{~cm}^{3}$ portions of 5% sodium bicarbonate solution until no more carbon dioxide is generated.
(d) (i) After step 7, there are two layers in the separation funnel. Identify the ether and aqueous layer in the diagram below.

Upper layer: \qquad Bottom layer: \qquad

Explain your answer.

\qquad
\qquad
(ii) Give a reason for the addition of sodium bicarbonate in Step 9 .
\qquad
(iii) During solvent extraction, both propanone and 2-methylhexan-2-ol are found in the ether layer. Comment on the solubility of 2-methylhexan-2-ol in diethyl ether.
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Suggest different chemical tests to positively identify propanone and 2-methylhexan-2-ol in the ether layer.
\qquad
\qquad
\qquad
\qquad
(v) Suggest how crude 2-methylhexan-2-ol can be purified from the ether layer.
\qquad
\qquad
(e) Grignard reagent is used widely in organic synthesis due to its ability to increase carbon chain length. Four unique reactions involving the use of Grignard reagent are shown in the reaction map below.

(i) The following Grignard reaction to form propanal achieved a very low yield as the aldehyde formed can react with the Grignard reagent again.

Describe the mechanism between propanal and the Grignard reagent, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgX}$ to form the corresponding alcohol.
(ii) Starting with a suitable Grignard reagent, propose an alternative 3-step synthesis pathway to synthesise propanal.
(iii) Using different reaction types from the reaction map on page 15, suggest appropriate pairs of reagents in the synthesis of compounds \mathbf{H} and \mathbf{I}.

H

I

Reagent pair for H:	Reagent pair for I:

4 The use of electric vehicles has been increasing popular in the U.S. For example, hydrogen fuel cell vehicles produces zero carbon emission.

Despite the advantages of electric cars, petrol-engined cars are still widely used today. One problem with electric vehicles is their poor performance, inconvenience of finding a charging station and it takes a long time to recharge the batteries. Petrol-engined cars are better as their energy supply can be replaced over 6 million times faster than electric cars.

The infogram below shows how energy density varies widely with different fuels. Energy density is the energy produced per unit dimension of a fuel and this determines the practicality of a fuel.

However, using petrol (which contains a mixture of alkanes) has its own problems. One such problem is that it's a finite resource, and another is pollution. Hence, there is a need to improve the performance of petrol in car engines so that it burns as cleanly and efficiently as possible and to find alternative sources of fuel to replace petrol.

Some data for five fuels are given in Table 4.2.

Fuel	Formula	Standard enthalpy change of combustion, $\Delta \mathbf{H}_{\mathrm{c}}{ }^{\ominus}$ $/ \mathbf{k J ~ m o l}$ $\mathbf{- 1}$	Relative molecular mass	Energy density (energy transferred on burning $\mathbf{1 ~ k g ~ o f ~}$ fuel) $/ \mathbf{k J ~ k g ~ k g}^{-1}$
octane	$\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})$	-5470	114.0	
1,2 -xylene	$\mathrm{C}_{8} \mathrm{H}_{10}(\mathrm{l})$	-4540	106.0	
carbon	$\mathrm{C}(\mathrm{s})$	-393	12.0	
methanol	$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$	-726	32.0	
hydrogen	$\mathrm{H}_{2}(\mathrm{~g})$	-286	2.0	

(a) Give an example of a pollutant that can arise from the use of petrol and state a detrimental effect of the pollutant.
\qquad
\qquad
(b) Complete Table 4.2 by calculating the energy density for all fuels.
(c) (i) On the basis of energy density, which is the best fuel in Table 4.2.
\qquad
(ii) Suggest a practical difficulty in using hydrogen rather than methanol as a fuel.
\qquad
\qquad
(d) Using the given data above, comment on the feasibility of using electric cars in the near future.
\qquad
\qquad
\qquad
\qquad

Octane is commonly used as a fuel or a precursor in the production of other chemicals. The term "octane rating" is often used in the petroleum industry for rating the ability of octane's various branched isomers in reducing engine knock in vehicles.

One important factor in making petrol is getting the right octane rating to reduce the problem of 'knocking'. Knocking occurs when the combustion of fuel is not smooth. Knocking reduces engine power, leading to wear and tear in the engine and results in wastage of petrol. Hence, highly branched alkanes are desirable in petrols as they have higher octane ratings and reduce knocking.

Another factor for getting the right properties of petrol is the blending of petrol. In cold weather, it is difficult to vaporise petrol, which makes ignition difficult. On the other hand, in hot weather, petrol vaporises easily. Hence, petrol companies make different blends of petrol for different seasons and climates.

You are to use the information provided above to answer parts (e) and (f).
(e) Apart from using alkanes with high octane ratings, another way to deal with the problem of knocking is through the addition of an antiknock agent, tetra-ethyl lead (TEL). TEL is a highly volatile colourless liquid which aids in the formation of free radicals. However, this method is not commonly used nowadays.

Explain, with the aid of a suitable equation, how TEL helps to overcome the problem of knocking and give a reason why its usage is limited nowadays.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Compounds \mathbf{J}, \mathbf{K} and \mathbf{L} are isomers of the hydrocarbon octane, $\mathrm{C}_{8} \mathrm{H}_{18}$.

The table below shows the boiling points and data relating to the optical activity of the compounds.

Structure	Boiling Point $/{ }^{\circ} \mathrm{C}$	Number of chiral centres	Optical Activity
Isomer J	120	1	Yes
	118	2	No
Isomer K			
Isomer L	107	0	No

(i) Suggest why isomer \mathbf{K} does not exhibit enantiomerism.
\qquad
\qquad
\qquad
(ii) Propose the structures of compounds \mathbf{J} and \mathbf{L}.

Isomer J :	Isomer L:

(iii) In terms of structure and bonding, identify which of your proposed compounds (\mathbf{J} or \mathbf{L}) would be a more suitable fuel for use in summer and winter respectively.

Your answer should show clear and detailed comparison in your choice of fuel.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Controlled chlorination of isomer \mathbf{K} in the presence of UV light produces different mono-chlorinated products with a molecular formula of $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}$.

Draw the structural formula of any two possible isomers and state the ratio in which they are formed.
(g) The performance of hydrocarbons as fuels is largely improved by catalytic reforming. Reforming takes straight chain hydrocarbons in the C_{6} to C_{8} range from the gasoline or naphtha fractions and rearranges them into compounds containing benzene rings. They are used to make fuels with high octane number. Hydrogen is produced as a by-product of the reactions. A catalytic mixture of Pt and $\mathrm{Al}_{2} \mathrm{O}_{3}$ at a temperature of $500{ }^{\circ} \mathrm{C}$ and pressure of 20 atm is used.

An example of a product is 1,2-xylene.

(i) Write a balanced equation when octane undergoes the 'reforming' process to form 1,2-xylene.
\qquad
(ii) What type of reaction has the octane undergone?
\qquad
(iii) 1,4-xylene can be produced by a similar process. Suggest the structural formula of a C_{8} alkane which might produce 1,4-xylene.
(iv) By means of an energy cycle, show and calculate the standard enthalpy change of reaction that produces 1,2-xylene from octane.
(v) Using data from the Data Booklet, calculate the enthalpy change of the reaction which reforms octane into 1,2-xylene.
(vi) By considering your answers in (g)(iv) and (v), suggest if they are accurate descriptions of the reformation process.
\qquad
\qquad
\qquad
\qquad
(vii) Briefly explain whether you would expect the above reaction to have its $\Delta \mathrm{G}$ value to be more negative than its corresponding $\Delta \mathrm{H}_{\mathrm{r}}$.
\qquad
\qquad
\qquad
\qquad

SERANGOON JUNIOR COLLEGE

General Certificate of Education Advanced Level

Higher 2
\square
CANDIDATE NAME

CLASS

CHEMISTRY

JC2 Preliminary Examination

Paper 3 Free Response

Candidates answer on separate paper.

$$
\begin{aligned}
\text { Additional materials : } & \text { Answer Paper } \\
& \text { Data Booklet } \\
& 2 \text { Cover Pages }
\end{aligned}
$$

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams, graphs or rough work.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.

The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part question.

This document consists of 11 printed pages and 1 blank page.

Section A

Answer all the questions in this section.
1 (a) Oxides of nitrogen, NO_{x} are a mixture of gases that are composed of nitrogen and oxygen. They are formed during combustion processes in power plants.

Thermal NO_{x} refers to NO_{x} formed through high temperature oxidation of the diatomic nitrogen found in combustion air.

The formation rate is a function of temperature and the residence time of nitrogen at that temperature. At high flame temperatures, molecular nitrogen and oxygen dissociate into their atomic states and participate in a series of reactions.

The two principal reactions producing thermal nitric oxide, NO are as follows.
Step 1 O atoms react reversibly with N_{2} to form NO.
Step 2 N atoms liberated react with O_{2} to produce more NO.
Nitrogen dioxide typically arises via the oxidation of nitric oxide by oxygen in the atmosphere.

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

(i) Write the two principal reactions involved in the formation of thermal nitric oxide in combustion.
(ii) Hence, determine the rate determining step.
(iii) Suggest a method to reduce the formation of thermal NO_{x}.
(b) Catalytic converters are used to reduce the output of NO_{x} into the environment. One example is the removal of nitric oxide by reaction with hydrogen gas using platinum catalyst.

			ΔH $\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}$ positive		
$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow$	fast	$\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}$	slow	\quad	negative
:---					
$\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow$	$\mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ fast \quad negative				

(i) Write the rate equation for the above reaction, showing clearly how you derive it.
(ii) Draw the probable energy profile diagram for this overall exothermic reaction. [2]
(iii) Using an appropriate sketch of the Maxwell-Boltzmann distribution curve, explain how the addition of platinum affects the rate of chemical reaction.
(c) The NO_{2} reacts with O_{2} in the atmosphere to form colourless nitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}$ in equilibrium.

$$
4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

Dinitrogen pentoxide is a rare example of a compound that adopts two structures depending on the conditions. As a gas in the atmosphere, dinitrogen pentoxide exists as a molecule. However, it exists as an ionic salt in the solid state.
(i) Gaseous $\mathrm{N}_{2} \mathrm{O}_{5}$ is a symmetrical molecule with the two nitrogen atoms bonded to one central oxygen atom.

Draw a dot-and-cross diagram to show the bonding in $\mathrm{N}_{2} \mathrm{O}_{5}$ molecule. Use your diagram to:

- State the shape and the bond angle with respect to nitrogen
- Suggest with reasoning, the polarity of the molecule.
(ii) A ratio of 4 to 1 mole of gaseous NO_{2} and O_{2} with a total initial pressure of 2.25 atm was placed in a $1000 \mathrm{~cm}^{3}$ vessel. The total pressure at equilibrium was 1.5 atm . Calculate K_{p} for this equilibrium.
(iii) Calculate the average M_{r} of the gases at equilibrium.
(iv) The variation of M_{r} is as shown in the sketch.

Predict a value for \mathbf{Z} and account for the shape of the graph.
(d) Solid $\mathrm{N}_{2} \mathrm{O}_{5}$ dissolved in chloroform may be used to replace concentrated nitric acid and sulfuric acid in the nitration of benzene.
(i) Suggest why solid $\mathrm{N}_{2} \mathrm{O}_{5}$ can be used in for nitration of benzene.
(ii) 0.60 mol of solid $\mathrm{N}_{2} \mathrm{O}_{5}$ was dissolved in chloroform. Some $\mathrm{N}_{2} \mathrm{O}_{5}$ decompose back into oxygen and nitrogen dioxide with a rate constant of $1.0 \times 10^{-5} \mathrm{~s}^{-1}$ at 45 ${ }^{\circ} \mathrm{C}$.

The gases produced are collected in a $10 \mathrm{dm}^{3}$ container over a period of 40 hours. Calculate the resultant pressure.
[Assume that the products do not dissolve in chloroform.]

2 Chlorine is a yellow-green gas that was first synthesised around 1630. Chlorine forms a variety of oxides such as chlorate(VII), $\mathrm{ClO}_{4}{ }^{-}$and chlorate(V), $\mathrm{ClO}_{3}{ }^{-}$.
(a) Chlorine gas can be produced from the electrolysis of brine (concentrated sodium chloride solution) using a diaphragm cell with inert electrodes.

A diaphragm is used to keep the products of electrolysis from mixing and hence, prevent the formation of undesirable by-products.

(i) Write the ion-electron half-equations, with state symbols, for the reactions taking place at the electrodes.
(ii) Calculate the mass of chlorine gas produced if a current of 5 A was passed for 7 hours through the electrolytic cell.
(b) In some industrial electrolytic cells, the products of electrolysis of brine are allowed to react further when the diaphragm is removed. Two chlorine-containing products are formed, depending on the operating conditions used. At low temperatures, one of the products is a chloro-oxoanion with an oxidation state of +1 .
(i) State the type of reaction taking place.
(ii) Give an overall balanced equation for the reaction described above.
(c) With reference from the Data Booklet, explain why dilute aqueous sodium chloride cannot be used as the electrolyte for the manufacture of chlorine in this electrolysis.
(d) The standard electrode potentials, E^{\ominus}, and standard Gibbs free energy changes, ΔG^{\ominus}, of different chlorine-containing species are tabulated below.

	Half-equation	$\boldsymbol{E}^{\circ} / \mathbf{V}$	$\Delta \mathbf{G}^{\circ} /$ kJ mol$^{-1}$
$\mathbf{1}$	$\mathrm{ClO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	+1.19	-230
$\mathbf{2}$	$2 \mathrm{ClO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	+1.47	$?$
$\mathbf{3}$	$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}$	+1.36	-262

These electrode potentials can be summarised using the Latimer diagram shown below. In a Latimer diagram, the most highly oxidised form of the element is on the left, with successively lower oxidation states to the right. The electrode potentials are shown on the arrows.

(i) Calculate ΔG^{\ominus} for half-equation 2.
(ii) The standard electrode potential of converting $\mathrm{ClO}_{3}{ }^{-}$to Cl^{-}is found to be +1.45 V , instead of +2.83 V . The number of electrons transferred in each step must be taken into account.

I: Write a half-equation for the conversion of ClO_{3}^{-}to Cl^{-}
II: Using your knowledge of Hess' Law for ΔG^{\ominus} and your answer to (d)(i), show with the aid of an energy cycle that the E^{\ominus} for the conversion of ClO_{3}^{-}to Cl^{-}is +1.45 V .
(iii) With the help of the Latimer diagram provided, calculate $E^{\ominus}{ }_{\text {cell }}$ of the reaction below. Hence, determine its ΔG^{\ominus} cell.

$$
\begin{equation*}
4 \mathrm{ClO}_{3}^{-}(\mathrm{aq}) \longrightarrow 3 \mathrm{ClO}_{4}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \tag{2}
\end{equation*}
$$

(iv) With reference to the Data Booklet, predict what will happen when an excess of acidified hydrogen peroxide solution is added to a solution of $\mathrm{Cl}(\mathrm{aq})$.
[Total: 17]

3 Trisoxazoline are organic molecules that can function as ligands. Despite their huge
molecular structure, they are able to form stable complexes with metals. Metal complexes with trisoxazoline are commonly used as catalyst in organic synthesis.
(a) The reaction scheme below illustrates the synthesis of trisoxazoline.

P

(i) Suggest the reagents and conditions required for step I and step II.
(ii) Explain the difference in basicity for N^{1} and N^{2} present in \mathbf{R}.
(iii) Propose a 2-step reaction scheme to synthesise compound \mathbf{P} from ethene.

Trisoxazolines are usually applied to transition metals, such as copper, to form complexes. These complexes are useful in advanced organic synthesis to make specific isomers.

Table 1 shows some properties of the copper complexes, where $\mathrm{K}_{\text {stab }}$ refers to the stability constant of the complex, e.g.

$$
\mathrm{Cu}^{2+}+\mathrm{L} \rightleftharpoons[\mathrm{CuL}]^{2+} \quad \mathrm{K}_{\text {stab }}=\frac{[\mathrm{CuL}]^{2+}}{\left[\mathrm{Cu}{ }^{2+}\right][\mathrm{L}]}
$$

Table 1

Complex	$\mathbf{l o g}\left(\mathbf{K}_{\text {stab }}\right)$	Colour	Shape of complex
copper(II)-trisoxazoline	12.9	green	distorted tetrahedral
copper(II)-EDTA	18.8	blue	octahedral
copper(II)-en	18.7	violet	octahedral

(b) Describe the feature of the trisoxazoline molecule that enable it to act as polydentate ligand. Hence, state the type of bond formed between the ligand and the central $\mathrm{Cu}(\mathrm{II})$ ion and give the coordination number of the complex.
(c) (i) Using copper(II)-EDTA as an example, explain why the five d-orbitals are split into two different energy levels.
(ii) Draw the shapes of the d-orbitals at the higher energy level.
(iii) Explain why the copper(II) complexes are coloured.
(iv) The visible absorption spectrum of the three complexes is shown below where each peak represents one complex.
[A visible absorption spectrum is a graph depicting the absorption of radiation by a material over a range of visible light wavelengths.]

Identify the copper(II) complex responsible for each absorption peak. Hence, arrange the three complexes in order of increasing magnitude of their energy gap.
(d) Using Table 1, comment on the spontaneity of forming the respective copper(II) complexes.
(e) Other than copper(II) ions, it was found that copper(I) ions are also able to form complexes with trisoxazoline.
(i) Predict and explain the colour of solid copper(I)-trisoxazoline complex.
(ii) Analysis was done on copper(I)-trisoxazoline complex. The relative molecular mass of the complex was apparently 743.0. Further analysis showed that each copper(I) ion is bonded to three nitrogen atoms.

Propose the structure of copper(I)-trisoxazoline complex.

[Total: 20]

BLANK PAGE

Section B is on the next page

Section B

Answer one question in this section.
4 (a) At r.t.p, $1.2 \mathrm{dm}^{3}$ of chlorine gas is reacted with 6.7 g of compound $\mathbf{A}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$, to give compound B. On addition of PCl_{5}, A gives white fumes. Treatment of \mathbf{A} with NaBr and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ under reflux gives a mixture of compounds C and D. C and D have the same molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2}$ and each contains only one chiral centre.
(i) When NaBr is mixed with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, the following observations are made.

- White fumes produced
- Reddish brown liquid formed
- Pungent gas decolourised purple KMnO_{4}

It is suggested that a displacement reaction occurred first, producing white fumes. Some of the white fumes further react with $\mathrm{H}_{2} \mathrm{SO}_{4}$ via a redox reaction. Using the above information, write the two corresponding chemical equations for this reaction.
(ii) Using your answer in (a)(i), deduce the identities of \mathbf{A} to \mathbf{D}.
(iii) Account for the relative quantity of compound \mathbf{C} and \mathbf{D} formed.
(b) \mathbf{E} is another constitutional isomer of \mathbf{C} and \mathbf{D}. A series of chemical experiments were conducted on \mathbf{E}.

