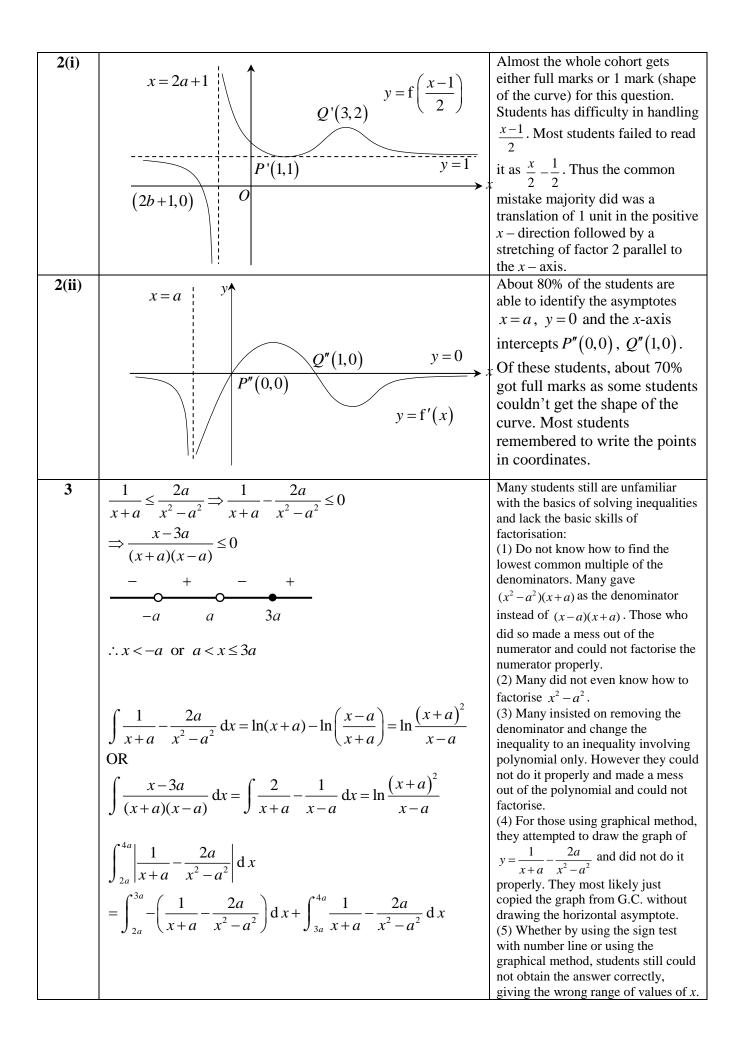
1	The graph of $y = \frac{x-1}{ax^2 + bx + c}$, where <i>a</i> , <i>b</i> and <i>c</i> are non-zero constants, has a turning point		
	at $(-1,1)$, and an asymptote with equation $x = -\frac{1}{3}$. Find the values of <i>a</i> , <i>b</i> and <i>c</i> . [5]		
2	The diagram below shows the graph of $y = f(x)$.		
	Q(1,2)		
	y = f(x)		
	P(0,1) $y=1$		
	(b,0) O x		
	$(b,0) \left \begin{array}{c} x = a \end{array} \right ^O$		
	The graph passes through the point $(b,0)$ and has turning points at $P(0,1)$ and $Q(1,2)$. The		
	lines $y = 1$ and $x = a$, where $b < a < -\frac{1}{2}$, are asymptotes to the curve.		
	On separate diagrams, sketch the graphs of		
	(i) $y = f\left(\frac{x-1}{2}\right),$ [3]		
	(ii) $y = f'(x)$, [3]		
	labelling, in terms of a and b where applicable, the exact coordinates of the points corresponding to P and Q , and the equations of any asymptotes.		
3	Solve the inequality $\frac{1}{x+a} \le \frac{2a}{x^2-a^2}$, leaving your answer in terms of a, where a is a positive		
	real number. [3]		
	Hence or otherwise, find $\int_{2a}^{4a} \left \frac{1}{x+a} - \frac{2a}{x^2 - a^2} \right dx$ exactly. [4]		
4	(i) Expand $(k+x)^n$, in ascending powers of x, up to and including the term in x^2 , where		
	k is a non-zero real constant and n is a negative integer.[3](ii) State the range of values of x for which the expansion is valid.[1]		
	(ii) State the range of values of x for which the expansion is valid. [1] (iii) In the expansion of $(k + y + 3y^2)^{-3}$, the coefficient of y^2 is 2. By using the expansion		
5	In (i), find the value of k. [3] The points O, A and B are on a plane such that relative to the point O, the points A and B have non-parallel position vectors a and b respectively.		
	The point C with position vector \mathbf{c} is on the plane OAB such that OC bisects the angle AOB.		
	Show that $\left(\frac{\mathbf{a}}{ \mathbf{a} } - \frac{\mathbf{b}}{ \mathbf{b} }\right) \cdot \mathbf{c} = 0$. [2]		