Experiment 1:

The reaction kinetics of \mathbf{E} with aqueous sodium hydroxide was determined by monitoring the change in concentration of \mathbf{E} with time.

Experiment 2:

0.2 mol of \mathbf{D} and \mathbf{E} were treated separately with boiling aqueous sodium hydroxide. The products from each compound were then acidified with nitric acid and then treated with silver nitrate solution.

The results obtained are shown below:

	Observation upon adding $\mathrm{AgNO}_{\mathbf{3}}$	Mass of ppt I \mathbf{g}
D	formation of cream-coloured precipitate	75.12
E	formation of cream-coloured precipitate	37.56

(i) Using experiment 1, deduce the rate equation.
(ii) Using Experiment 2 and (b)(i), propose a possible structure of \mathbf{E} and draw the mechanism for the reaction of \mathbf{E} with $\mathrm{NaOH}(\mathrm{aq})$.
(c) Depending on the mechanism, the solvent affects the stability of nucleophile and/or reaction intermediates in the nucleophilic substitution of halogenoalkanes. The table below shows the rate of reaction when different halogenoalkanes and solvents are used.

Solvent	Type	Dielectric constant, ε	Relative rates for reaction with OH^{-}	
			$\begin{gathered} 1^{\circ} \mathrm{RX} \text { in } \\ \mathrm{S}_{\mathrm{N}} 2 \end{gathered}$	$\begin{gathered} 3^{\circ} \mathrm{RX} \text { in } \\ S_{N} 1 \end{gathered}$
$\mathrm{CH}_{3} \mathrm{OH}$	Protic	33	1	4
$\mathrm{H}_{2} \mathrm{O}$	Protic	78	7	150000
$\mathrm{CH}_{3} \mathrm{COOH}$	Protic	6	1	1
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	Aprotic	21	5000	-

Dielectric constant, ε, is a measure of the solvent polarity and ability to insulate charge.
(i) Suggest, using only structure and bonding, the difference between protic and aprotic solvents.
(ii) Explain the effect of solvent on the relative rate of $\mathrm{S}_{\mathrm{N}} 2$ reactions.
(iii) Explain, with an aid of a diagram, how water increases the rate of $S_{N} 1$ reaction.
(iv) Name a solvent, other than those given in the table, that will result in a slower rate for $\mathrm{S}_{\mathrm{N}} 1$ than ethanoic acid.
[Total: 20]

5 (a) Using only the elements C, H and O, draw the structural formulae of three organic compounds, each containing a single carbon atom with an oxidation state of zero, +2 and +4 respectively.
(b) Hot, concentrated potassium manganate (VII) oxidises several classes of organic compounds to ketones, carboxylic acids or carbon dioxide. By this means, the structures of compounds can be determined. Some compounds are easily oxidised, while others require longer heating.

The following describes some reactions of compounds \mathbf{F} and \mathbf{K}, and of their oxidation products.

F, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ reacts with excess potassium manganate (VII) to produce single organic products, $\mathbf{G}, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$ while $\mathbf{K}, \mathrm{C}_{12} \mathrm{H}_{12}$, reacts with the same reagent to produce \mathbf{H}, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$. Carbon dioxide is produced in both reactions in a mole ratio of $2: 1$ respectively. During oxidation of \mathbf{F}, four moles of carbon dioxide were liberated.

Although \mathbf{F} reacts with potassium manganate (VII), it gives no reaction with potassium dichromate (VI). When 0.10 mol of \mathbf{F} is reacted with an excess of sodium metal, $1.2 \mathrm{dm}^{3}$ of hydrogen is formed, measured at room temperature and pressure.

G reacts with excess concentrated sulfuric acid to give $\mathbf{I}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. Upon further oxidation, \mathbf{I} is found to give $\mathrm{J}, \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{5}$, and an inorganic by-product.

H gives a positive iodoform test and dissolves in aqueous sodium hydroxide. Upon further oxidation of $\mathbf{H}, \mathbf{L}, \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}$, and a similar inorganic by-product formed from I is also produced.
(i) Deduce the structure of compounds \mathbf{F} to \mathbf{L}, explaining the chemistry of the reactions described.
(ii) State the type(s) of stereoisomerism shown by compound \mathbf{F} and give one further piece of relevant information about it.
(iii) Hence, predict the total number of isomers shown by \mathbf{F}.
(iv) When compound \mathbf{K} undergoes prolonged heating with KMnO_{4} to give \mathbf{L}, \mathbf{K} exhibits two types of constitutional isomerism.

Name the specific types of isomerism shown by compound \mathbf{K} and hence, draw the displayed formulae of the isomers.
[Total : 20]

SERANGOON JUNIOR COLLEGE

General Certificate of Education Advanced Level
Higher 2

CANDIDATE
NAME \square
CLASS

CHEMISTRY
 JC2 Preliminary Examination Paper 4 Practical

 9729/04 25 Aug 2017Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Give details of the practical shift and laboratory in the boxes provided.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams, graphs or rough work.
Do not use staples, paper clips, highlighters, glue or correction fluid
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Qualitative Analysis Notes are printed on pages 22 and 23.

At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part questions.

For Examiner's Use	
$\mathbf{1}$	$/ 14$
$\mathbf{2}$	$/ 19$
$\mathbf{3}$	$/ 12$
$\mathbf{4}$	$/ 10$
TOTAL	$/ 55$

This document consists of $\underline{22}$ printed pages and $\underline{2}$ blank pages.

Answer all the questions in the spaces provided.

1 You are to determine the concentration of aqueous copper(II) sulfate by titration. The concentration of Cu^{2+} ions in a solution can be found by reaction with an excess of aqueous iodide ions to produce iodine. The amount of iodine formed can be found by titration with thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

FB 1 is aqueous copper(II) sulfate, CuSO_{4}.
FB 2 is 0.100 mol dm ${ }^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FB 3 is aqueous potassium iodide, KI .
starch indicator
(a) Method
(i) 1. Fill the burette with FB 2.
2. Using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FB 1 into a conical flask.
3. Use an appropriate measuring cylinder, transfer $10 \mathrm{~cm}^{3}$ of FB 3 to the same conical flask.
4. Titrate this mixture with FB 2 until the colour of the mixture changes from brown to yellow-brown. An off-white precipitate will also be present in the flask throughout the titration.
5. Add 5 drops of starch indicator.
6. Continue the titration until the blue-black colour of the starch-iodine complex just disappears leaving the off-white precipitate.
7. Record your titration results in the space provided below. Make certain that your recorded results show the precision of your working.
8. Repeat points $\mathbf{1}$ to $\mathbf{7}$ as necessary until consistent results are obtained.

Results

(ii) From your titrations, obtain a suitable volume of FB 2 to be used in your calculations. Show clearly how you obtained this volume.
(b) (i) The equations for the formation of iodine and its reaction with thiosulfate ions are given below.

$$
\begin{gathered}
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2} \\
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}
\end{gathered}
$$

Calculate the amount of thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, present in the volume of FB 2 in (a)(ii).

For Examiner's use
amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=$ \qquad
(ii) Using the equations above, calculate the amount of Cu^{2+} ions present in $25.0 \mathrm{~cm}^{3}$ of FB 1.
amount of $\mathrm{Cu}^{2+}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots$............................
(iii) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of copper(II) sulfate in FB 1.
(c) Two students repeated the experiment but each obtained different values for the concentration of CuSO_{4}.

The students each suggested possible improvements.
Student 1 suggested that a larger volume of potassium iodide, FB 3, should be added. Student 2 suggested that the contents of the conical flask should be filtered before titration.

Comment on the effectiveness of each of these possible improvements.
Explain your answers.
Student 1
\qquad
\qquad

Student 2
\qquad
\qquad
(d) The maximum error in each burette reading is $\pm 0.05 \mathrm{~cm}^{3}$.

The maximum error in each titration is therefore $\pm 0.10 \mathrm{~cm}^{3}$.
The $25.0 \mathrm{~cm}^{3}$ pipette, used in this titration, is labelled with an error of $\pm 0.06 \mathrm{~cm}^{3}$.

Explain why the maximum error when $25.0 \mathrm{~cm}^{3}$ of solution is run from a pipette is only $\pm 0.06 \mathrm{~cm}^{3}$ and not $\pm 0.12 \mathrm{~cm}^{3}$.
\qquad
\qquad
(e) Considering the maximum errors from the pipette and burette used, calculate the total percentage error in one titration.
[2]
[Total: 14]

BLANK PAGE

2 You are to determine the enthalpy change of reaction, $\Delta \mathrm{H}$, for the reaction shown below.

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Since copper is an unreactive metal it does not react directly with dilute acids. You will therefore need to find the enthalpy change of reaction for two reactions that do occur. The equations for these two reactions are below.

$\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$	Reaction 1
$\mathrm{Mg}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$	Reaction 2

You will carry out experiments to find the enthalpy changes for each of Reaction 1 and Reaction 2 and use these values to calculate the enthalpy change for the reaction of copper with sulfuric acid.

TURN OVER FOR EXPERIMENTAL METHOD

Determining the enthalpy change for Reaction 1

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Reaction 1

(a) Method

FB 4 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FB 5 is magnesium powder, Mg.
Read through the method before you start any practical work and prepare suitable tables for your results.

1. Weigh the stoppered weighing bottle containing FB 5. Record the mass.
2. Support the styrofoam cup in the $250 \mathrm{~cm}^{3}$ beaker.
3. Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FB 4 into the styrofoam cup.
4. Measure the temperature of FB 4 in the styrofoam cup and start the stop watch. Record this temperature as being the temperature at time $=0$.
5. Measure, and record, the temperature of this FB 4 every half minute for 2 minutes.
6. At time $=2.5$ minutes, add FB 5 to the acid and stir carefully to reduce acid spray.
*Caution: Inhalation of the fumes may cause choking.
7. Measure the temperature of the mixture in the cup at time $=3$ minutes and then every half minute up to time $=7$ minutes.
8. Continue stirring occasionally throughout this time.
9. Weigh the weighing bottle that had contained FB 5. Record the mass.
10. Calculate and record the mass of FB 5 added to the sulfuric acid.
11. Discard the used styrofoam cup.

Results

For
Examiner's
use
(b) (i) On the grid below plot a graph of temperature (y-axis) against time (x-axis).

[2]

For
 Examiner's

use
(ii) Complete the graph by inserting two, straight lines of best fit:

- one to show the temperature up to time $=2.5$ minutes,
- one to show the temperature after time $=2.5$ minutes.
(iii) From your graph, use the two straight lines of best fit to calculate the change in temperature at time $=2.5$ minutes.
temperature change $=$

(c) Calculations

(i) In the reaction in (a), the sulfuric acid was in excess. Without carrying out any additional tests, what observation could you have made during your experiment to confirm this?
\qquad
\qquad
(ii) Calculate the energy change that occurred during the reaction in (a).
[Assume that 4.2 J is needed to raise the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]

For Examiner's

 useenergy change $=$.[1]
(iii) Use your answer to (ii) to calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction between sulfuric acid and magnesium.
[$A_{r}: \mathrm{Mg}, 24.3$]

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \text { Reaction } 1
$$

enthalpy change for Reaction 1 = .[1]

Determining the enthalpy change for Reaction 2

(d) Method

FB 6 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate, CuSO_{4}.
FB 7 is magnesium powder, Mg.
Read through the method before you start any practical work and prepare suitable tables for your results.

1. Weigh the weighing bottle containing FB 7. Record the mass.
2. Support the styrofoam cup in the $250 \mathrm{~cm}^{3}$ beaker.
3. Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FB 6 into the styrofoam cup.
4. Measure the temperature of FB 6 in the styrofoam cup and record the temperature.
5. Add the FB 7 to the FB 6 in the cup and stir the mixture constantly.
6. Measure and record the maximum temperature reached during the reaction.
7. Calculate and record the maximum temperature change that occurred during the reaction.
8. Weigh the weighing bottle that had contained FB 7. Record the mass.
9. Calculate and record the mass of FB 7 added to the copper(II) sulfate.
10. Empty the contents of the styrofoam cup into the bottle labelled waste.
11. Discard the used styrofoam cup.

Results

(e) Calculations
(i) Show, using suitable calculations, that the copper(II) sulfate was in excess in the reaction.
[Ar : Mg, 24.3]

Enthalpy change for Reaction 3

Reaction 3 is shown below.

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(f) Use your values for the enthalpy changes for Reactions 1 and 2 to calculate the enthalpy change for Reaction 3.

$$
\begin{array}{ll}
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \text { Reaction } 1 \\
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) & \text { Reaction } 2
\end{array}
$$

Show clearly how you obtained your answer.
(If you were unable to calculate the enthalpy changes for Reactions 1 and 2, you should assume that the value for Reaction 1 is $-444 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that the value for Reaction 2 is $-504 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Note: these are not the correct values.)

enthalpy change for Reaction 3 =

(g) (i) The method you used to determine the enthalpy change for Reaction 1 was more accurate than the method you used to determine the enthalpy change for Reaction 2. Suggest why the method used for Reaction 2 was less accurate. Explain your answer.
\qquad
\qquad
(ii) A student suggested that the accuracy of the method used for Reaction 2 could be improved by using a larger volume of copper(II) sulfate. Is this a correct suggestion? Give a reason for your answer.
\qquad
\qquad

3 Qualitative Analysis

At each stage of any test, you are to record details of the following.

- Colour changes seen
- The formation of any precipitate
- The solubility of such precipitates in an excess of the reagent added

Where gases are released, they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.

No additional tests for ions present should be attempted

FB 8 is a solution containing 2 cations and 1 anion.
(a)

Test	Procedure	Observation
$\mathbf{1}$	To 1 cm depth of FB 8 in a test tube, add aqueous ammonia until it is in excess.	
$\mathbf{2}$	To 1 cm depth of FB 8 in a boiling tube, add aqueous sodium hydroxide until it is in excess. Then heat the boiling tube gently with care.	
$\mathbf{3}$	Keep the mixture for Test 3.	To the mixture from Test 2, add 1 cm depth of aqueous hydrogen peroxide. Shake the boiling tube gently.
$\mathbf{4}$	To 1 cm depth of FB 8 in a test tube, add aqueous barium chloride, followed by dilute hydrochloric acid.	

(b) Using your observations above, identify the ions in FB 8. Give evidence to support your For conclusion. conclusion.

Examiner's use
(c) What type of reaction has taken place in Test 3? Explain your answer.
(d) FB 9 is an aqueous solution, containing one cation and one anion.

Carry out the following tests in test-tubes.
Complete the table by recording your observations.

For Examiner's use

Test	Procedure	Observations
$\mathbf{5}$	To 1 cm depth of FB 9, add aqueous sodium hydroxide until it is in excess.	
$\mathbf{6}$	To 1 cm depth of FB 9, add a piece of magnesium ribbon.	
$\mathbf{7}$	To 1 cm depth of FB 9, add 2 drops of aqueous silver nitrate, followed by aqueous ammonia until in excess.	

(e) Using your observations above, identify the ions in FB 9. Give evidence to support your conclusion.
\qquad
\qquad
\qquad

4 Many transition metal complex ions are coloured. It is possible to use this property to determine the concentration of a solution of a coloured ion. A few cm^{3} of the solution is placed inside a spectrometer.

A spectrometer measures the amount of light that is absorbed when a specific wavelength of visible light is shone through a coloured solution. It does this by comparing the amount of light passing through the sample with the amount of light passing through the pure solvent. The amount of light absorbed is expressed as an absorbance value. The more concentrated the solution, the higher the absorbance value.

Beer-Lambert's Law states that the absorbance values, A, is directly proportional to the concentration of absorbing species, c, as shown below. The general Beer-Lambert's Law is usually written as,

$$
A=\varepsilon c l
$$

Where ε is the molar extinction coefficient and l is the path length, which is usually 1.0 cm .
This equation can be used to calculate the absorbance value when the concentration of copper(II) ions is known.

You may assume that you are provided with the following in the subsequent parts of the question.

- FB 1 from Question 1
- solid hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}_{4}=249.6\right)$;
- access to a spectrometer and instructions for its use;
- graph paper;
- the apparatus and chemicals normally found in a school or college laboratory.
(a) The spectrometer is set to use the wavelength of light that is absorbed most strongly by the copper(II) ions.

Suggest a colour in the visible spectrum from which a suitable wavelength of light might be chosen. Explain your answer.
\qquad
(b) Spectrometry can be used to determine the concentration of a solution of aqueous copper(II) sulfate, FB 1. A series of known, but different, concentrations of copper(II) sulfate is prepared. A spectrometer is used to measure the absorbance of each solution.

According to Beer-Lambert's Law, a graph of absorbance against concentration is then plotted. This graph is known as calibration line.

The experiment is then repeated using a solution of unknown concentration. By comparing the absorbance of this solution with the calibration line, the concentration of copper(II) ions in the unknown solution can be determined.

Propose a simple plan on how you would prepare

- a $100.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ standard aqueous copper(II) sulfate;
- a suitable range of diluted solutions of accurate concentrations

You are to show detailed calculations and suitable tables (where appropriate) in your answer.
(i) a $100.0 _\mathrm{cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ standard aqueous copper(II) sulfate;
\qquad

For Examiner's use
(ii) a suitable range of diluted solutions of accurate concentrations, keeping the total volume of each solution constant at $20.00 _\mathrm{cm}^{3}$.
(c) Using the solutions prepared in (b), the absorbance value of each copper(II) sulfate solution can be determined and hence a calibration line can be obtained via the spectrometer.

For Examiner's use

Describe a plan to determine the concentration of FB 1.

Your plan should include details of:

- calculation of the absorbance value for each copper(II) sulfate solution prepared in (b), given ε of CuSO_{4} is $2.81 \mathrm{~mol}^{-1}-\mathrm{dm}^{3}-\mathrm{cm}^{-1}$.
- a sketch of the calibration line you would expect to obtain;
- a brief outline of how the results would be obtained.
- how the calibration line would be used to determine the concentration of copper(II) ions in FB 1.
\qquad
(d) Given that the absorbance for FB 1 is 0.286 , calculate the concentration of FB 1.

For
 Examiner's

use

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $A \beta^{\beta+}(a q)$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}), \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { iron(III), } \\ & \mathrm{Fe}^{3+}(\mathrm{aq}) \end{aligned}$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

(b) Reactions of anions

ion	reaction				
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids				
chloride, $\mathrm{Cl} l^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})\left(\right.$ soluble in $\left.\mathrm{NH}_{3}(\mathrm{aq})\right)$				
bromide, $\mathrm{Br}{ }^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\left.\mathrm{NH}_{3}(\mathrm{aq})\right)$	$	$	iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\left.\mathrm{NH}_{3}(\mathrm{aq})\right)$
:---	:---				

(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

BLANK PAGE

Preliminary Examination Paper 1 Solution

1 An acidified solution of the salt KClO_{x} will oxidise $\mathrm{Fe}^{2+}(\mathrm{aq})$ to $\mathrm{Fe}^{3+}(\mathrm{aq})$ quantitatively, the chlorine being reduced to $\mathrm{Cl}^{-}(\mathrm{aq})$.

When 0.302 g of the salt KClO_{x} was reacted with $0.540 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}(\mathrm{aq})$ in the presence of $\mathrm{H}^{+}(\mathrm{aq}), 21.0 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{2+}(\mathrm{aq})$ was needed for complete reaction.

Which of the following is the value of x ?
A 1
B 2
C 3
D 4
Answer: B
$\mathrm{ClO}_{x}^{-}+2 x \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
$\therefore 2 x \mathrm{Fe}^{2+} \equiv \mathrm{ClO}_{x}^{-}$
OR mole ratio of $\mathrm{ClO}_{x}^{-}: \mathrm{Fe}^{2+}$ is

$$
1: 2 x
$$

Amount of Fe^{2+} used $=\frac{21.0}{1000} \times 0.540=0.01134 \mathrm{~mol}$

Amount of $\mathrm{ClO}_{x}^{-}=\frac{0.01134}{2 x} \mathrm{~mol}$

Amount of $\mathrm{KClO}_{x}=\frac{0.302}{39.1+35.5+\boldsymbol{x}(16)}$

Amount of $\mathrm{ClO}_{x}^{-}=\frac{0.302}{39.1+35.5+x(16)}=\frac{0.01134}{2 x}$

$$
\frac{2(0.302) x}{0.01134}=74.6+x(16)
$$

$$
53.263 x-16 x=74.6
$$

$$
x=1.99 \approx 2
$$

2 A student made up a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ which she found in the laboratory cupboard and left the solution in an open beaker. A week later, she returned to the laboratory, used the solution for titration with $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and was surprised to discover her titres were lower than expected.

Which of the following explains why the values were so low?
A Some of the barium hydroxide has reacted with carbon dioxide in the air to form solid barium carbonate.
B Some water had evaporated from the barium hydroxide solution.
C The concentration of HCl was less than the stated $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$.
D The crystals had less water of crystallisation than stated.
Answer: A
A: will lower the concentration of $\mathrm{Ba}(\mathrm{OH})_{2}$ and thus a lower than expected titre value.
B : will increase the concentration of $\mathrm{Ba}(\mathrm{OH})_{2}$ and cause the titre value to be higher than expected.

C: will cause the titre value to be higher than expected.
D: will increase the concentration of $\mathrm{Ba}(\mathrm{OH})_{2}$ and thus a higher than expected titre value.

3 The type of bonding between two elements can be rationalised and even predicted using a van Arkel triangle. The triangle is based on electronegativity values. Difference in electronegativity is plotted along the y-axis and average electronegativity is plotted along the x -axis.

What is the type of bonding present at each of these bonding extremes, labelled \mathbf{X}, \mathbf{Y} and \mathbf{Z} on the triangle?

A me
B covalent
C covalent
D ionic
Answer: A

Y
covalent
Z
ionic ionic metallic metallic

Difference in electronegativity is zero for \mathbf{X} \& \mathbf{Y}
\Rightarrow metallic bonding or covalent bonding.
Since metals have low electronegativity
$\Rightarrow \mathbf{X}$ is metallic bondina.
4 Equimolar amour
equation below.

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which statement is correct?
A The shape changes from linear in ClO_{2} to bent in $\mathrm{ClO}_{2}{ }^{-}$.
B The shape changes from bent in ClO_{2} to trigonal planar in ClO_{3}^{-}.
C The bond angle changes from about 120° in ClO_{2} to 107° in $\mathrm{ClO}_{3}{ }^{-}$.
D The bond angle changes from about 105° in ClO_{2} to 107° in $\mathrm{ClO}_{3}{ }^{-}$.
Answer: D

 Bond angle $\approx \underline{105^{\circ}}$ Shape: bent	 Bond angle $\approx 107^{\circ}$ Shape: trigonal pyramidal	 Bond angle $\approx 105^{\circ}$ Shape: bent

5 Use of the Data Booklet is relevant to this question.
The first ionisation energies of successive elements in the Periodic Table are represented in the graph.

Which of the following statements about elements \mathbf{C} to \mathbf{L} are correct?
1 E and J^{-}have half-filled p -orbitals.
2 Chlorides of \mathbf{D} and \mathbf{J} undergo hydrolysis.
3 F and K reacts to form acidic compounds.
$4 \quad \mathbf{D}$ and \mathbf{F} forms compounds with formula $\mathbf{D F}$ and $\mathbf{D F}_{2}$.
$5 \mathbf{G}$ and \mathbf{L} forms compounds with variable oxidation states from -1 to +7 .
A 1 and 4 only
B 2 and 5 only
C 1, 3 and 4 only
D 2,3 and 5 only
Answer: C (Statements 1, 3, 4 only)

Elements \mathbf{C} and \mathbf{H} are from group 1 as they have the lowest first I.E.
They are lithium and sodium respectively.
1 is correct.
E is from Group 15 and J is from Group 14.
Element \mathbf{E} is nitrogen and has half-filled 2 p orbitals.
Element \mathbf{J} is silicon, and Si^{-}has half-filled 3 p orbitals.
2 is wrong.
D and J are from Group 14.
D is a Period 2 element and is carbon. It cannot undergo hydrolysis as they do not have low lying d-orbitals to accommodate the lone pair of electrons from water, hence no hydrolysis can occur.

3 is correct.
Element \mathbf{F} is oxygen and element \mathbf{K} is sulfur. SO_{2} and SO_{3} are acidic in nature.
4 is correct.
Element \mathbf{D} is carbon and \mathbf{F} is oxygen. Hence $\mathbf{D F}$ and $\mathbf{D F}_{2}$ is possible (ie, $\mathbf{C O}$ and CO_{2}).

5 is wrong.
Elements \mathbf{G} is fluorine and \mathbf{L} is chlorine. Chlorine can have variable oxidation states from -1 to +7 , but fluorine only exists in states of -1 and 0 .

6 Two glass vessels \mathbf{M} and \mathbf{N} are connected by a closed valve.

M contains helium at $25^{\circ} \mathrm{C}$ at a pressure of $1 \times 10^{5} \mathrm{~Pa}$. \mathbf{N} has been evacuated, and has three times the volume of \mathbf{M}. In an experiment, the valve is opened and the whole set-up placed in boiling water.

What is the final pressure in the system?
A $3.13 \times 10^{4} \mathrm{~Pa}$
B $3.76 \times 10^{4} \mathrm{~Pa}$
C $1.00 \times 10^{5} \mathrm{~Pa}$
D $1.33 \times 10^{5} \mathrm{~Pa}$
Answer: A
Let the volume of M be v , hence volume of N is 3 v . Total volume $=4 \mathrm{v}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
$\frac{10^{5} \times v}{298}=\frac{\mathrm{P}_{2} \times 4 \mathrm{v}}{373}$
$P_{2}=3.13 \times 10^{4} \mathrm{~Pa}$

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{FeO}(\mathrm{~s}) \quad \Delta \mathrm{H}=+\mathrm{ve}
$$

Given that $K_{p}=K_{c}(\mathrm{RT}) \Delta^{n}$, where $\Delta \mathrm{n}$ is the sum of gaseous products - sum of gaseous reactants.
Which of the following statements are correct?
$1 K_{c}=K_{p}$ for this system.
2 The equilibrium constant, K_{c}, for this reaction has no units.
3 Adding FeO causes the position of equilibrium to shift to the left.
4 Increasing the temperature causes the position of equilibrium to shift to the right.
A 1 and 2
B 1 and 3
C 2, 3 and 4
D 1, 2 and 4
Answer: D
1 is correct: $\Delta \mathrm{n}=0, K_{c}=K_{p}$ for this system
2 is correct: $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]}$ no units
3 is incorrect: FeO is a solid. Position of equilibrium is not affected by it.
4 is correct: Increasing temperature would favour the forward endothermic reaction.
Position of equilibrium would shift to the right.

8 In an experiment to measure the enthalpy change of neutralisation, $20 \mathrm{~cm}^{3}$ of aqueous sulfuric acid containing 0.02 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is placed in a plastic cup of negligible heat capacity.

A $20 \mathrm{~cm}^{3}$ sample of aqueous sodium hydroxide containing 0.04 mol of NaOH , at the same initial temperature, is added and the temperature rises by 15 K .

If the heat capacity per unit volume of the final solution is $4.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~cm}^{-3}$, what is the enthalpy change of neutralisation?

A

$$
-\left(\frac{20 \times 4.2 \times 15}{0.04 \times 1000}\right) \mathrm{kJ} \mathrm{~mol}^{-1}
$$

B

$$
-\left(\frac{40 \times 4.2 \times 15}{0.04 \times 1000}\right) \mathrm{kJ} \mathrm{~mol}^{-1}
$$

C

$$
-\left(\frac{20 \times 4.2 \times 15}{0.02 \times 1000}\right) \mathrm{kJ} \mathrm{~mol}^{-1}
$$

D $\quad-\left(\frac{40 \times 4.2 \times 15}{0.02 \times 1000}\right) \mathrm{kJ} \mathrm{mol}^{-1}$
Answer: B

$Q=-\frac{\mathrm{mc} \Delta \mathrm{T}}{\mathrm{nH} \mathrm{H}_{2} \mathrm{O} 1000}=-\frac{40 \times 4.2 \times 15}{0.04 \times 1000}=-63 \mathrm{kJmol}^{-1}$

9 The conversion of graphite into diamond is a non-spontaneous reaction at 298 K . The entropy change of this reaction is negative at 298 K .

$$
\mathrm{C}(\text { graphite }) \rightarrow \mathrm{C}(\text { diamond }) \quad \Delta G=+3.08 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S=-3.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

With reference to the enthalpy change, ΔH, of the reaction above, which statements are correct?

1 Enthalpy change of atomisation of diamond is more endothermic than that of graphite.

2 Enthalpy change of combustion of diamond is more exothermic than that of graphite

3 Bond energy of carbon-carbon bonds in graphite is greater than that in diamond.
4 The activation energy to convert graphite to diamond is lower than the activation energy for the reverse reaction.

A 1 and 4
B 2 and 3
C 1, 2 and 3
D 2, 3 and 4

Answer : B (2 \& 3 are correct)

$$
\begin{aligned}
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
3.08 & =\Delta \mathrm{H}-(298)(-3.3 / 1000) \\
\Delta \mathrm{H} & =+2.10 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

The carbon in graphite is sp^{2} hybridised and carbon in diamond is sp^{3} hybridised.
Since the s character is higher in $\mathrm{C}-\mathrm{C}$ bond in graphite, it will be a stronger bond than C-C bond in diamond.

10 The reaction between acidified KI and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ involves the following steps:

$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-}$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}+\mathrm{OI}^{-}$	slow
$\mathrm{OI}^{-}+\mathrm{H}^{+}$	\rightarrow	HOI	fast
$\mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-}$	\rightarrow	$\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$	fast

Which graph would be obtained?
A

B

C

D

Answer: B
Base on the slow step, rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$
The rate is independent of $\left[\mathrm{H}^{+}\right]$.

11 Compounds of beryllium are amphoteric, like compounds of aluminium.
In which equations is the beryllium-containing reactant acting as a Brønsted-Lowry acid?

A $\mathrm{BeO}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}(\mathrm{aq})$
B $\mathrm{BeCl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}+2 \mathrm{Cl}^{-}$
C $2 \mathrm{Be}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BeO}$
D $\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Be}(\mathrm{OH})_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
Answer: D

A Brønsted-Lowry acid is a proton donor.

A: This is neutralisation reaction but BeO is not a Brønsted-Lowry acid as it does not donate a H^{+}ion.

B : This is simply a dissociation reaction and BeCl_{2} is not a $\mathrm{Br} r$ nsted-Lowry acid as it does not donate a H^{+}ion.

C: This is a combustion reaction.
D: $\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{2}$ is acting as a Brønsted-Lowry acid as $2 \mathrm{H}_{2} \mathrm{O}$ molecules are deprotonated to form 2 additional OH^{-}ions and result in a negatively charged $\mathrm{Be}(\mathrm{OH})_{4}{ }^{2-}$ ion.
$1225 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ of the fully protonated form of compound \mathbf{O} was titrated against a standard sodium hydroxide solution of a similar concentration and the following titration curve was obtained.

Which of the following compounds is a possible identity of compound \mathbf{O} ?
A $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \mathrm{COOH}$
B $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{COOH}$
C $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right) \mathrm{COOH}$
D $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right) \mathrm{COOH}$

Answer: C

All amine groups are protonated and can act as a bronsted-lowry acid.
A : only two acidic groups as the amide on the R group is neutral
B : only two acidic groups as the OH on the R group is not able to be neutralised by NaOH

C : three acidic groups
D : only two acidic groups as the aldehyde on the R group is also neutral

13 A sparingly soluble calcium salt dissociates in solution according to the equation:

$$
\mathrm{Ca}_{3} \mathbf{Q}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathbf{Q}^{3-}(\mathrm{aq})
$$

If the solubility product of $\mathrm{Ca}_{3} \mathbf{Q}_{2}$ is p, what is the concentration of \mathbf{Q}^{3-} at equilibrium in a saturated solution of $\mathrm{Ca}_{3} \mathbf{Q}_{2}(\mathrm{aq})$?

A $2 p^{\frac{1}{5}}$
B $2\left(\frac{p}{36}\right)^{\frac{1}{5}}$
C $2\left(\frac{p}{72}\right)^{\frac{1}{5}}$
D $2\left(\frac{p}{108}\right)^{\frac{1}{5}}$
Answer: D
$\mathrm{Ca}_{3} \mathbf{Q}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathbf{Q}^{3-}(\mathrm{aq})$
Let solubility be $\mathrm{x} \mathrm{mol} \mathrm{dm}{ }^{-3}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{Q}^{3-}\right]^{2}$
$p=(3 x)^{3}(2 x)^{2}$
$p=\left(27 x^{3}\right)\left(4 x^{2}\right)$
$p=108 x^{5}$
$x=\left(\frac{p}{108}\right)^{\frac{1}{5}}$
$2 \mathrm{x}=2\left(\frac{p}{108}\right)^{\frac{1}{5}}$

14 A transition metal cation can exist in a 'high spin' or 'low spin' state while exposed to different ligands in an octahedral complex.

A 'high-spin' state has the electrons occupying all the d-orbitals singly first, before pairing in the lower energy d-orbitals.

A 'low-spin' state has the lower energy d-orbitals filled first, pairing up if necessary, before the higher energy d-orbitals are filled.

Which cation would have the largest number of unpaired electrons?
A 'High-spin' Mn^{3+}
B 'High-spin' Fe^{3+}
C 'Low-spin' Co^{2+}
D 'Low-spin’ Ni^{4+}
Answer: B

A: 'High-spin' $\mathrm{Mn}^{3+} \rightarrow 4$ unpaired electrons

B: ‘High-spin' $\mathrm{Fe}^{3+} \rightarrow 5$ unpaired electrons

D: 'Low-spin’ $\mathrm{Ni}^{4+} \rightarrow$ no unpaired electrons

C: 'Low-spin' $\mathrm{Co}^{2+} \rightarrow 1$ unpaired electron

$$
1210
$$

15 Which of the following is not a result of the small energy gap between Sd and 4s orbitals?

A Transition metals have higher electrical conductivity than aluminium.
B Transition metals can exhibit variable oxidation states.
C Transition metals have higher melting point than calcium.
D Transition metals ions are usually coloured.
Answer: D
The smaller energy gap allow for valence electrons to be removed from both 3d and 4 s orbitals. This leads to transition metals having higher conductivity, having variable oxidation states and higher melting point.

The energy gap is due to absorption in the visible light region due to d-d orbital splitting and transition.

16 Use of the Data Booklet is relevant to this question.
Two catalysed reactions and their respective catalysts are shown below.

Reaction	Equation	Catalyst
I	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$	Fe^{3+}
II	$2 \mathrm{MnO}_{4}{ }^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$	Mn^{2+}

Which statements about the reactions and the catalysts are correct?
$1 \mathrm{Mn}^{2+}$ is an auto-catalyst in reaction II.
$2 \mathrm{Fe}^{2+}$ could replace Fe^{3+} as a heterogeneous catalyst in reaction \mathbf{I}.
$3 \mathrm{Mn}^{2+}$ could replace Fe^{3+} as a homogeneous catalyst in reaction I.
4 Both catalysts increase the energetic feasibility of their respective reactions.
A 1 and 3
B 2 and 3
C 1, 2 and 4 only
D 2, 3 and 4 only
Answer: A (1 and 3 only)
1 is correct: Mn^{2+} is a catalyst as well as a product of reaction II. Thus, Mn^{2+} is an auto-catalyst.

2 is incorrect: Fe^{2+} can replace Fe^{3+} as homogeneous catalyst, not heterogeneous catalyst.

3 is correct:
From Data Booklet: $\mathrm{E}^{\circ}\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} / \mathrm{SO}_{4}{ }^{2-}\right)=+2.01 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{E}^{\ominus}\left(\mathrm{I}_{2} / \mathrm{I}^{-}\right)=+0.54 \mathrm{~V} \\
& \mathrm{E}^{\ominus}\left(\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}\right)=+1.54 \mathrm{~V}
\end{aligned}
$$

$2 \mathrm{Mn}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{3+}+2 \mathrm{SO}_{4}{ }^{2-}$
$\mathrm{E}_{\text {cell }}{ }^{2+}=2.01-1.54=+0.47 \mathrm{~V}>0$
$2 \mathrm{Mn}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+\mathrm{I}_{2}$
$\mathrm{E}^{\ominus}{ }_{\text {cell }}=1.54-0.54=+1.00 \mathrm{~V}>0$
Thus, Mn^{2+} could replace Fe^{3+} as a homogeneous catalyst in reaction I.
4 is incorrect: ΔH remains the same for a catalysed or uncatalysed reaction. Reaction will remain just as energetically feasible.

17 Use of the Data Booklet is relevant to this question.
Impure copper obtained from copper ores can be purified by electrolysis as shown below. The cell potential is adjusted such that copper of the impure copper electrode dissolves and impurities such as silver, iron and zinc can be removed through this process.