	The	The lines AB and OC intersect at P. By first verifying that \overrightarrow{OC} is parallel to $\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} }$, show		
		the ratio of $AP : PB = \mathbf{a} : \mathbf{b} $. [6]		
6		It is given that $e^y = (1 + \sin x)^2$.		
	(i)	Show that		
		$e^{y}\left[\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2}\right] = 2\left(\cos 2x - \sin x\right).$		
		By repeated differentiation, find the series expansion of y in ascending powers of x ,		
		up to and including the term in x^3 , simplifying your answer. [5]		
	(ii)	Show how you can use the standard series expansion(s) to verify that the terms up to		
		x^3 for your series expansion of y in (i) are correct. [3]		
7	(a)	Given that $2z+1 = w $ and $2w-z = 4+8i$, solve for w and z . [5]		
	(b)	Find the exact values of x and y, where $x, y \in \Box$, such that $2e^{-\left(\frac{3+x+iy}{i}\right)} = 1-i$. [4]		
8	The	curve C and the line L have equations $y = x^2$ and $y = \frac{1}{2}x - 2$ respectively.		
	(i)	The point A on C and the point B on L are such that they have the same x-coordinate.		
		Find the coordinates of A and B that gives the shortest distance AB . [3]		
	(ii)	The point P on C and the point Q on L are such that they have the same y-coordinate.		
	(iii)	Find the coordinates of P and Q that gives the shortest distance PQ . [3] Find the exact area of the polygon formed by joining the points found in (i) and (ii). [2]		
	(iv)	A variable point on the curve C with coordinates (s, s^2) starts from the origin O and		
		moves along the curve with s increasing at a rate of 2 units/s. Find the rate of change of the area bounded by the curve, the y-axis and the line $y = s^2$, at the instant when		
9	(a)	$s = \sqrt{2}$. [4] By writing		
		$\sin\left(x+\frac{1}{4}\right)\pi-\sin\left(x-\frac{3}{4}\right)\pi$		
		in terms of a single trigonometric function, find $\sum_{x=1}^{n} \cos\left(x - \frac{1}{4}\right)\pi$, leaving your answer		
		in terms of n . [4]		
	(b)	The function f is defined by		
		$f: x \mapsto \sin\left(x + \frac{1}{4}\right)\pi - \sin\left(x - \frac{3}{4}\right)\pi, x \in \Box, a \le x \le 1.$		
		(i) State the range of f and sketch the curve when $a = -1$, labelling the exact coordinates of the points where the curve crosses the x- and y- axes. [3]		
		(ii) State the least value of a such that f^{-1} exists, and define f^{-1} in similar form. [3]		
		The function g is defined by		
		$g: x \mapsto \frac{2x}{1-x}, x \in \Box, x \ge \frac{13}{5}.$		