Which statement is not correct regarding the above electrolytic process?
A Reduction occurs at electrode \mathbf{T}.
B Electrode \mathbf{R} contains impure copper.
C Zinc impurity goes into the solution as Zn^{2+} ions.
D Iron and silver impurities fall to the bottom as sludge.
Answer: D
Option A is correct: Electrode T is the cathode where reduction occurs.
Option B is correct. Electrode R is the anode which contains impure copper.
Option C is correct. $\mathrm{E}^{\ominus}\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)$ is more negative than $\mathrm{E}^{\ominus}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)$, hence Zn will be oxidised to form Zn^{2+} ions.
Option D is incorrect. $\mathrm{E}^{\ominus}\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)$ is more negative than $\mathrm{E}^{\ominus}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)$, hence Fe will be oxidised to form Fe^{2+} ions, instead of falling to the bottom as sludge.

18 Use of the Data Booklet is relevant to this question.
Three electrochemical cells are set up as shown below. The e.m.f in volts is shown on each voltmeter.

These e.m.f indicate the order of reactivity of the metals. The order of the weakest to the strongest reducing agent is

A $X, Y, C u, Z$
B $\mathrm{Cu}, \mathbf{Z}, \mathbf{X}, \mathbf{Y}$
C $\mathbf{Z}, \mathrm{Cu}, \mathbf{X}, \mathbf{Y}$
D Y, X, Z, Cu
Answer: C
$\mathrm{E}^{\ominus}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)=+0.34 \mathrm{~V}$
For electrochemical cell on the left, $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cell is the cathode. Hence, $\mathrm{E}^{\ominus}\left(\mathrm{X}^{2+} / \mathrm{X}\right)=$ $0.34-0.5=-0.16 \mathrm{~V}$

For electrochemical cell in the centre, $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cell is the cathode. Hence, $\mathrm{E}^{\ominus}\left(\mathrm{Y}^{2+} / \mathrm{Y}\right)$ $=0.34-1.1=-0.76 \mathrm{~V}$

For electrochemical cell on the right, $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cell is the anode. Hence, $\mathrm{E}^{\circ}\left(\mathrm{Z}^{2+} / \mathrm{Z}\right)=$ $0.5+0.34=+0.84 \mathrm{~V}$

Order of weakest reducing regent (least easily oxidised, least negative E^{\ominus} value) to strongest reducing agent (most easily oxidised, most negative E^{\ominus} value): $\mathrm{Z}, \mathrm{Cu}, \mathrm{X}, \mathrm{Y}$

19 Valine is a naturally occurring amino acid.

Valine

3-aminopropanoic acid

Which statements about valine and 3-aminopropanoic acid are correct?
A Both compounds are able to form zwitterions.
B Both compounds are able to react with ethanoic acid to give amide.
C Both compounds are able to react with NaBH_{4} in methanol to give alcohol.
D Both compounds are soluble in water due to the formation of intermolecular hydrogen bonding.
Answer: A
Option B is incorrect: Both compounds are not able to react with ethanoic acid to give amide. Acid-base neutralization would occur, producing a salt.

Option C is incorrect: Both compounds are not able to react with NaBH_{4} in methanol to give alcohol. They must react with LiAlH_{4} in dry ether.

Option D is incorrect: Both valine and 3-aminopropanoic acid are soluble in water due to formation of ion-dipole interactions, not hydrogen bonding.

20 Which of the following statements are correct about compound \mathbf{U} ?

compound U
1 The bond angles in compound \mathbf{U} increase in the order $\boldsymbol{x}<\boldsymbol{y}<\boldsymbol{z}$.
2 There is only one sp hybridised carbon atom in compound \mathbf{U}.
3 There are 26σ and 5π bonds.
4 Compound \mathbf{U} is planar.
A 1 and 2
B 1 and 3
C 1, 2 and 4 only
D 2, 3 and 4 only
Answer : B (1 and 3 are correct)
26σ and 5π bonds.

21 Deuterium (D or ${ }^{2} \mathrm{H}$) is a heavy isotope of hydrogen. A deutero-hydrocarbon has the part structural formula shown below.

$$
\mathrm{CDH}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}
$$

What is the total number of isomers with the above part-structural formula?
A 2
B 4
C 8
D 10
Answer: C

Total no. of isomers $=8$

22 The molecule of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ is a regular hexagon in which the π electrons are described as delocalised.

Which of the following statements support this structure?
1 Benzene is a good conductor of electricity.
2 Addition reactions of benzene take place more easily than substitution.
3 All $\mathrm{C}-\mathrm{C}$ bonds lengths in benzene are intermediate between $\mathrm{C}-\mathrm{C}$ bond in an alkane and $\mathrm{C}=\mathrm{C}$ bond in an alkene.
4 The enthalpy change of hydrogenation of benzene is less exothermic than that predicted for cyclohexatriene.

A 1 and 3
B 3 and 4
C 1,2 and 3 only
D 1, 2 and 4 only
Answer: B (3 and 4 are correct)

1	Benzene is a simple molecular structure and does not conduct electricity.
2	Benzene will undergo substitution reactions easily as a result of its resonance stability.
3	The bond order of all $\mathrm{C}-\mathrm{C}$ bonds in benzene are 1.5 due to resonance which arises from the continuous overlap of unhybridised p-orbitals.
4	Benzene is more stable than cyclohexa-1,3,5-triene due to resonance. Thus, it exists at a lower energy level (see below). Hydrogenation of benzene gives cyclohexane.

$23 \mathrm{PGE}_{2}$ is a prostaglandin that has pharmacological activity.

Which of the following is incorrect?

Reducing agent	Number of hydrogen atoms incorporated per molecule of PGE_{2}	
A	$\mathrm{H}_{2} / \mathrm{Ni}$	6
B	$\mathrm{Na}^{\text {in ethanol }}$	8
C	NaBH_{4} in methanol	6
D LiAlH_{4} in dry ether	4	
Answer : C		

A H_{2} / Ni will reduce the ketone and the two $\mathrm{C}=\mathrm{C} . \mathrm{H}_{2}$ / Ni cannot reduce the carboxylic acid. Hence 6 hydrogen atoms will be incorporated in the product.

B Na in ethanol will reduce all the functional groups - ketone, the two $\mathrm{C}=\mathrm{C} . \mathrm{H}_{2}$ / Ni and the carboxylic acid. Hence 8 hydrogen atoms will be incorporated in the product.

C NaBH_{4} in methanol will only reduce the ketone. Carboxylic acid and $\mathrm{C}=\mathrm{C}$ cannot be reduced. Hence only 2 hydrogen atoms will be incorporated in the product.

D LiAlH_{4} in dry ether will reduce the ketone and carboxylic acid. $\mathrm{C}=\mathrm{C}$ cannot be reduced. Hence 4 hydrogen atoms will be incorporated in the product.

24 A mechanism for the reaction between ammonia and ethanoyl chloride is given below.

Which of the following statements are correct?
1 The ammonia behaves as a nucleophile.
2 The loss of proton in step 3 is shown incorrectly.
3 The ammonia attacks an electron-deficient carbon atom.
4 The rate of reaction will increase if ethanoyl bromide is used.
A 1, 2, 3 and 4.
B 1, 3 and 4 only
C 1 and 3 only.
D 2 and 4 only.
Answer: A (1,2,3 and 4)
1: Correct. NH_{3} has a lone pair of electrons and uses it to attack the electron deficient carbon.

2: Correct. The arrow in step 3 is shown incorrectly. The correct arrow movement should be

3: Correct. The carbon has two electron withdrawing groups (oxygen and chlorine) bonded to it, resulting in an very electron-deficient carbon.

4: Step 2 involves the breakage of $\mathrm{C}-\mathrm{Cl}$ bond. Comparing the bond energy of $\mathrm{C}-\mathrm{Cl}(340$ kJ) and C-Br (280 kJ), less energy required to break the C-Br bond, activation energy for the reaction involving ethanoyl bromide will be lower, hence the rate of reaction will be faster.

25 Diols formed on the same carbon atom are generally unstable and will undergo the following reaction.

$$
\mathrm{RCR}^{\prime}(\mathrm{OH})_{2} \rightarrow \mathrm{RCOR}{ }^{\prime}+\mathrm{H}_{2} \mathrm{O}
$$

Compounds \mathbf{V} and \mathbf{W} are both reacted with hot aqueous NaOH followed by dilute HCl at room temperature.

Compound V

Compound W

Which reagents could be used to distinguish the final products of \mathbf{V} and \mathbf{W} ?
1 2,4 DNPH
2 Fehling's solution
3 Sodium carbonate
4 Hot acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
5 lodine in aqueous NaOH
A 1 and 2 only
B 3 and 4 only
C 1, 4 and 5 only
D 2, 3 and 5 only
Answer: D (2, 3 and 5 only)

The halogenoalkanes will undergo nucleophilic substitution to give alcohols.

Diols on the same C atom are unstable, hence they decompose (with the loss of water) to give the respective carbonyl compounds.

1	+ve for V1	+ve for W1
2	-ve for V1	+ve for W1
3	-ve for V1	+ve for W1
4	+ve for V1	+ve for W1
5	+ve for V1	-ve for W1

26 The ozone depletion potential (ODP) of a chemical compound is the relative amount of degradation to the ozone layer it can cause, with trichlorofluoromethane being fixed at an ODP of 1.0.

Which of the following compounds has an ODP of greater than 1.0 ?
A methane
B dichlorodifluoromethane
C chlorotrifluoromethane
D bromotrifluoromethane
Answer:
$\mathrm{C}-\mathrm{Br}$ is weaker than $\mathrm{C}-\mathrm{Cl}$ bond. Less energy is required to homolytically break $\mathrm{C}-\mathrm{Br}$ bond, hence the bromide radical will be easier to generate. Bromide radical would then break down ozone.

27 Azo coupling is an organic reaction between a diazonium compound and another aromatic compound that produces an azo compound.

diazonium
Which of the following correctly represents the type of reaction and the role of diazonium compound?

Type of reaction

A nucleophilic substitution
B electrophilic substitution
C nucleophilic substitution
D electrophilic substitution
Answer: B

Role of diazonium

nucleophile
electrophile
electrophile
nucleophile

Diazonium has a positive charge, hence it is an electrophile. Electrophilic substitution occurs on the benzene ring.

28 What is the order of increasing pH of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ of each organic compound?
A $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CHO}$
B $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, \mathrm{HOCH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
C $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$
D $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, \mathrm{HOCH}_{2} \mathrm{CHO}$
Answer: C
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ are both acids, both $\mathrm{pH}<7, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ has 3 electronwithdrawing fluorine which stabilises the conjugate to greater extent, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ is the strongest acid, hence lowest pH.
$\mathrm{HOCH}_{2} \mathrm{CHO}$ has alcohol and aldehyde hence it is neutral, $\mathrm{pH}=7$.
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$ is the conjugate base of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, hence it has a $\mathrm{pH}>7$.

29 Which reaction gives the best yield of products?
[(alc) indicates an alcoholic solution.]
A

B

C

D

Answer: C
A Substitution of OH with Br requires HBr or PBr_{3}, as the $\mathrm{C}-\mathrm{O}$ is strong and difficult to break.

B Br attached to $\mathrm{C}=\mathrm{C}$ is unreactive towards nucleophilic substitution as the p orbital on Br overlaps with the π orbital of $\mathrm{C}=\mathrm{C}$, resulting in partial double bond character for the carbon-bromine bond which requires more energy to break.

C Elimination of HBr can take place in presence of a strong base in alcoholic medium.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$is a stronger base than OH^{-}since the ethyl group is electron donating which intensify the negative charge on oxygen. Thus it is able to abstract the H atom on the carbon next to carbon attached to Br .

Na^{+}is a spectator ion.
D $\mathrm{PC} / 5$ will hydrolyse in aqueous medium and hence anhydrous $\mathrm{PC} / 5$ should be used instead.
$\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{4}$

30 The Alder-ene reaction is a reaction between two alkenes and is capable of forming new carbon-carbon bonds. An example of the Alder-ene reaction is given below:

Note: W, X, Y \& Z are carbon atoms and other hydrogens are not shoı
The Alder-ene reaction typically produces many products as the roles of the two alkenes can be exchanged.

Which compound will not be formed when the following compound undergoes Alder-ene reaction?

A

B

C

D

Answer: A

C:

D:

2017 SRJC H2 Chemistry 9729
 Preliminary Examination Paper 2 Solution

The size of an atom can be measured using the distance between the nuclei of two atoms.
For example, the 'metallic radius' of the Na atom is half the distance between two Na atoms in the crystal lattice of the metal. The 'covalent radius' of the Cl atom is taken to be half the distance between the nuclei in a Cl_{2} molecule. Finally, the 'van der Waals' radius' of the A_{r} atom is assumed to be half the distance between two atoms in the solid state.

These three types of radius are commonly known as 'atomic radii' and the corresponding values for Period 3 elements can be found in the Data Booklet.
(a) (i) Explain the general trend in atomic radius across Period 3 .

Across Period 3, nuclear charge increases as no. of protons increases. Shielding effect remains relatively constant due to the same no. of electron shells. Effective nuclear charge increases. Stronger electrostatic forces of attraction between nucleus and valence electrons lead to decrease in atomic radius.
[2]
(ii) Suggest a reason for the anomaly in the measurement of atomic radius for argon.

The instantaneous dipole-induced dipole interactions between the two Ar atoms are much weaker than the strong metallic bonds for metals and strong covalent bonds for molecules. Thus, the two atoms for Ar will be further apart leading to a much higher measurement.
(b) (i) State the general relationship between atomic radius and first ionisation energy across Period 3 .

The first ionisation energy is inversely proportional to atomic radius.
(ii) Explain why the relationship does not hold from P to S .

It is easier to remove an electron from S due to the inter-electronic repulsion between the paired electrons in the same $3 p$ orbital of S. Thus $1^{\text {st }} I E$ decreases from P to S.
(c) Across period 3, the elements changes from metallic to non-metallic nature. Correspondingly, the difference in electronegativity between the elements and the oxide decreases, giving rise to different types of oxides.

A, B and \mathbf{C} are Period 3 elements, from Na to S , inclusive.

- A has the highest melting point among Period 3 elements.
- B has the highest electrical conductivity in Period 3.
- \quad C burns in air with a coloured flame.
- $\quad \mathbf{B}$ and \mathbf{C} can show the same oxidation state in their compounds.

Identify \mathbf{A}, \mathbf{B} and \mathbf{C} and hence, write equations, including state symbols, to show the acidbase properties of their oxides.
[Give the chemical formulae for only the highest oxide formed.]
A-Si
$\mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{NaOH}($ conc. $) \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B-AI
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq})$
C- P_{4} or P
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+12 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 4 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

2 Benzoic acid occurs naturally in many plants and it has many uses. It is an important precursor for the industrial synthesis of many organic substances.
(a) The benzoic acid and sodium benzoate buffer is commonly used as food preservatives in many acidic foods such as salad dressings and carbonated drinks.
(i) With the aid of relevant chemical equations, explain how the system can control pH when a small amount of base is added.

When small amount of OH^{-}is added,
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
The added OH^{-}is removed as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}, \mathrm{pH}$ remains fairly constant.
(ii) Given that the acid dissociation constant for benzoic acid is $6.3 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, calculate the mass of solid sodium benzoate required to be added to $250 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ of benzoic acid to form a buffer solution with an initial pH 4.
$\mathrm{pK}_{\mathrm{a}}=-\lg \left(6.3 \times 10^{-5}\right)=4.20$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\lg \frac{\text { [benzoate] }}{\text { [benzoic acid] }}$
$4=4.20+\lg \frac{\text { [benzoate] }}{[0.50]}$
[benzoate] $=\mathbf{0 . 3 1 5 5 ~ m o l ~ d m}{ }^{-3}$
Amt of benzoate $=0.3155 \times \frac{250}{1000}=0.07887 \mathrm{~mol}$
Mass of sodium benzoate required $=0.07887 \times(144.0)=\underline{11.4} \mathrm{~g}$
(iii) To achieve the optimal buffering capacity of a $25 \mathrm{~cm}^{3}$ sample of the buffer prepared in (ii), a standard solution of $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide was added. Calculate the volume of sodium hydroxide needed.

Amt of benzoic acid in sample $=\frac{25}{1000} \times 0.5=0.0125 \mathrm{~mol}$
Amt of benzoate in sample $=\frac{25}{1000} \times 0.3155=0.007888 \mathrm{~mol}$
At maximum buffering capacity: [benzoic acid] = [benzoate]
Amt of benzoic acid $=$ amt of benzoate $={ }^{0.0125+0.007888}=0.01019 \mathrm{~mol}$ 2
Amt of NaOH to add $=0.0125-0.01019=0.00231 \mathrm{~mol}$
Vol of NaOH required $={ }^{0.00231}=1.5 \mathbf{~ c m}^{3}$
(b) The presence of benzoic acid in plant extracts can be confirmed using neutral iron(III) chloride according to the following equation.

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})
$$

When $50 \mathrm{~cm}^{3}$ iron(III) chloride is added to an equal volume of the plant extract, 0.0532 g of iron(III) benzoate, $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}$ precipitate is formed.

The resultant mixture has a pH value of 2.33.
(i) Calculate the amount of benzoic acid that has reacted with neutral iron(III) chloride solution and H^{+}in the mixture.

Amt of $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}=\frac{0.0532}{418.8}=0.000127 \mathrm{~mol}$
Amt of benzoic acid reacted $=3 \times 0.000127=\mathbf{0 . 0 0 0 3 8 1} \mathbf{~ m o l}$
$\left[\mathrm{H}^{+}\right]=10^{-2.33}=0.004677 \mathrm{~mol} \mathrm{dm}^{-3}$
Amt of H^{+}in mixture $=0.004677 \times \frac{100}{1000}=\underline{\mathbf{0 . 0 0 0 4 6 8 ~ m o l}}$
(ii) Assuming that the H^{+}ions in solution are formed from the dissociation of benzoic acid and the reaction of benzoic acid with iron(III) chloride, calculate the concentration of benzoate ions in the equilibrium mixture.

Total amt of H^{+}in solution $=0.0004677 \mathrm{~mol}$
Amount of H^{+}produced from acid and Fe^{3+} reaction $=0.0003811 \mathrm{~mol}$
Amount of H^{+}produced from benzoic acid dissociation
$=0.0004677-0.0003811=0.000086611 \mathrm{~mol}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-} \equiv \mathrm{H}^{+}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]=0.0000866 \div \frac{100}{1000}=\underline{0.000866 \mathrm{~mol} \mathrm{dm}^{-3}}$
(iii) Calculate the $\mathrm{K}_{\text {sp }}$ of iron(III) benzoate, given that the concentration of iron(III) ions in the mixture is $1.83 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ at equilibrium.
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]^{3}$
$\mathrm{K}_{\text {sp }}=\left(1.83 \times 10^{-3}\right)(0.0008611)^{3}=1.19 \times 10^{-12} \mathrm{~mol}^{4} \mathrm{dm}^{-12}$
(c) Benzoic acid is involved in the reaction scheme below:

(i) Draw the structures for \mathbf{D}, \mathbf{E} and \mathbf{G} in the boxes below.