		Given that fg exists, find the greatest value of <i>a</i> , and the corresponding range of
	fg. [3]	
10	disbu year j of eac	 e and Benny each take a \$50 000 study loan for their 3-year undergraduate program, rsed on the first day of the program. The terms of the loan are such that during the 3-period of their studies, interest is charged at 0.1% of the outstanding amount at the end ch month. Upon graduation, interest is charged at 0.375% of the outstanding amount at nd of each month. Since the interest rate is lower during her studies, Abbie decides that she will make a constant payment at the beginning of each month from the start of the program for its entire duration. (i) Find the amount, correct to the nearest cent, Abbie needs to pay at the beginning of each month so that the outstanding amount after interest is charged remains at \$50 000 at the end of every month. (ii) After graduating, Abbie intends to increase her payment to a constant \$k\$ at the beginning of every month. Show that the outstanding amount Abbie owes the
		bank at the end of n months after graduation, and after interest is charged, is
		$\$ \left[1.00375^{n} \left(50000 \right) - \frac{803}{3} k \left(1.00375^{n} - 1 \right) \right]. $ [2]
	(b)	 (iii) Abbie plans to repay her loan within 10 years after graduation. Determine if she can do this with a monthly instalment of \$500, justifying your answer. [1] Find the amount she needs to pay so that she fully repays her loan at the end of exactly 10 years after graduation, leaving your answer to the nearest cent. [2] Benny wishes to begin his loan repayment only after graduation. Like Abbie, he aims to repay the loan at the end of exactly 10 years after graduation.
		Leaving your answer to the nearest cent, find[3](i) the constant amount Benny needs to pay each month in order to do this,[3](ii) the amount of interest Benny pays altogether.[2]
11	(i)	Show that for any real constant <i>k</i> ,
		$\int t^2 e^{-kt} dt = -e^{-kt} \left(\frac{a}{k} t^2 + \frac{b}{k^2} t + \frac{c}{k^3} \right) + D,$
		where D is an arbitrary constant, and a , b , and c are constants to be determined. [3]
	On the day of the launch of a new mobile game, there were 100,000 players. After t months the number of players on the game is x, in hundred thousands, where x and t are continuous quantities. It is known that, on average, one player recruits 0.75 players into the game per month, while the number of players who leave the game per month is proportional to t^2 . (ii) Write down a differential equation relating x and t.	
	(iii)	Using the substitution $x = u e^{\frac{3}{4}t}$, show that the differential equation in (ii) can be reduced to
		$\frac{\mathrm{d}u}{\mathrm{d}t} = -pt^2\mathrm{e}^{-\frac{3}{4}t},$
		where p is a positive constant. Hence solve the differential equation in (ii), leaving your answer in terms of p . [5]
	(iv)	For $p = \frac{1}{3}$, find the maximum number of players on the game, and determine if there
	(v)	 will be a time when there are no players on the game. [2] Find the range of values of p such that the game will have no more players after some time. [2]