[3]
(ii) Suggest the reagents and conditions for reactions I and II.

Reactions I: $\mathrm{CH}_{3} \mathrm{Br}$, anhydrous FeBr_{3} (s)
Reactions II: LiAlH_{4} in dry ether, rtp
(iii) Compound \mathbf{F} was heated with aqueous sodium hydroxide and excess carbon dioxide was bubbled through the solution.

Given the acid dissociation constants below, suggest the products that would be formed after the introduction of carbon dioxide.

acid	formula	$\mathbf{K}_{\mathrm{a}} / \mathbf{m o l ~ d m}^{-3}$
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.5×10^{-7}
benzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}^{+}$	6.3×10^{-5}
ethylamine salt	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$	1.6×10^{-11}

Benzoate salt will not be neutralised by carbon dioxide.
Benzoic acid is a stronger acid than carbonic acid as shown by the K_{a} values, thus suggesting that the benzoate ion is more stable than carbonate.

3 Grignard reagents are organomagnesium halides, RMgX commonly used in organic synthesis. The R in $R M g X$ behaves like an anion, R^{-}and is a strong Lewis base. It can be made by the reaction between halogenoalkane and magnesium under anhydrous conditions, using ether as a solvent.

where $\mathrm{R}=$ alkyl group, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
In a Grignard reaction, the Grignard reagent behaves as a nucleophile and may be added to a carbonyl compound for the formation of an alcohol. This reaction is useful for the formation of carbon-carbon bonds.

(a) (i) Suggest, with an equation, why the synthesis of Grignard reagent has to be done under anhydrous conditions.

The \mathbf{R} in $\mathbf{R M g X}$ reacts with water to form an alkane, destroying the nucleophile for the Grignard reaction.
$\mathrm{RMgX}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RH}+(\mathrm{OH}) \mathrm{MgX}$
or
$\mathrm{R}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RH}+\mathrm{OH}^{-}$
(ii) Besides organomagnesium compounds, organolithium compounds can be formed between lithium and relevant organic substances. Account for the similarity in the reactions involving lithium and magnesium.
$\frac{\mathrm{q}+: \mathrm{Mg}^{2+}>\mathrm{Li}^{+}}{\underline{\mathrm{r}+:} \mathrm{Mg}^{2+}>\mathrm{Li}^{+}}$
Li^{+}and Mg^{2+} have similar charge density

The preparation and set up of Grignard synthesis of 2-methylhexan-2-ol is described below:

Table 3.1

Compound	Melting pt $/$ ${ }^{\circ} \mathrm{C}$	Boiling pt $/{ }^{\circ} \mathrm{C}$	Molar mass $/ \mathrm{g} \mathrm{mol}^{-1}$	Density $/ \mathrm{g} \mathrm{cm}^{-3}$	Solubility in water
1-bromobutane	-11.2	101.4	136.9	1.27	Insoluble
Magnesium	651	1100	24.3	1.74	Insoluble
Diethyl ether	-116.3	34.6	74.0	0.713	Insoluble
Propanone	-94.7	56.1	58.0	0.785	Soluble
Sulfuric acid	10.3	337	98.1	1.84	Soluble
2-methylhexan-2-ol	-	143	116.0	0.82	Soluble

Preparation of Grignard reagent, RMgX

1. Add 15 g of 1-bromobutane and 3 g of magnesium into the $250 \mathrm{~cm}^{3}$ two-neck round bottom flask.
2. Add $50 \mathrm{~cm}^{3}$ of anhydrous diethyl ether using the addition funnel. Gently stir the mixture under reflux for 30 minutes. The reaction is exothermic and will boil without external heat.
3. When the reaction is complete, cool the reaction mixture using an ice bath.
(b) (i) With reference to Table 3.1, suggest why a reflux set up is necessary in this organic synthesis.

The reflux set up is to minimise the loss of volatile organic compounds such as diethyl ether.
(ii) On the diagram above, label and account for the direction of water flow.

Water 'IN' should be connected at the bottom of the reflux condenser to ensure all hot volatile organic vapour is condensed immediately into the flask or ensure efficient cooling.
(iii) Some heating may be required at the beginning as the initial rate of formation of RMgX is slow. Magnesium metal has to be scrapped or sliced into smaller pieces to increase the reaction rate.

Write an equation to suggest why magnesium may not be as reactive as expected.

Mg is not as reactive as the surface of Mg is covered by inert/unreactive MgO .
$\mathrm{Mg}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{MgO}$
(iv) Excess diethyl ether is added to keep the Grignard reagent at a low concentration. This will prevent the Grignard reagent from reacting with unreacted 1-bromobutane. Draw the structure of the organic by-product.
octane

Synthesis of alcohol

4. Using the addition funnel, add 6.5 g (dissolved in $15 \mathrm{~cm}^{3}$ of diethyl ether) of propanone to the Grignard reagent.
5. To a separate $250 \mathrm{~cm}^{3}$ beaker, add $100 \mathrm{~cm}^{3}$ of ice water and $4 \mathrm{~cm}^{3}$ of concentrated sulfuric acid and mix well.
6. When the reaction with propanone is completed, add the reaction mixture into a $250 \mathrm{~cm}^{3}$ beaker, sitting in an ice bath. Carefully transfer sulfuric acid solution from step 5 into reaction mixture. Stir gently to mix well.
(c) (i) Using Table 3.1, calculate the theoretical mass of 2-methylhexan-2-ol.

Amt of 1-bromobutane $=\frac{15}{136.9}=0.1096 \mathrm{~mol}$
Amt of $\mathrm{Mg}=\frac{3}{24.3}=0.1235 \mathrm{~mol}$ (in excess)
Amt of propanone $=\frac{6.5}{58.0}=0.112 \mathrm{~mol}$ (in excess)
Mole ratio: 1 bromobutane: 2-methylhexan-2-ol
Mass of 2-methylhexan-2-ol $=0.1096 \times 116.0=\underline{\mathbf{1 2 . 7} \mathbf{g}}$
(ii) The actual yield for 2-methylhexan-2-ol is 4 g . Calculate the percentage yield for this reaction.

Actual \% yield $=\frac{4}{12.7} \times 100=\underline{31.5 \%}$
(iii) Suggest why the addition of sulfuric acid has to be carried out in an ice bath in step 6.

The reaction of sulfuric acid with unreacted Mg is highly exothermic.
7. Add the mixture from step 6 into a $500 \mathrm{~cm}^{3}$ separation funnel and add $10 \mathrm{~cm}^{3}$ of diethyl ether. Shake the separation funnel, releasing any gas formed. Allow the layers to separate and collect both layers separately.
8. Repeat step 7 with the aqueous layer and a fresh sample of $10 \mathrm{~cm}^{3}$ diethyl ether. Collect and combine each ether layer.
9. The combined ether layer is poured back to the separation funnel and mixed with several $20 \mathrm{~cm}^{3}$ portions of 5% sodium bicarbonate solution until no more carbon dioxide is generated.
(d) (i) After step 7, there are two layers in the separation funnel. Identify the ether and aqueous layer in the diagram below.

Explain your answer.
Diethyl ether is less dense than water.
(ii) Give a reason for the addition of sodium bicarbonate in Step 9 .

To remove unreacted traces of sulfuric acid in the ether layer
(iii) During solvent extraction, both propanone and 2-methylhexan-2-ol are found in the ether layer. Comment on the solubility of 2-methylhexan-2-ol in diethyl ether.

The presence of hydrophobic / non polar alkyl group in 2-methylhexan-2-ol allow more favourable instantaneous dipole induced dipole interactions with diethyl ether.
(iv) Suggest different chemical tests to positively identify propanone and 2-methylhexan-2-ol in the ether layer.

Add 2-4 DNPH, r.t.p: formation of orange ppt suggest presence of propanone
$\mathrm{Or} \underline{I}_{2}(\mathrm{aq}), \mathrm{NaOH}(\mathrm{aq})$ and heat: yellow ppt and decolourisation of brown iodine solution.

Add $\mathrm{PCl}_{5}(\mathbf{s})$, r.t.p: White fumes in the presence of 2-methylhexan-2-ol Or
use $\mathrm{Na(s)}$ r.t.p: hydrogen gas which extinguish lighted splint with "pop" sound
(v) Suggest how crude 2-methylhexan-2-ol can be purified from the ether layer.

Via distillation. Since propanone and diethyl ether has lower boiling point, propanone and diethylether will be collected as the first distillate.
(e) Grignard reagent is used widely in organic synthesis due to its ability to increase carbon chain length. Four unique reactions involving the use of Grignard reagent are shown in the reaction map below.

(i) The following Grignard reaction to form propanal achieved a very low yield as the aldehyde formed can react with the Grignard reagent again.

Describe the mechanism between propanal and the Grignard reagent, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgX}$ to form the corresponding alcohol.

Nucleophilic addition.

(ii) Starting with a suitable Grignard reagent, propose an alternative 3-step synthesis pathway to synthesise propanal.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgX} \xrightarrow{\mathrm{CO}_{2}(\mathrm{~g})} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\text { r.t.p }]{\text { LiAlH in dry ether }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
heat with distillation
(iii) Using different reaction types from the reaction map above, suggest appropriate pairs of reagents in the synthesis of compounds \mathbf{H} and \mathbf{I}.

H:

I:

4 The use of electric vehicles has been increasing popular in the U.S. For example, hydrogen fuel cell vehicles produces zero carbon emission.

Despite the advantages of electric cars, petrol-engined cars are still widely used today. One problem with electric vehicles is their poor performance, inconvenience of finding a charging station and it takes a long time to recharge the batteries. Petrol-engined cars are better as their energy supply can be replaced over 6 million times faster than electric cars.

The infogram below shows how energy density varies widely with different fuels. Energy density is the energy produced per unit dimension of a fuel and this determines the practicality of a fuel.

However, using petrol (which contains a mixture of alkanes) has its own problems. One such problem is that it's a finite resource, and another is pollution. Hence, there is a need to improve the performance of petrol in car engines so that it burns as cleanly and efficiently as possible and to find alternative sources of fuel to replace petrol.

Some data for five fuels are given in Table 4.2.

Fuel	Formula	Standard enthalpy change of combustion,, $\mathbf{H}_{\mathbf{c}}{ }^{\circ}$ $/ \mathbf{k J ~ m o l}^{-1}$	Relative molecular mass	Energy density (energy transferred on burning 1 kg of fuel) $/ \mathbf{k J ~ k g}$
octane	$\mathrm{C}_{8} \mathrm{H}_{18}(l)$	-5470	114.0	
$1,2-x y l e n e$	$\mathrm{C}_{8} \mathrm{H}_{10}(I)$	-4540	106.0	
carbon	$\mathrm{C}(\mathrm{s})$	-393	12.0	
methanol	$\mathrm{CH}_{3} \mathrm{OH}(l)$	-726	32.0	
hydrogen	$\mathrm{H}_{2}(\mathrm{~g})$	-286	2.0	

(a) Give an example of a pollutant that can arise from the use of petrol and state a detrimental effect of the pollutant.

- Carbon monoxide / CO - causes carbon monoxide poisoning
- Unburnt hydrocarbons - becomes photochemical smog in strong sunlight
- Lead bromide vapour - causes brain damage
- Sulphur dioxide / SO_{2} - causes acid rain
(b) Complete Table 4.2 by calculating the energy density for all fuels.

Fuel	Formula	Standard enthalpy change of combustion, $\Delta \mathbf{H}^{\circ}{ }^{\circ} / \mathbf{k J ~ m o l}^{-1}$	Relative molecular mass	Energy density (energy transferred on burning 1 kg of fuel) $/ \mathbf{k J ~ k g}^{-1}$
octane	$\mathrm{C}_{8} \mathrm{H}_{18}(l)$	-5470	114.0	48000
$1,2-$ xylene	$\mathrm{C}_{8} \mathrm{H}_{10}(l)$	-4540	106.0	42800
carbon	$\mathrm{C}(\mathrm{s})$	-393	12.0	32800
methanol	$\mathrm{CH}_{3} \mathrm{OH}(l)$	-726	32.0	22700
hydrogen	$\mathrm{H}_{2}(\mathrm{~g})$	-286	2.0	143000

(c) (i) On the basis of energy density, which is the best fuel in table 4.2.

Hydrogen as it has the highest energy density.
(ii) Suggest a practical difficulty in using hydrogen rather than methanol as a fuel.

1. It is a light gas and occupies too much volume
\Rightarrow storage difficult
2. It is also flammable/ explosive \Rightarrow cause safely concerns.
(d) Using the given data above, comment on the feasibility of using electric cars in the near future.

Despite the high energy density of hydrogen, gasoline/petrol is still the preferred choice as it is efficient in producing energy for consumer's use.

Octane is commonly used as a fuel or a precursor in the production of other chemicals. The term "octane rating" is often used in the petroleum industry for rating the ability of octane's various branched isomers in reducing engine knock in vehicles.

One important factor in making petrol is getting the right octane rating to reduce the problem of 'knocking'. Knocking occurs when the combustion of fuel is not smooth. Knocking reduces engine power, leading to wear and tear in the engine and results in wastage of petrol. Hence, highly branched alkanes are desirable in petrols as they have higher octane ratings and reduce knocking.

Another factor for getting the right properties of petrol is the blending of petrol. In cold weather, it is difficult to vaporise petrol, which makes ignition difficult. On the other hand, in hot weather, petrol vaporises easily. Hence, petrol companies make different blends of petrol for different seasons and climates.

You are to use the information provided above to answer parts (e) and (f).
(e) Apart from using alkanes with high octane ratings, another way to deal with the problem of knocking is through the addition of an antiknock agent, tetra-ethyl lead (TEL). TEL is a highly volatile colourless liquid which aids in the formation of free radicals. However, this method is not commonly used nowadays.

Explain, with the aid of a suitable equation, how TEL helps to overcome the problem of knocking and give a reason why its usage is limited nowadays.

The weak lead-carbon bonds in tetra-ethyl lead are easily broken, giving $\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet$ which initiates smooth burning.

$$
\mathrm{Pb}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4} \rightarrow \mathrm{~Pb}+4 \mathrm{CH}_{3} \mathrm{CH}_{2} \bullet
$$

PbO will be formed, which coats car cylinders and reduces their effectiveness over time
Or Release of toxic lead compounds into the atmosphere
(f) Compounds \mathbf{J}, \mathbf{K} and \mathbf{L} are isomers of the hydrocarbon octane, $\mathrm{C}_{8} \mathrm{H}_{18}$.

The table below shows the boiling points and data relating to the optical activity of the compounds.

Structure	Boiling Point $/{ }^{\circ} \mathrm{C}$	Number of chiral centres	Optical Activity
Isomer J	120	1	Yes
	118	2	No
Isomer K	107	0	No
Isomer L			

(i) Suggest why isomer \mathbf{K} does not exhibit enantiomerism.

There is a plane of symmetry in the molecule or both chiral centres contain the same groups attached to it, forming a meso compound.

Or
The two chiral centres rotate the plane of polarised light to the same extent but in the opposite direction hence cancelling out the optical activity.
(ii) Propose the structures of compounds \mathbf{J} and L .

Isomer J :
Isomer L:

[2]
(iii) In terms of structure and bonding, identify which of your proposed compounds (\mathbf{J} or \mathbf{L}) would be a more suitable fuel for use in summer and winter respectively.

Your answer should show clear and detailed comparison in your choice of fuel.
$M_{r}: J=L$
Molecular shape : J (elongated) vs L (spherical)
Surface area of contact: $\mathrm{J}>\mathrm{L}$
Extent of weak instantaneous dipole-induced dipole: $J>L$
Energy requirement: $\mathrm{J}>\mathrm{L}$
Boiling point: $\mathrm{J}>\mathrm{L}$
Volatility : J < L
Hence, with more volatile alkanes (with a lower boiling point) like \underline{L} in winter petrol, it will be easier for the petrol to vaporise and with less volatile alkanes like \mathbf{J} (with a higher boiling point) in summer petrol, it will be harder for the petrol to vaporise.
(iv) Controlled chlorination of isomer \mathbf{K} in the presence of UV light produces different mono-chlorinated products with a molecular formula of $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}$.

Draw the structural formula of any two possible isomers and state the ratio in which they are formed.

Structural formula	mole ratio	
		6

	6	3

(g) The performance of hydrocarbons as fuels is largely improved by catalytic reforming. Reforming takes straight chain hydrocarbons in the C_{6} to C_{8} range from the gasoline or naphtha fractions and rearranges them into compounds containing benzene rings. They are used to make fuels with high octane number. Hydrogen is produced as a by-product of the reactions. A catalytic mixture of Pt and $\mathrm{Al}_{2} \mathrm{O}_{3}$ at a temperature of $500^{\circ} \mathrm{C}$ and pressure of 20 atm is used.

An example of a product is 1,2-xylene.

(i) Write a balanced equation when octane undergoes the 'reforming' process to form 1,2-xylene.

Or
$\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{8} \mathrm{H}_{10}+4 \mathrm{H}_{2}$
(ii) What type of reaction has the octane undergone?

Oxidation / aromatisation / cyclisation
(iii) 1,4-xylene can be produced by a similar process. Suggest the structural formula of a C_{8} alkane which might produce 1,4-xylene.

or

(iv) By means of an energy cycle, show and calculate the standard enthalpy change of reaction that produces 1,2-xylene from octane.
[2]

$\Delta H_{r}^{\circ}=-5470-[(-4540)+4(-286)]=+214 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(v) Using data from the Data Booklet, calculate the enthalpy change of the reaction which reforms octane into 1,2-xylene.

Bond broken	Bonds formed
$7 \mathrm{C}-\mathrm{C}$	$2 \mathrm{C}-\mathrm{C}$
$18 \mathrm{C}-\mathrm{H}$	$6 \mathrm{C}-\mathrm{-} \mathrm{C}$
	$10 \mathrm{C}-\mathrm{H}$
	$4 \mathrm{H}-\mathrm{H}$

$\Delta H_{r}=7(+350)+18(+410)-[2(+350)+6(+520)+10(+410)+4(+436)]$
$=(+9830)-(+9664)=+166 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[2]
(vi) By considering your answers in (g)(iv) and (v), suggest if they are accurate descriptions of the reformation process.
(g)(iv) involve the use of enthalpy values at standard conditions.
$(\mathrm{g})(\mathrm{v})$ did not include the enthalpy change of vaporisation as octane and xylene are liquids in standard states.