ANNEX B

ACJC H2 Math JC2 Preliminary Examination Paper 1


QN	Topic Set	Answers	
1	Graphs and		
	Transformation	a = 3, b = 7 and $c = 2$. (i) $P(1, 1), Q(3, 2), x = 2a + 1, y = 1$;	
2	Graphs and		
	Transformation	(ii) $P(0, 0), Q(1, 0), x = a, y = 0.$	
3	Integration techniques	$x < -a$ or $a < x \le 3a$; $\ln \frac{75}{64}$.	
4	Binomial Expansion	(i) $k^n \left(1 + \frac{n}{k} x + \frac{(n)(n-1)}{2k^2} x^2 + \dots \right);$ (ii) $ k < \dots < k $	
		(ii) $- k < x < k ;$	
5	Vectors	(iii) 0.642.	
5	Vectors		
6	Maclaurin series	(i) $y = 2x - x^2 + \frac{1}{3}x^3 +;$	
7	Complex numbers	(a) $z = 2$, $w = 3 + 4i$; (b) $x = -\frac{\pi}{4} - 3$, $y = \frac{1}{2} \ln 2$.	
8	Differentiation & Applications	(i) $A\left(\frac{1}{4}, \frac{1}{16}\right) \& B\left(\frac{1}{4}, -\frac{15}{8}\right);$	
		(ii) $P\left(\frac{1}{4}, \frac{1}{16}\right) \& Q\left(\frac{33}{8}, \frac{1}{16}\right);$	
		(iii) $\frac{961}{256}$;	
		(iv) 8 units ² /s	
9	Functions	(a) $\frac{1}{2}\sin\left(n+\frac{1}{4}\right)\pi-\frac{1}{2\sqrt{2}};$	
		(b)(i) $R_{\rm f} = \left[-2, 2\right], \left(-\frac{1}{4}, 0\right), \left(\frac{3}{4}, 0\right), \left(0, \sqrt{2}\right);$	
		(b)(ii) $a = \frac{1}{4}, f^{-1}: x \mapsto \frac{1}{\pi} \cos^{-1}\left(\frac{x}{2}\right) + \frac{1}{4}, x \in \left[-\sqrt{2}, 2\right];$	
		(b)(iii) greatest value of <i>a</i> is $-\frac{13}{4}$, $R_{\rm fg} = \left[-2, \sqrt{2}\right)$.	
10	AP and GP	(a)(i) \$49.95; (iii) No, \$516.26 per month; (b)(i) \$535.17 per month; (ii) \$14220.43	
11	Differential Equations	(i) $-e^{-kt}\left(\frac{1}{k}t^2 + \frac{2}{k^2}t + \frac{2}{k^3}\right) + D$	
		(ii) $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3}{4}x - pt^2$	

(iii) $x = p\left(\frac{4}{3}t^2 + \frac{32}{9}t + \frac{128}{27}\right) + De^{\frac{3}{4}t};$
(iv) max no of players on the game = 365 000; yes, $x = 0$ when $t = 4.35$ months;
(v) $p > \frac{27}{128} = 0.211$.

2017 ACJC JC2 H2 Mathematics 9758

Preliminary Examination Paper 1 Markers Report

Qns	Solutions	Remarks
1	Passes through $(-1,1)$: $1 = \frac{-2}{a-b+c} \implies a-b+c = -2$ (1) Turning point at $(-1,1)$: $\frac{dy}{dx}\Big _{x=-1} = 0$	Some students forgot that the turning point (-1,1) lies on the curve and failed to substitute the point into the given equation to get an essential equation required for solving the unknowns.
	$dx _{x=-1}$ now $\frac{dy}{dx} = \frac{(ax^2 + bx + c) - (x - 1)(2ax + b)}{(ax^2 + bx + c)^2}$ Hence $\frac{(a - b + c) - (-2)(-2a + b)}{(a - b + c)^2} = 0$ $\Rightarrow (a - b + c) - (-2)(-2a + b) = 0$ $\Rightarrow -3a + b + c = 0$ (2) When $x = -\frac{1}{3}$, $ax^2 + bx + c = 0$: Hence $\frac{a}{9} - \frac{b}{3} + c = 0$ (3) Solving (1), (2) and (3) simultaneously, we get $a = 3$, $b = 7$ and $c = 2$.	Some students made mistakes when differentiating using the product or quotient rule, or incorrectly rewrote y as $y = (x-1)(ax^2 + bx + c)$ instead of $y = (x-1)(ax^2 + bx + c)^{-1}$ which also resulted in an incorrect derivative. Some students did not know how to handle the information given on the asymptote. Some completed the square or did long division (both not necessary) and came up with an incorrect equation/conclusion.
		Some wrongly assumed that since $x = -\frac{1}{3}$ is an asymptote, therefore, $\rightarrow ax^2 + bx + c = \left(x + \frac{1}{3}\right)(x - c)$ $\rightarrow ax^2 + bx + c = (3x + 1)(x - c)$ $\rightarrow ax^2 + bx + c = \left(x + \frac{1}{3}\right)^2$ $\rightarrow ax^2 + bx + c = (3x + 1)^2$ which made assumptions on the values of <i>a</i> ; those who assumed <i>a</i> =3 might have obtained the same final answer because <i>a</i> happened to be 3 in this case, but the method was incorrect.