Hence, both are inaccurate descriptions as reforming take place at $500^{\circ} \mathrm{C}$ and pressure of 20 atm which are non-standard conditions. (Underline portion is necessary to get this mark. Must make reference to the passage.)
(vii) Briefly explain whether you would expect the above reaction to have its $\Delta \mathrm{G}$ value to be more negative than its corresponding $\Delta \mathrm{H}_{\mathrm{r}}$.

Since, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$,
$\Delta S>0$ because there is a production of 4 moles of H_{2}, which results in $\underline{\mathrm{n}(\mathrm{gas}) \text { to increase after the reaction. Hence, } \Delta \mathrm{G} \text { value will be more }}$ negative.

2017 SRJC H2 Chemistry 9729
 Preliminary Examination Paper 3 Solution
 Section A

1 (a) Oxides of nitrogen, NO_{x} are a mixture of gases that are composed of nitrogen and oxygen. They are formed during combustion processes in power plants.

Thermal NO_{x} refers to NO_{x} formed through high temperature oxidation of the diatomic nitrogen found in combustion air.

The formation rate is a function of temperature and the residence time of nitrogen at that temperature. At high flame temperatures, molecular nitrogen and oxygen dissociate into their atomic states and participate in a series of reactions.

The two principal reactions producing thermal nitric oxide, NO are as follows.

Step 1 O atoms react reversibly with N_{2} to form NO.
Step 2 N atoms liberated react with O_{2} to produce more NO .
Nitrogen dioxide typically arises via the oxidation of nitric oxide by oxygen in the atmosphere.

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

(i) Write the two principal reactions involved in the formation of thermal nitric oxide in combustion.

Step 1: $\mathbf{N}_{\mathbf{2}} \mathbf{+} \mathbf{O} \rightleftharpoons \mathbf{N O} \mathbf{+} \mathbf{N}$
Step $2: \mathbf{N +} \mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{N O} \mathbf{+} \mathbf{O}$
(ii) Hence, determine the rate determining step.

Step 1. Step 1 involves the breaking of very strong N $\mathbf{N = N}$ (triple) bond which requires a large amount of energy to overcome.
(iii) Suggest a method to reduce the formation of thermal NO_{x}.

Reduce peak flame temperature/Reduce time of gas spent in flame.
(b) Catalytic converters are used to reduce the output of NO_{x} into the environment. One example is the removal of nitric oxide by reaction with hydrogen gas using platinum catalyst.

			ΔH $\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}$ $\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}$ $\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow$ $\mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow$ $\mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$
fast	slow	fast	negative

(i) Write the rate equation for the above reaction, showing clearly how you derive it.
rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]$
$\mathrm{N}_{2} \mathrm{O}_{2}$ is an intermediate and should not be included in the rate equation.
Let the equilibrium constant of step 1 be \mathbf{K}.
$\mathrm{K}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}}$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}[\mathrm{NO}]^{2}$
rate $=k K\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]=\mathrm{k}^{\prime}\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]\right.\right.$
where $\mathrm{k}^{\prime}=\mathrm{kK}$
(ii) Draw the probable energy profile diagram for this overall exothermic reaction.

(iii) Using an appropriate sketch of the Maxwell-Boltzmann distribution curve, explain how the addition of platinum affects the rate of chemical reaction.
Number of particles with

(c) The NO_{2} reacts with O_{2} in the atmosphere to form colourless nitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}$ in equilibrium.

$$
4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

Dinitrogen pentoxide is a rare example of a compound that adopts two structures depending on the conditions. As a gas in the atmosphere, dinitrogen pentoxide exists as a molecule. However, it exists as an ionic salt in the solid state.
(i) Gaseous $\mathrm{N}_{2} \mathrm{O}_{5}$ is a symmetrical molecule with the two nitrogen atoms bonded to one central oxygen atom.

Draw a dot-and-cross diagram to show the bonding in $\mathrm{N}_{2} \mathrm{O}_{5}$ molecule. Use your diagram to:

- State the shape and the bond angle with respect to nitrogen
- Suggest with reasoning, the polarity of the molecule.

$\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle is $\underline{\mathbf{1 2 0}^{\circ}}$, trigonal planar
$\mathrm{N}_{2} \mathrm{O}_{5}$ is polar. The centre O atom is bent. Hence the dipole moment does not cancel out/ there is net dipole moment.
(ii) A ratio of 4 to 1 mole of gaseous NO_{2} and O_{2} with a total initial pressure of 2.25 atm was placed in a $1000 \mathrm{~cm}^{3}$ vessel. The total pressure at equilibrium was 1.5 atm . Calculate K_{p} for this equilibrium.

Initial pressures
$\mathrm{P}_{\mathrm{NO} 2}=4 / 5 \times 2.25=1.8 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{o} 2}=1 / 5 \times 2.25=\underline{\mathbf{0 . 4 5} \mathrm{atm}}$

	$4 \mathrm{NO}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
Initial P/atm	1.8		0.45		0
Change P / atm	-2 x		-0.5 x		+x
Eqm P / atm	$1.8-2 \mathrm{x}$		$0.45-0.5 \mathrm{x}$		+x

$P_{\text {total }}=1.8-2 x+0.45-0.5 x+x=1.5 \mathrm{~atm}$
$\mathrm{x}=0.500 \mathrm{~atm}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)^{2}}{\mathrm{P}\left(\mathrm{O}_{2}\right) \mathrm{P}\left(\mathrm{NO}_{2}\right)^{4}}$
$\mathrm{K}_{\mathrm{p}}=\frac{0.50^{2}}{0.2 \times 0.8^{4}}$
$\mathrm{K}_{\mathrm{p}}=\underline{3.05 \mathrm{~atm}^{-3}}$
(iii) Calculate the average M_{r} of the gases at equilibrium.

Average $M_{r}=$ Sum of mole fraction $\times M_{r}$

$$
=\frac{0.5}{1.5} \times 108.0+\frac{0.2}{1.5} \times 32.0+\frac{0.8}{1.5} \times 46.0=\underline{\mathbf{6 4 . 8}}
$$

(iv) The variation of M_{r} is as shown in the sketch.

Predict a value for \mathbf{Z} and account for the shape of the graph.
$Z=108.0$
By LCP, as pressure increases, the position of equilibrium would shift right to decrease the amount of gas. Hence, more $\mathrm{N}_{2} \mathrm{O}_{5}$ will be produced as average $\mathbf{M}_{\mathbf{r}}$ increases.

A curve with decreasing rate and not straight line is obtained as the rate of $\mathrm{N}_{2} \mathrm{O}_{5}$ formation decreases with decreasing NO_{2} and O_{2}. Also, the repulsion increases as NO_{2} and O_{2} molecules are forced closer together with increasing pressure, resulting in a gentler gradient.

The maximum \mathbf{M}_{r} approaches 108.0 but does not reach 108 as the equilibrium mixture must always contain all three gases.
(d) Solid $\mathrm{N}_{2} \mathrm{O}_{5}$ dissolved in chloroform may be used to replace concentrated nitric acid and sulfuric acid in the nitration of benzene.
(i) Suggest why solid $\mathrm{N}_{2} \mathrm{O}_{5}$ can be used in for nitration of benzene.
$\left[\mathrm{NO}_{2}{ }^{+}\right]\left[\mathrm{NO}_{3}{ }^{-}\right]$
$\mathrm{N}_{2} \mathrm{O}_{5}$ contains nitronium ion, $\mathrm{NO}_{2}{ }^{+}$which is an electrophile in the electrophilic substitution of benzene.
(ii) 0.60 mol of solid $\mathrm{N}_{2} \mathrm{O}_{5}$ was dissolved in chloroform. Some $\mathrm{N}_{2} \mathrm{O}_{5}$ decompose back into oxygen and nitrogen dioxide with a rate constant of $1.0 \times 10^{-5} \mathrm{~s}^{-1}$ at $45^{\circ} \mathrm{C}$.

The gases produced are collected in a $10 \mathrm{dm}^{3}$ container over a period of 40 hours. Calculate the resultant pressure.
[Assume that the products do not dissolve in chloroform.]
Since decomposition follows a first order w.r.t. $\mathrm{N}_{2} \mathrm{O}_{5}$ (based on units of k)
$t_{1 / 2}=\frac{\ln 2}{k}=\frac{\ln 2}{1.0 \times 10^{-5}}=6.931 \times 10^{4} \mathrm{~s}$
Number of $\mathrm{t}_{1 / 2}=\frac{40 \times 60 \times 60}{6.931 \times 10^{4}}=\underline{\mathbf{2 . 0 8}}$
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
After 40 hours, $0.60 \times 0.75=\underline{\mathbf{0 . 4 5} \mathrm{mol}}$ of $\mathrm{N}_{2} \mathrm{O}_{5}$ has decomposed.
$n_{\text {(gaseous products) }}=2(0.45)+1 / 2(0.45)=1.125 \mathrm{~mol}$
$\mathrm{pV}=\mathrm{nRT}$
$\mathrm{p}=\frac{1.125 \times 8.31 \times 318}{10 \times 10^{-3}}=2.97 \times 10^{5} \mathrm{~Pa}=2.97 \mathrm{bar}$

Alternative answer

$n_{\text {N2O5 }}=0.60(1 / 2)^{2.08}=0.1419$
After 40 hours, $0.60-0.1419=0.4581$ mol of $\mathrm{N}_{2} \mathrm{O}_{5}$ has decomposed.
$\mathrm{n}_{\text {(gaseous products) }}=2(0.4581)+1 / 2(0.4581)=1.145 \mathrm{~mol}$
$p=\frac{1.145 \times 8.31 \times 318}{10 \times 10^{-3}}=3.03 \times 10^{5} \mathrm{~Pa}=3.03 \mathrm{bar}$

2 Chlorine is a yellow-green gas that was first synthesised around 1630. Chlorine forms a variety of oxides such as chlorate(VII), $\mathrm{ClO}_{4}{ }^{-}$and chlorate(V), $\mathrm{ClO}_{3}{ }^{-}$.
(a) Chlorine gas can be produced from the electrolysis of brine (concentrated sodium chloride solution) using a diaphragm cell with inert electrodes.

A diaphragm is used to keep the products of electrolysis from mixing and hence, prevent the formation of undesirable by-products.

(i) Write the ion-electron half-equations, with state symbols, for the reactions taking place at the electrodes.
Cl^{-}(anion) would migrate to the anode and be oxidised to Cl_{2} gas .
Anode reaction: $\quad 2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}$
Cathode reaction: $2 \underline{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
(ii) Calculate the mass of chlorine gas produced if a current of 5 A was passed for 7 hours through the electrolytic cell.
$Q=I \times t=5 \times 7 \times 60 \times 60=1.26 \times 10^{5} \mathrm{C}$
$Q=\mathrm{n}_{\mathrm{e}} \times \mathrm{F}$
Amount of electrons passed $=\frac{1.26 \times 10^{5}}{96500}=1.306 \mathrm{~mol}$
Amount of chlorine $=\frac{1.306}{2}=0.653 \mathrm{~mol}$
Mass of chlorine produced $=0.653 \times 2 \times 35.5=\underline{46.4 \mathrm{~g}}$
(b) In some industrial electrolytic cells, the products of electrolysis of brine are allowed to react further when the diaphragm is removed. Two chlorine-containing products are formed, depending on the operating conditions used. At low temperatures, one of the products is a chloro-oxoanion with an oxidation state of +1 .
(i) State the type of reaction taking place.

Disproportionation

(ii) Give an overall balanced equation for the reaction described above.

$$
\begin{align*}
& \mathrm{Cl}_{2}+2 \mathrm{e} \rightarrow 2 \mathrm{Cl}^{-}---(1) \tag{1}\\
& \mathrm{Cl}_{2}+4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{ClO}^{-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}----(2) \\
& \text { Overall: } \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{align*}
$$

(c) With reference from the Data Booklet, explain why dilute aqueous sodium chloride cannot be used as the electrolyte for the manufacture of chlorine in this electrolysis.
$\begin{array}{ll}\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-} & \mathrm{E}^{\mathrm{e}}=+1.36 \mathrm{~V}----(1) \\ \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O} & \mathrm{E}^{\ominus}=+1.23 \mathrm{~V}---(2)\end{array}$
When dilute sodium chloride is used, the $\underline{E}^{\ominus}\left(\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)$ is less positive than $E^{\ominus}\left(\mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)$and $\underline{\mathrm{H}_{2} \mathrm{O}}$ is preferentially oxidised at the anode to give O_{2} gas, instead of chlorine gas.
(d) The standard electrode potentials, E^{\ominus}, and standard Gibbs free energy changes, ΔG^{\ominus}, of different chlorine-containing species are tabulated below.

	Half-equation	$\boldsymbol{E}^{\circ} / \mathbf{V}$	$\Delta \mathbf{G}^{\ominus} / \mathbf{~ k J ~ m o l}^{-1}$
$\mathbf{1}$	$\mathrm{ClO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	+1.19	-230
$\mathbf{2}$	$2 \mathrm{ClO}_{3}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	+1.47	$?$
$\mathbf{3}$	$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}$	+1.36	-262

These electrode potentials can be summarised using the Latimer diagram shown below. In a Latimer diagram, the most highly oxidised form of the element is on the left, with successively lower oxidation states to the right. The electrode potentials are shown on the arrows.

(i) Calculate ΔG° for half-equation 2.

$$
\begin{align*}
& 2 \mathrm{ClO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \tag{1}\\
& \begin{aligned}
\Delta \boldsymbol{G}^{\circ} & =-n F E^{\circ} \\
& =-(10)(1.47)(96500)=-1418.6=-1420 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\end{align*}
$$

(ii) The standard electrode potential of converting $\mathrm{ClO}_{3}{ }^{-}$to Cl^{-}is found to be +1.45 V , instead of +2.83 V . The number of electrons transferred in each step must be taken into account.

I: Write a half-equation for the conversion of ClO_{3}^{-}to Cl^{-}

II: Using your knowledge of Hess' Law for ΔG^{\ominus} and your answer to (d)(i), show with the aid of an energy cycle that the E^{\ominus} for the conversion of $\mathrm{ClO}_{3}{ }^{-}$to Cl^{-}is +1.45 V .

I : $2 \mathrm{ClO}_{3}^{-}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
Or
$\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$

$$
\Delta G^{\ominus}=?
$$

$$
2 \mathrm{ClO}_{3}^{-}(\mathrm{aq})+12 \mathrm{H}^{+}(\mathrm{aq})+12 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Ans from (b)(i)

$$
\Delta G^{\ominus}=-1418.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (g/aq) }+2 \mathrm{e}^{-}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Applying Hess Law,

$$
\begin{aligned}
& \Delta G^{\ominus}=-1418.6+(-262)=-1680.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& E^{\ominus}=-\left[-1680.6 \times 10^{3} /(12 \times 96500)\right]=+1.45 \mathrm{~V} \text { (shown) }
\end{aligned}
$$

(iii) With the help of the Latimer diagram provided, calculate $E^{\ominus}{ }_{c e l l}$ of the reaction below. Hence, determine its ΔG° cell.

$$
4 \mathrm{ClO}_{3}^{-}(\mathrm{aq}) \longrightarrow 3 \mathrm{ClO}_{4}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Using Latimer diagram: $E^{\ominus}{ }_{\text {cell }}=+1.45-(+1.19)=\underline{+0.26 \mathrm{~V}}$
$1 \mathrm{ClO}_{3}{ }^{-}$ion is reduced to Cl^{-}, gaining 6 electrons.
$3 \mathrm{ClO}_{3}{ }^{-}$ions are oxidised to $3 \mathrm{ClO}_{4}{ }^{-}$ions, losing $3 \times 2=6$ electrons
Amount of electrons transferred $=6 \mathrm{~mol}$
$\Delta G^{\ominus}{ }_{\text {cell }}=-(6)(96500)(+0.26)=-151 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iv) With reference to the Data Booklet, predict what will happen when an excess of acidified hydrogen peroxide solution is added to a solution of $\mathrm{Cl}^{-}(\mathrm{aq})$.
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}$
$2 \mathrm{ClO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{ClO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{E}^{\circ}{ }_{\text {cell }}=(+1.77)-(1.36)=+0.41 \mathrm{~V}>0 \therefore$ reaction is feasible.
$\mathrm{Cl}_{2}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{ClO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{H}^{+}(\mathrm{aq})$
E° cell $=(+1.77)-(+1.47)=\underline{+0.30 \mathrm{~V}}>0 \quad \therefore$ reaction is feasible.
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{ClO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{ClO}_{4}^{-}(\mathrm{aq})$
$\mathrm{E}^{\ominus}{ }_{\text {cell }}=(+1.77)-(+1.19)=+\mathbf{0 . 5 8} \mathrm{V}>0 \therefore$ reaction is feasible.
Cl^{-}will be oxidised to Cl_{2}, then to $\mathrm{ClO}_{3}{ }^{-}$and finally to ClO_{4}^{-}while $\mathrm{H}_{2} \mathrm{O}_{2}$ will be reduced to $\mathrm{H}_{2} \mathrm{O}$.

3 Trisoxazoline are organic molecules that can function as ligands. Despite their huge molecular structure, they are able to form stable complexes with metals. Metal complexes with trisoxazoline are commonly used as catalyst in organic synthesis.
(a) The reaction scheme below illustrates the synthesis of trisoxazoline.

P

(i) Suggest the reagents and conditions required for step I and step II.

Step I: $\mathrm{PCl}_{5}(\mathrm{~s})$, rtp or $\mathrm{PCl}_{3}(\mathrm{~s})$, rtp or $\mathrm{SOCl}_{2}(\mathrm{l})$, rtp

Step II:
 , rtp
(ii) Explain the difference in basicity for N^{1} and N^{2} present in \mathbf{R}.
\mathbf{N}^{2} on amide is neutral as the lone pair of electrons is delocalised with the π-electrons of $\mathbf{C = O}$. Hence lone pair of electrons not available to form dative bond with proton.
N^{1} atom is basic as the lone pair of electrons is available to form dative bond with proton.
(iii) Propose a 2-step reaction scheme to synthesise compound \mathbf{P} from ethene.

P
Trisoxazolines are usually applied to transition metals, such as copper, to form complexes. These complexes are useful in advanced organic synthesis to make specific isomers.

Table 1 shows some properties of the copper complexes, where $\mathrm{K}_{\text {stab }}$ refers to the stability constant of the complex, e.g.

$$
\begin{gathered}
\mathrm{Cu}^{2+}+\mathrm{L} \rightleftharpoons[\mathrm{CuL}]^{2+} \\
\mathrm{K}_{\text {stab }}=\frac{[\mathrm{CuL}]^{2+}}{\left[\mathrm{Cu}^{2+}\right][\mathrm{L}]}
\end{gathered}
$$

Table 1

Complex	$\boldsymbol{\operatorname { l o g }}\left(\mathbf{K}_{\text {stab }}\right)$	Colour	Shape of complex
copper(II)-trisoxazoline	12.9	green	distorted tetrahedral
copper(II)-EDTA	18.8	blue	octahedral
copper(II)-en	18.7	violet	octahedral

(b) Describe the feature of the trisoxazoline molecule that enable it to act as polydentate ligand. Hence, state the type of bond formed between the ligand and the central $\mathrm{Cu}(\mathrm{II})$ ion and give the coordination number of the complex.
 Coordination number is $\mathbf{4}$
(c) (i) Using copper(II)-EDTA as an example, explain why the five d-orbitals are split into two different energy levels.

The lone pair of electrons on EDTA approaches the Cu^{2+} along the axis of octahedral complex.

The $d_{x 2-y 2}$ and $d_{z 2}$ orbitals lie along the $\underline{\mathbf{x}, \mathbf{y}, \mathbf{z} \text { axis will experience } \mathbf{g r e a t e r} \text { inter-electronic }}$ repulsion as the electrons in these d orbitals are pointing towards the lone pairs of electrons from EDTA.

Hence, the five d orbitals will be split into 2 energy levels - the $d_{x y}, d_{y z}$ and $d_{x z}$ orbitals at a lower energy level and the $\mathrm{d}_{\mathrm{z} 2}$ and $\mathrm{d}_{\mathrm{x} 2 \mathrm{y} 2}$ orbitals at a higher energy level.
(ii) Draw the shapes of the d-orbitals at the higher energy level.

(iii) Explain why the copper(II) complexes are coloured.

Presence of ligands splits the d-orbitals into 2 energy levels.
1 of the d-electrons absorbs certain wavelength from the visible light spectrum and undergoes d -d transition.

The d-electron is promoted to a higher energy level. The remaining wavelengths are transmitted and the complementary colour of the wavelength absorbed is observed.
(iv) The visible absorption spectrum of the three complexes is shown below where each peak represents one complex.
[A visible absorption spectrum is a graph depicting the absorption of radiation by a material over a range of visible light wavelengths.]
relative absorbance

Identify the copper(II) complex responsible for each absorption peak. Hence, arrange the three complexes in order of increasing magnitude of their energy gap.

I: copper(II)-en
II : copper(II)-EDTA
III : copper(II)-trisoxazoline
Since $\Delta E \propto \frac{1}{\lambda}$, energy gap in increasing order:
copper(II)-trisoxazoline < copper(II)-EDTA < copper(II)-en
(d) Using Table 1, comment on the spontaneity of forming the respective copper(II) complexes. [2]

```
|G}\mp@subsup{\mathbf{G}}{}{\circ}=-\mathbf{RT}\operatorname{ln}\textrm{K
K
Magnitude of }\Delta\mp@subsup{G}{}{\circ}\mathrm{ :
copper(II)-EDTA > copper(II)-ethylenediamine > copper(II)-trisoxazoline
spontaneity: Cu(II)-EDTA > Cu(II)-en > Cu(II)-trisoxazoline
```

(e) Other than copper(II) ions, it was found that copper(I) ions are also able to form complexes with trisoxazoline.
(i) Predict and explain the colour of solid copper(I)-trisoxazoline complex.

White. The d-orbitals are fully filled in copper(I), no d-d transition.
(ii) Analysis was done on copper(I)-trisoxazoline complex. The relative molecular mass of the complex was apparently 743.0. Further analysis showed that each copper(I) ion is bonded to three nitrogen atoms.

Propose the structure of copper(I)-trisoxazoline complex.
[You may use

Section B

4 (a) At r.t.p, $1.2 \mathrm{dm}^{3}$ of chlorine gas is reacted with 6.7 g of compound $\mathbf{A}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$, to give compound B. On addition of PCl_{5}, \mathbf{A} gives white fumes. Treatment of \mathbf{A} with NaBr and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ under reflux gives a mixture of compounds \mathbf{C} and \mathbf{D}. \mathbf{C} and \mathbf{D} have the same molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2}$ and each contains only one chiral centre.
(i) When NaBr is mixed with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, the following observations are made.

- White fumes produced
- Reddish brown liquid formed
- Pungent gas decolourised purple KMnO_{4}

It is suggested that a displacement reaction occurred first, producing white fumes. Some of the white fumes further react with $\mathrm{H}_{2} \mathrm{SO}_{4}$ via a redox reaction. Using the above information, write the two corresponding chemical equations for this reaction.
$\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HBr}+\mathrm{NaHSO}_{4}$
$2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(ii) Using your answer in (a)(i), deduce the identities of \mathbf{A} to \mathbf{D}.

Amt of $A=6.7 / 134=0.05 \mathrm{~mol}$
Amt of $\mathrm{Cl}_{2}=1.2 / 24=0.05 \mathrm{~mol}$

A has similar ratio of C and H atoms, and no. of $\mathrm{C}>6$
\rightarrow A contains a benzene ring
A undergoes electrophilic addition with chlorine gas
$\rightarrow A$ contains 1 alkene functional group (or $\mathrm{C}=\mathrm{C}$) and B is a halogenoalkane/chloroalkane

A undergoes nucleophilic substitution with $\mathrm{PC} / 5$ to give white fumes of HCl
$\rightarrow A$ is an alcohol

A undergoes both electrophilic addition and nucleophilic substitution to give \mathbf{C} and D.

Since C and D each only contains 1 chiral centre,

A can only be

C and D:

(major)

(minor)
(iii) Account for the relative quantity of compound \mathbf{C} and \mathbf{D} formed.

For compound \mathbf{D}, the benzylic carbocation intermediate is more stable due to resonance / positive charge dispersed into the benzene ring.
(b) E is another constitutional isomer of \mathbf{C} and \mathbf{D}.

A series of chemical experiments were conducted on \mathbf{E}.

Experiment 1:

The reaction kinetics of \mathbf{E} with aqueous sodium hydroxide was determined by monitoring the change in concentration of \mathbf{E} with time.

Experiment 2:

0.2 mol of \mathbf{D} and \mathbf{E} were treated separately with boiling aqueous sodium hydroxide. The products from each compound were then acidified with nitric acid and then treated with silver nitrate solution.
The results obtained are shown below:

	Observation upon adding AgNO $_{3}$	Mass of ppt / g
D	formation of cream-coloured precipitate	75.12
E	formation of cream-coloured precipitate	37.56

(i) Using experiment 1, deduce the rate equation.
using $\left[\mathrm{OH}^{-}\right]=3.0 \mathrm{~mol} \mathrm{dm}^{-3}$ graph,
$\mathbf{t}_{1 / 2}$ is constant at 30 min , reaction is $1^{\text {st }}$ order with respect to E .
OR
using $\left[\mathrm{OH}^{-}\right]=1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ graph,
$t_{1 / 2}$ is constant at 60 min reaction is $1^{\text {st }}$ order with respect to E .

Using initial rate method,
Initial rate for graph where $\left[\mathrm{OH}^{-}\right]=1.5 \mathrm{~mol} \mathrm{dm}^{-3}$
$=0.2 / 110=\underline{0.001818 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}}$

Initial rate for graph where $\left[\mathrm{OH}^{-}\right]=3.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$=0.2 / 52=0.003846 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$
As $\left[\mathrm{OH}^{-}\right]$increases 2 times, initial rate also increases 2 times
$\left(\frac{0.004}{0.00211}=1.90 \approx 2\right)$
Hence, order of reaction with respect to OH^{-}is 1.
Rate $=k[E]\left[\mathrm{OH}^{-}\right]$
(ii) Using Experiment 2 and (b)(i), propose a possible structure of E and draw the mechanism for the reaction of \mathbf{E} with $\mathrm{NaOH}(\mathrm{aq})$.
From (b)(ii), E undergoes $\mathrm{S}_{\mathrm{N}} 2$ mechanism
\rightarrow it is a 1° halogenoalkane
From expt 2, 0.2 mol of \mathbf{E} forms 0.2 mol of AgBr
\rightarrow There is only one Br in the alkyl side chain
E is

(accept any mono substituted position of Br on benzene with 1° or 2° bromoalkane)

(c) Depending on the mechanism, the solvent affects the stability of nucleophile and/or reaction intermediates in the nucleophilic substitution of halogenoalkanes. The table below shows the rate of reaction when different halogenoalkanes and solvents are used.

Solvent	Type
$\mathrm{CH}_{3} \mathrm{OH}$	Protic
$\mathrm{H}_{2} \mathrm{O}$	Protic
$\mathrm{CH}_{3} \mathrm{COOH}$	Protic
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	Aprotic

Dielectric	Relative rates for reaction with $\mathbf{O H}^{-}$	
constant, 33	$\mathbf{1}^{\circ} \mathbf{R X}$ in $\mathbf{S}_{\mathbf{N}} \mathbf{2}$	$\mathbf{3}^{\circ} \mathbf{R X}$ in $\mathbf{S}_{\mathbf{N}} \mathbf{1}$
78	1	4
6	7	150000
21	1	1

Dielectric constant, ε, is a measure of the solvent polarity and ability to insulate charge.
(i) Suggest, using only structure and bonding, the difference between protic and aprotic solvents. [1]

Protic refers to molecules with H atoms that can be used to form hydrogen bond. Aprotic solvents can only form permanent dipole- permanent dipole interactions between molecules/ have no H atoms that can form hydrogen bond
(ii) Explain the effect of solvent on the relative rate of $\mathrm{S}_{\mathrm{N}} 2$ reactions.

For $\mathrm{S}_{\mathrm{N}} 2$, protic solvent like water can form hydrogen bond with OH^{-}. Hence decreasing the nucleophilic ability of OH^{-}and lower the rate of reaction.
While aprotic solvent like $\mathrm{CH}_{3} \mathrm{COCH}_{3}$, do not form hydrogen bond and hence the Ione pair of electron on OH^{-}is more available to attack the electron deficient C on $1^{\circ} \mathrm{RX}$.
(iii) Explain, with an aid of a diagram, how water increases the rate of $\mathrm{S}_{\mathrm{N}} 1$ reaction.

The ion dipole interaction stabilised the carbocation/reaction intermediate
(iv) Name a solvent, other than those given in the table, that will result in a slower rate for $\mathrm{S}_{\mathrm{N}} 1$ than ethanoic acid.
Name of any suitable hydrocarbon e.g Benzene, hexane ..etc

5 (a) Using only the elements C, H and O, draw the structural formulae of three organic compounds, each containing a single carbon atom with an oxidation state of zero, +2 and +4 respectively.

O.S. $=0$

O.S. $=+2$

O.S. $=+4$
(b) Hot, concentrated potassium manganate (VII) oxidises several classes of organic compounds to ketones, carboxylic acids or carbon dioxide. By this means, the structures of compounds can be determined. Some compounds are easily oxidised, while others require longer heating.

The following describes some reactions of compounds \mathbf{F} and \mathbf{K}, and of their oxidation products.
F, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ reacts with excess potassium manganate (VII) to produce single organic products, \mathbf{G}, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$ while $\mathrm{K}, \mathrm{C}_{12} \mathrm{H}_{12}$, reacts with the same reagent to produce $\mathrm{H}, \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$. Carbon dioxide is produced in both reactions in a mole ratio of $2: 1$ respectively. During oxidation of \mathbf{F}, four moles of carbon dioxide were liberated.

Although F reacts with potassium manganate (VII), it gives no reaction with potassium dichromate (VI). When 0.10 mol of \mathbf{F} is reacted with an excess of sodium metal, dm^{3} of hydrogen is formed, measured at room temperature and pressure.
\mathbf{G} reacts with excess concentrated sulfuric acid to give $\mathbf{I}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. Upon further oxidation, \mathbf{I} is found to give J, $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{5}$, and an inorganic by-product.

H gives a positive iodoform test and dissolves in aqueous sodium hydroxide. Upon further oxidation of $\mathbf{H}, \mathbf{L}, \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}$, and a similar inorganic by-product formed from \mathbf{I} is also produced.
(i) Deduce the structure of compounds \mathbf{F} to \mathbf{L}, explaining the chemistry of the reactions described.
\mathbf{F} and \mathbf{K} undergoes strong oxidation with KMnO_{4} to give \mathbf{G} and \mathbf{H}
\rightarrow Since there is a decrease in no of C atoms after oxidation, both F and K must contain alkenes.

F liberates four mole of carbon dioxide
$\rightarrow F$ contains (terminal) alkenes.
F undergoes redox with Na metal
$\rightarrow 0.10 \mathrm{~mol} \equiv 1.2 \mathrm{dm}^{3} \equiv 1 \mathrm{H}_{2} \equiv 1 \mathrm{ROH}$
$\rightarrow \mathrm{F}$ contains only 1 alcohol.

F does not undergo strong oxidation with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$\rightarrow \mathrm{F}$ contains a tertiary alcohol.
F undergoes elimination with excess concentrated sulfuric acid to give $\mathbf{I}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$ $\rightarrow \mathrm{F}$ contains an alcohol.

I further oxidises to give $\mathrm{J}, \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{5}$, and an inorganic by-product
\rightarrow I contains $4 \underline{\text { carboxylic acid and } \underline{\mathrm{CO}}_{2} \text { is the by-product }}$
H undergoes mild oxidation with iodoform
$\rightarrow \mathrm{H}$ contains a terminal methyl ketone
(since it is an [O] product, it cannot be a methyl carbinol)
H dissolves in aqueous sodium hydroxide.
$\rightarrow \mathrm{H}$ contains an acidic group (i.e. - COOH)
L is an oxidised product
$\rightarrow \mathrm{L}$ contains a tricarboxylic acid and the inorganic product is $\underline{\mathrm{CO}_{2}}$.

G	I	J
K	H	L

Note : methyl group can be on any position
(ii) State the type(s) of stereoisomerism shown by compound \mathbf{F} and give one further piece of relevant information about it.

Enantiomerism:

F has no plane of symmetry. OR
F rotates plane polarised light. OR
F has a pair of non-superimposable images.
Cis-trans:
Restricted rotation about C=C OR
two different substituents about each C on $\mathrm{C}=\mathrm{C}$
(iii) Hence, predict the total number of isomers shown by \mathbf{F}.
no of enantiomers present = 4
(iv) When compound \mathbf{K} undergoes prolonged heating with KMnO_{4} to give \mathbf{L}, \mathbf{K} exhibits two types of constitutional isomerism.

Name the specific types of isomerism shown by compound \mathbf{K} and hence, draw the displayed formulae of the isomers.

Positional and Chain isomerism

[Total : 20]

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

CANDIDATE

NAME
CLASS
\square
\square

CHEMISTRY

JC2 Preliminary Examination
Paper 4 Practical
Candidates answer on the Question Paper
Additional Materials:

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Give details of the practical shift and laboratory in the boxes provided.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams, graphs or rough work.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Qualitative Analysis Notes are printed on pages \qquad

Shift
Laboratory

At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part questions.

For Examiner's Use	
1	
2	
3	
4	
TOTAL	

\qquad printed pages and \qquad blank page.

1 You are to determine the concentration of aqueous copper(II) sulfate by titration. The concentration of Cu^{2+} ions in a solution can be found by reaction with an excess of aqueous iodide ions to produce iodine. The amount of iodine formed can be found by titration with thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

FB 1 is aqueous copper(II) sulfate, CuSO_{4}.
FB 2 is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FB 3 is aqueous potassium iodide, KI.
starch indicator

(a) Method

(i) 1. Fill the burette with FB 2.
2. Using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FB 1 into a conical flask.
3. Use an appropriate measuring cylinder, transfer $10 \mathrm{~cm}^{3}$ of FB 3 to the same conical flask.
4. Titrate this mixture with FB 2 until the colour of the mixture changes from brown to yellow-brown. An off-white precipitate will also be present in the flask throughout the titration.
5. Add 5 drops of starch indicator.
6. Continue the titration until the blue-black colour of the starch-iodine complex just disappears leaving the off-white precipitate.
7. Record your titration results in the space provided below. Make certain that your recorded results show the precision of your working.
8. Repeat points $\mathbf{1}$ to $\mathbf{7}$ as necessary until consistent results are obtained.

Results

Initial burette reading $/ \mathrm{cm}^{3}$	0.00	0.00
Final burette reading $/ \mathrm{cm}^{3}$	25.10	25.10
Volume of FB 2 used $/ \mathrm{cm}^{3}$	25.10	25.10

(ii) From your titrations, obtain a suitable volume of FB 2 to be used in your calculations. Show clearly how you obtained this volume.

Volume of FB $2=\frac{25.10+25.10}{2}=25.10 \mathrm{~cm}^{3}$
volume of FB $2=$
(b) (i) The equations for the formation of iodine and its reaction with thiosulfate ions are given below.

$$
\begin{gathered}
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cul}+\mathrm{I}_{2} \\
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
\end{gathered}
$$

Calculate the amount of thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, present in the volume of FB 2 in (a)(ii).
amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{0.1 \times(a)(i i)}{1000}=\frac{0.1 \times 25.10}{1000}=2.51 \times 10^{-3} \mathrm{~mol}$ amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=$
(ii) Using the equations above, calculate the amount of Cu^{2+} ions present in $25.0 \mathrm{~cm}^{3}$ of FB 1.
$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \equiv \mathrm{I}_{2} \equiv 2 \mathrm{Cu}^{2+}$
amount of $\mathrm{Cu}^{2+}=(\mathrm{b})(\mathrm{i})=2.51 \times 10^{-3} \mathrm{~mol}$
amount of $\mathrm{Cu}^{2+}=$
(iii) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of copper(II) sulfate in FB 1.

$$
\text { concentration of } \begin{aligned}
\mathrm{CuSO}_{4} & =\frac{(b)(i i) \times 1000}{25.0}=\frac{2.51 \times 10^{-3} \times 1000}{25.0} \\
& =0.100 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

concentration of $\mathrm{CuSO}_{4}=$
(c) Two students repeated the experiment but each obtained different values for the concentration of CuSO_{4}.

The students each suggested possible improvements.

Student 1 suggested that a larger volume of potassium iodide, FB 3, should be added. Student 2 suggested that the contents of the conical flask should be filtered before titration.

Comment on the effectiveness of each of these possible improvements.
Explain your answers.
Student 1 No effect because KI (FB 3) already in excess.

Student 2 Not effective because some iodine stays on the filter paper.
(d) The maximum error in each burette reading is $\pm 0.05 \mathrm{~cm}^{3}$.

The maximum error in each titration is therefore $\pm 0.10 \mathrm{~cm}^{3}$.
The $25.0 \mathrm{~cm}^{3}$ pipette used in this titration, is labelled with an error of $\pm 0.06 \mathrm{~cm}^{3}$.
Explain why the maximum error when $25.0 \mathrm{~cm}^{3}$ of solution is run from a pipette is only $\pm 0.06 \mathrm{~cm}^{3}$ and not $\pm 0.12 \mathrm{~cm}^{3}$.