$$\begin{aligned} \int_{2z}^{z_0} -\left(\frac{1}{x+a} - \frac{2a}{x^2-a^2}\right) dx + \int_{z_0}^{z_0} \frac{1}{x+a} - \frac{2a}{x^2-a^2} dx \\ &= -\left[\ln\left(\frac{(x+a)^2}{x-a}\right)_{z_0}^{z_0} + \left(\ln\left(\frac{(x+a)^2}{x-a}\right)\right)_{z_0}^{z_0} + \left(\ln\left(\frac{(x+a)^2}{2a}\right)\right)_{z_0}^{z_0} + \left(\ln$$

		$=\left(k^{n}+nk\right)$	$x^{n-1}x + \frac{(n)(n-1)}{2}k^{n-2}x^2$
4(ii)		Very badly	done . Do not know how to
	$\left \frac{1}{k}\right < 1 \Rightarrow x < k $	1 0	
	$\left \frac{x}{k}\right < 1 \Longrightarrow x < k $ $\therefore - k < x < k $	proceed after	er $\left \frac{x}{k}\right < 1$ and left answers like
		x < k or	-k < x < k or -1 < x < 1
		Candidates	who used Maclaurin series to find
		the binomia	al expansion of $(k+x)^n$ have
		-	nding region of validity. Gave
		answers lik	$e x < 1 \text{ or } x \in R$
4(iii)	Let $x = y + 3y^2$ and $n = -3$:		Surprisingly quite a number of
	$(k+y+3y^2)^{-3}$		students do not know how to 9 6
	$= k^{-3} \left(1 + \frac{(-3)}{k} \left(y + 3y^2 \right) + \frac{(-3)(-4)}{2k^2} \left(y + 3y^2 \right)^2 + \frac{(-3)(-4)}{2k^2} \left(y + 3y^2 \right)^2 + \frac{(-3)(-4)}{2k^2} \left(y + 3y^2 \right)^2 \right)^2 \right)$		solve $-\frac{9}{k^4} + \frac{6}{k^5} = 2$ or
	$\begin{pmatrix} \kappa & 2\kappa \end{pmatrix}$)	$2k^5 + 9k - 6 = 0$
	$=k^{-3}\left(1-\frac{3}{k}y-\frac{9}{k}y^{2}+\frac{6}{k^{2}}y^{2}+\right)$		
	$\Rightarrow k^{-3} \left(-\frac{9}{k} + \frac{6}{k^2} \right) = 2 \Rightarrow 2k^5 + 9k - 6 = 0$		
	$\therefore k = 0.642 \text{ (to 3 sf)}$		
5	$\overrightarrow{OC} \cdot \overrightarrow{OA} \overrightarrow{OC} \cdot \overrightarrow{OB}$		This question was not well
	$\frac{\overrightarrow{OC} \cdot \overrightarrow{OA}}{\left \overrightarrow{OC}\right \left \overrightarrow{OA}\right } = \frac{\overrightarrow{OC} \cdot \overrightarrow{OB}}{\left \overrightarrow{OC}\right \left \overrightarrow{OB}\right }$		done with a significant number
			of students not attempting the question at all. Among those
	$\frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{a} } = \frac{\mathbf{c} \cdot \mathbf{b}}{ \mathbf{b} } \Longrightarrow \frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{a} } - \frac{\mathbf{c} \cdot \mathbf{b}}{ \mathbf{b} } = 0 \Longrightarrow \mathbf{c} \cdot \left(\frac{\mathbf{a}}{ \mathbf{a} } - \frac{\mathbf{b}}{ \mathbf{b} }\right) = 0$		who attempted the questions,
	$ \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \left(\mathbf{a} \mathbf{b} \right)$		very few students managed to
	Alternatively		show that $AP : PB = \mathbf{a} : \mathbf{b} $.
	$\left(\frac{\mathbf{a}}{ \mathbf{a} } - \frac{\mathbf{b}}{ \mathbf{b} }\right) \cdot \mathbf{c} = \frac{\mathbf{a} \cdot \mathbf{c}}{ \mathbf{a} } - \frac{\mathbf{b} \cdot \mathbf{c}}{ \mathbf{b} }$		