The mark on the pipette was only read once.
(e) Considering the maximum errors from pipette and burette, calculate the total percentage error in one titration.
error from pipette $=\frac{0.06}{25.0} \times 100 \%=0.24 \%$
$\%$ error from burette $=\frac{2 \times 0.05}{25.70(\text { volume from } 1 \text { titration })} \times 100 \%=0.39 \%$
Total \% error $=0.24+0.39=0.63 \%$

2 You are to determine the enthalpy change of reaction, $\Delta \mathrm{H}$, for the reaction shown below.

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Since copper is an unreactive metal it does not react directly with dilute acids. You will therefore need to find the enthalpy change of reaction for two reactions that do occur. The equations for these two reactions are below.

$$
\begin{array}{ll}
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \text { Reaction } 1 \\
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) & \text { Reaction } 2
\end{array}
$$

You will carry out experiments to find the enthalpy changes for each of Reaction 1 and Reaction 2 and use these values to calculate the enthalpy change for the reaction of copper with sulfuric acid.

Determining the enthalpy change for Reaction 1

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \text { Reaction } 1
$$

I (a) Method

FB 4 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FB 5 is magnesium powder, Mg .
Read through the method before you start any practical work and prepare a suitable table for your results.

1. Weigh the stoppered weighing bottle containing FB 5. Record the mass.
2. Support the styrofoam cup in the $250 \mathrm{~cm}^{3}$ beaker.
3. Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FB 4 into the styrofoam cup.
4. Measure the temperature of FB 4 in the styrofoam cup and start the stop watch. Record this temperature as being the temperature at time $=0$.
5. Measure, and record, the temperature of this FB 4 every half minute for 2 minutes.
6. At time $=2.5$ minutes, add FB 5 to the acid and stir carefully to reduce acid spray.
*Caution : Inhalation of the fumes may cause choking.
7. Measure the temperature of the mixture in the cup at time $=3$ minutes and then every half minute up to time $=7$ minutes.
8. Continue stirring occasionally throughout this time.
9. Weigh the weighing bottle that had contained FB 5. Record the mass.
10. Calculate and record the mass of FB 5 added to the sulfuric acid.
11. Discard the used styrofoam cup.

Mass of weighing bottle and FB 5 before transfer $/ \mathrm{g}$	
Mass of weighing bottle and residual FB $5 / \mathrm{g}$	
Mass of FB 5 used $/ \mathrm{g}$	0.195

Time $/ \mathrm{min}$	Temperature $/{ }^{\circ} \mathrm{C}$
0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	
5.5	
6.0	
6.5	
7.0	

(b) (i) On the grid below plot a graph of temperature (y-axis) against time (x-axis).

	T	T	T	T	T	T	T	T	T	T				\square		-		,			\square	\square	T	T	-	-			
,																													
,																													
\|																													
																													-
																													\bigcirc
																									,				
												-																	
																													\square
			-		-																								
,																													

(ii) Complete the graph by inserting two, straight lines of best fit:

- one to show the temperature up to time $=2.5$ minutes,
- one to show the temperature after time $=2.5$ minutes.
(iii) From your graph, use the two straight lines of best fit to calculate the change in temperature at time $=2.5$ minutes.
(c) Calculations
(i) In the reaction in (a), the sulfuric acid was in excess. Without carrying out any additional tests, what observation could you have made during your experiment to confirm this?

All the magnesium / solid dissolved / disappeared or all solid / Mg has
gone/been üsed ü ou no solid / M̈g léft
(ii) Calculate the energy change that occurred during the reaction in (a).
[Assume that 4.2 J is needed to raise the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]
Energy change $=25 \times 4.2 \times \mathrm{b}(\mathrm{iii})=\mathrm{XXX} \mathrm{J}$
energy change $=$
(iii) Use your answer to (ii) to calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction between sulfuric acid and magnesium.
[$A_{\mathrm{r}}: \mathrm{Mg}, 24.3$]

$$
\begin{gathered}
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \text { Reaction } 1 \\
\Delta \mathrm{H}=-\frac{(\text { ii }) \times 24.3}{1000 \times \text { mass of } \mathrm{Mg}}=-\mathrm{xxx} \mathrm{~kJ} \mathrm{~mol}{ }^{-1}
\end{gathered}
$$

$$
\begin{equation*}
\text { enthalpy change for Reaction } 1 \text { = } \tag{1}
\end{equation*}
$$

Determining the enthalpy change for Reaction 2

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \quad \text { Reaction } 2
$$

(d) Method

FB 6 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate, CuSO_{4}.
FB 7 is magnesium powder, Mg.
Read through the method before you start any practical work and prepare a suitable table for your results.

1. Weigh the weighing bottle containing FB 7. Record the mass.
2. Support the styrofoam cup in the $250 \mathrm{~cm}^{3}$ beaker.
3. Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FB 6 into the styrofoam cup.
4. Measure the temperature of FB 6 in the styrofoam cup and record the temperature.
5. Add the FB 7 to the FB 6 in the cup and stir the mixture constantly.
6. Measure and record the maximum temperature reached during the reaction.
7. Calculate and record the maximum temperature change that occurred during the reaction.
8. Weigh the weighing bottle that had contained FB 7. Record the mass.
9. Calculate and record the mass of FB 7 added to the copper(II) sulfate.
10. Empty the contents of the styrofoam cup into the bottle labelled waste.

Mass of weighing bottle and FB 7 before transfer /g	
Mass of weighing bottle and residual FB $7 / \mathrm{g}$	
Mass of FB 7 used $/ \mathrm{g}$	

Initial temperature $/{ }^{\circ} \mathrm{C}$	
Maximum temperature $/{ }^{\circ} \mathrm{C}$	
Maximum temperature change $/{ }^{\circ} \mathrm{C}$	

(e) Calculations
(i) Show, using a suitable calculation, that the copper(II) sulfate was in excess in the reaction.
[Ar: Mg, 24.3]

Amount of $\mathrm{CuSO}_{4}=\frac{25 \times 1}{1000}=0.025 \mathrm{~mol}$
Amount of $\mathrm{Mg}=\frac{\text { mass of } \mathrm{FB} 7}{24.3}=\mathrm{xxx} \mathrm{mol}$
Hence CuSO_{4} is in excess.
(ii) Hence, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction between magnesium and copper(II) sulfate.
[Assume that 4.2 J is needed to raise the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]

$$
\begin{gathered}
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \quad \text { Reaction } 2 \\
\Delta \mathrm{H}=\frac{25 \times 4.2 \times \Delta T}{\mathrm{amt} \text { of } \mathrm{Mg} \text { from (i) }}=\mathrm{xxx} \mathrm{~kJ} \mathrm{~mol}{ }^{-1} \\
\text { enthalpy change for Reaction } 2=\ldots \ldots \ldots
\end{gathered}
$$

Enthalpy change for Reaction 3

Reaction 3 is shown below.

$$
\mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(f) Use your values for the enthalpy changes for Reactions 1 and 2 to calculate the enthalpy change for Reaction 3.

$$
\begin{array}{ll}
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \text { Reaction } 1 \\
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) & \text { Reaction } 2
\end{array}
$$

Show clearly how you obtained your answer.
(If you were unable to calculate the enthalpy changes for Reactions 1 and 2, you should assume that the value for Reaction 1 is $-444 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that the value for Reaction 2 is $-504 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Note: these are not the correct values.)

$\Delta \mathrm{H}$ reaction $3=\Delta \mathrm{H}$ reaction $1-\Delta \mathrm{H}$ reaction $2=\mathrm{xxx}$
enthalpy change for Reaction 3 =
(g) (i) The method you used to determine the enthalpy change for Reaction 1 was more accurate than the method you used to determine the enthalpy change for Reaction 2. Suggest why the method used for Reaction 2 was less accurate. Explain your answer.

```
\(\cdot\) Lower \(\Delta \mathrm{H}\) and so higher \% error
- \(\cdot\) No correction made for loss of heat on cooling
- -Some bubbles \(\%\) gas \(\% \cdot \mathrm{H} 2\) in reaction 2 -so wrong reaction taking place
-o.Not all.M. reacts. \(/\) reaction does not go to completion in 2. .so not al energy..
...released.).
- Reaction 2 slower so more heat loss
```

(ii) A student suggested that the accuracy of the method used for Reaction 2 could be improved by using a larger volume of copper(II) sulfate. Is this a correct suggestion? Give a reason for your answer.

- No; -since (larger-volume of solution means) smaller $\Delta T \cdot O R$.
.Yes;-since there would be a smaller. T. fise so less heat would be lost:

3 Qualitative Analysis

At each stage of any test, you are to record details of the following.

- Colour changes seen
- The formation of any precipitate
- The solubility of such precipitates in an excess of the reagent added

Where gases are released, they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
FB 8 is a solution containing 2 cations and 1 anion.
(a)

Test	Procedure	Observation
$\mathbf{1}$	To 1 cm depth of FB 8 in a test tube, add aqueous ammonia until it is in excess.	(grey) Green ppt formed, insoluble in excess NH_{3}. Green ppt turned brown on contact with air
$\mathbf{2}$	To 1 cm depth of FB 8 in a boiling tube, add aqueous sodium hydroxide until it is in excess.	Green ppt formed, insoluble in excess NaOH.
Then heat the boiling tube gently with care.	Gas evolved that turned moist red litmus paper blue. Green ppt turned brown (grey) upon heating.	
$\mathbf{3}$	To the mixture from Test 2, add 1 cm depth of aqueous hydrogen peroxide. Shake the boiling tube gently.	Ppt / solid turned brown / red-brown. Effervescence observed. Gas evolved relights a glowing splint / glows brighter.
$\mathbf{4}$	To 1 cm depth of FB 8 in a test tube, add aqueous barium chloride, followed by dilute hydrochloric acid.	White ppt formed, insoluble in HCl.

Using your observations above, identify the ions in FB 8. Give evidence to support your conclusion.
Fe^{2+} : From Tests 1 and 2, green ppt formed, turned brown on contact with air, insoluble in excess NaOH and NH_{3}
$\mathrm{NH}_{4}{ }^{+}$: From Test 2, gas evolved that turned moist red litmus paper blue when warmed
(b) with NaOH .
$\mathrm{SO}_{4}{ }^{2 \cdots}$: From Test 4, white ppt formed when BaCl_{2} is added, insoluble in HCl .
(c) What type of reaction has taken place in Test 3? Explain your answer.

Redox reaction.

Explanation:

- Iron(II) ions converted / oxidised to iron(III) ions
- Hydrogen peroxide converted / reduced to oxygen gas.
- Hydrogen peroxide decomposed to give oxygen gas
(d) FB 9 is an aqueous solution, containing one cation and one anion.

Carry out the following tests in test-tubes.
Complete the table by recording your observations.

Test	Procedure	Observations
$\mathbf{5}$	To 1 cm depth of FB 9, add aqueous sodium hydroxide until it is in excess.	• No ppt formed.
$\mathbf{6}$	To 1 cm depth of FB 9, add a piece of magnesium ribbon.	Effervescence observed. Gas evolved extinguished lighted splint with a 'pop' sound.
$\mathbf{7}$	To 1 cm depth of FB 9 in a test tube, add 2 drops of aqueous silvernitrate, followed ammonia until in excess.	White ppt formed, soluble in NH_{3} (aq) to form a colourless solution.

(e) Using your observations above, identify the ions in FB 9. Give evidence to support your conclusion.
H^{+}: hydrogen gas evolved, extinguished lighted splint with 'pop' sound.
Cl : White ppt formed, soluble in $\mathrm{NH}_{3}(\mathrm{aq})$ to form a colourless solution.

4 Many transition metal complex ions are coloured. It is possible to use this property to determine the concentration of a solution of a coloured ion. A few cm^{3} of the solution is placed inside a spectrometer.

A spectrometer measures the amount of light that is absorbed when a specific wavelength of visible light is shone through a coloured solution. It does this by comparing the amount of light passing through the sample with the amount of light passing through the pure solvent. The amount of light absorbed is expressed as an absorbance value, The more concentrated the solution, the higher the absorbance value.

Beer-Lambert's Law states that the absorbance values, A, is directly proportional to the concentration of absorbing species, c, as shown below. The general Beer-Lambert's Law is usually written as,

$$
A=\varepsilon c l
$$

Where ε is the molar extinction coefficient and I is the path length, which is usually 1.0 cm .
This equation can be used to calculate the absorbance value when the concentration of copper(II) ions is known.

You may assume that you are provided with the following in the subsequent parts of the question.

- FB1 from Question 1
- solid hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$;
- access to a spectrometer and instructions for its use;
- graph paper;
- the apparatus and chemicals normally found in a school or college laboratory.
(a) The spectrometer is set to use the wavelength of light that is absorbed most strongly by the copper(II) ions.

Suggest a colour in the visible spectrum from which a suitable wavelength of light might be chosen. Explain your answer.

Orange. Cu^{2+} is blue in colour. Hence, it will absorb colours that are complementary to blue.
(b) Spectrometry can be used to determine the concentration of a solution of aqueous copper(II) sulfate. A series of known, but different, concentrations of copper(II) sulfate is prepared. A spectrometer is used to measure the absorbance of each solution.

According to Beer-Lambert's Law, a graph of absorbance against concentration is then plotted. This graph is known as calibration line.

The experiment is then repeated using a solution of unknown concentration. By comparing the absorbance of this solution with the calibration line, the concentration of copper(II) ions in the unknown solution can be determined.
Propose a simple plan on how you would prepare

- a $100.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{moldm}^{-3}$ standard aqueous copper(II) sulfate;
- a suitable range of diluted solutions of accurate concentrations

You are to show detailed calculations and suitable tables (where appropriate) in your answer.
(i) a $100.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{moldm}^{-3}$ standard aqueous copper(II) sulfate;

Preparation of the $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous copper (II) sulfate standard solution

Amount of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ needed $=(100 / 1000) \times 1=0.100$
Mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ needed $=0.100 \times(63.4+32.1+16 \times 4+5 \times 18)=24.95 \mathrm{~g}$

1. Weigh accurately about 24.95 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ using a clean, dry weighing bottle using a mass balance by recording the mass of the $\mathrm{CuSO}_{4.5} \mathrm{H}_{2} \mathrm{O}$ and weighing bottle as shown in the table below.

Mass reading table

Mass of weighing bottle with $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$	\boldsymbol{x}
Mass of empty weighing bottle / g	\boldsymbol{y}
Mass of CuSO $4.5 \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$	$\boldsymbol{x}-\boldsymbol{y}$

2. Transfer the weighed solid into a $100 \mathrm{~cm}^{3}$ beaker and dissolve it using distilled water and stir.
3. Transfer the solution and washings into a $100 \mathrm{~cm}^{3}$ volumetric flask.
4. Reweigh the empty weighing bottle and record its mass.
5. Make up to the mark with distilled water and shake well to obtain a homogeneous solution.
(ii) a suitable range of diluted solutions of accurate concentrations, keeping the total volume of each solution to be constant at $20.00 \mathrm{~cm}^{3}$

Preparation of a suitable range of diluted standard solutions

6 different solutions with different concentrations of $\mathrm{CuSO}_{4}(\mathrm{aq})$ were prepared, as shown in the following table:

Table 2

Solution	Volume of 1.0 moldm $^{-3}$ of CuSO (aq) $/ \mathrm{cm}^{3}$	Volume of deionized water $/$ $\mathbf{c m}^{3}$	Total volume $/ \mathbf{c m}^{3}$	$\left[\mathrm{CuSO}_{4}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-}$ 3	Absorbance value
1	20.00	0.00	20.00	1.000	
2	10.00	10.00	20.00	0.500	
3	5.00	15.00	20.00	0.250	
4	2.50	17.50	20.00	0.125	
5	1.50	18.50	20.00	0.075	
6	0.50	19.50	20.00	0.025	

1. To prepare $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{CuSO}_{4}(\mathrm{aq})$, add $10.00 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CuSO}_{4}$ standard solution into a $50 \mathrm{~cm}^{3}$ beaker using a burette.
2. Using a separate burette, add $10.00 \mathrm{~cm}^{3}$ of deionised water into the beaker and stir using a glass rod to obtain a homogenous solution.
3. Repeat the above steps to obtain diluted solutions of different concentrations using the volumes in Table 2.
(c) Using the solutions prepared in (b), the absorbance value of each copper(II) sulfate solution can be determined and hence a calibration line can be obtained via the spectrometer.

Describe a plan to determine the concentration of FB 1.
Your plan should include details of:

- calculation of the absorbance value for each copper(II) sulfate solution prepared in (b), given ε of CuSO_{4} is $2.81 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$.
- a sketch of the calibration line you would expect to obtain;
- a brief outline of how the results would be obtained.
- how the calibration line would be used to determine the concentration of copper(II) ions in FB 1.
Table of results

Solution	$\left[\mathrm{CuSO}_{4}\right] / \mathrm{mol} \mathrm{dm}$	
$\mathbf{- 3}$	Absorbance value	
$\mathbf{1}$	1.000	2.81
$\mathbf{2}$	0.500	1.41
$\mathbf{3}$	0.250	0.70
$\mathbf{4}$	0.125	0.35
$\mathbf{5}$	0.075	0.21
$\mathbf{6}$	0.025	0.07

Using the spectrometer

1. Spectrometer is set un to absorh the wavelenath of orance (600 nm).
2. A few cm^{3} of each of the $6 \mathrm{CuSO}_{4}$ solutions are run by the spectrometer and the absorbance values are recorded in Table 2.
3. Plot a graph of absorbance value versus $\left[\mathrm{CuSO}_{4}\right]$.
4. Draw the best-fit straight line passing through the origin. This is the calibration line.

Analysing solution FB1

1. Run a few cm^{3} of FB1 in the spectrometer and record the absorbance value, A_{x}.
2. Using the graph drawn earlier, a horizontal line is drawn from this value to intersect the calibration line. By drawing a vertical line from the intersection point, $\left[\mathrm{Cu}^{2+}\right]$ in FB1 can be determined.
(d) Given that the absorbance for FB 1 is 0.286 , calculate the concentration of FB 1.

Applying Beer-Lambert's Law, A $=\varepsilon \mathrm{cl}$
$0.286=(2.81)(c)(1)$
$\mathrm{c}=\underline{\mathbf{0} .105 \mathrm{moldm}^{-3}}$

Qualitative Analysis Notes
[ppt. = precipitate]
(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $A \mathrm{P}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}), \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess
$\begin{array}{\|l\|} \hline \text { zinc, } \\ \mathrm{Zn}^{2+}(\mathrm{aq}) \end{array}$	white ppt. soluble in excess	white ppt. soluble in excess

(b) Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}$ (aq)	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	SO2 liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