	$ \mathbf{a} \mathbf{b} $ $ \mathbf{a} \mathbf{b} $		Many students wrongly
	$=\frac{ \mathbf{a} \mathbf{c} \cos\theta}{ \mathbf{a} } - \frac{ \mathbf{b} \mathbf{c} \cos\theta}{ \mathbf{b} } = 0$		assumed that $ \mathbf{a} = \mathbf{b} $.
	$ \mathbf{a} $ $ \mathbf{b} $		Students need to know that for
	$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} a \cdot a & b \cdot b \end{pmatrix}$		Students need to know that for this question,
	$\left(\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} }\right) \cdot \left(\frac{\mathbf{a}}{ \mathbf{a} } - \frac{\mathbf{b}}{ \mathbf{b} }\right) = \left(\frac{\mathbf{a} \cdot \mathbf{a}}{ \mathbf{a} ^2} - \frac{\mathbf{b} \cdot \mathbf{b}}{ \mathbf{b} ^2}\right)$		\Rightarrow OC bisecting angle AOB
			doesn't mean that <i>AP=PB</i> .
	$= \left(\frac{ \mathbf{a} ^{2}}{ \mathbf{a} ^{2}} - \frac{ \mathbf{b} ^{2}}{ \mathbf{b} ^{2}}\right) = 1 - 1 = 0$		$\Rightarrow \overrightarrow{OP} \& \overrightarrow{OC} \text{ may NOT be}$
	$P \text{ is on } l_{AB} \Longrightarrow \overrightarrow{OP} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) = \lambda \mathbf{b} + (1 - \lambda)\mathbf{a}$		perpendicular to \overrightarrow{AB} .
			⇒ c may not be parallel to a b
	<i>P</i> is on $l_{OC} \Rightarrow \overrightarrow{OP} = \mu \overrightarrow{OC} = \mu \left(\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} }\right)$		$\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} }$ since $ \mathbf{a} $ may
	Equating		not be equal to $ \mathbf{b} $.
	$\lambda \mathbf{b} + (1 - \lambda)\mathbf{a} = \mu \left(\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} } \right)$		
			$\Rightarrow \mathbf{a} + \mathbf{b} \neq \frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} }$
	Comparing coefficients of a and b		

$$\lambda = \frac{\mu}{|\mathbf{b}|}$$
 and $1 - \lambda = \frac{\mu}{|\mathbf{a}|}$
Note that $AP: PB = \lambda: 1 - \lambda$, therefore
 $AP: PB = \frac{\mu}{|\mathbf{b}|}: \frac{\mu}{|\mathbf{a}|} = |\mathbf{a}|: |\mathbf{b}|.$ $\stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{H}{\longrightarrow} \frac{\mu}{|\mathbf{a}|} = |\mathbf{a}|: |\mathbf{b}|.$ $\stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{H}{\longrightarrow} \frac{\mu}{|\mathbf{a}|} = |\mathbf{a}|: |\mathbf{b}|.$ $\stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{H}{\longrightarrow} \frac{\mu}{|\mathbf{a}|} = |\mathbf{a}|: |\mathbf{b}|.$ $\stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{H}{\longrightarrow} \frac{\mu}{|\mathbf{a}|} = |\mathbf{a}|: |\mathbf{b}|.$ $\stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel$

$$e^{x} = (1 + \sin x)^{2}$$

$$\Rightarrow y = \ln (1 + \sin x)^{2}$$

$$= 2\ln (1 + \sin x)$$

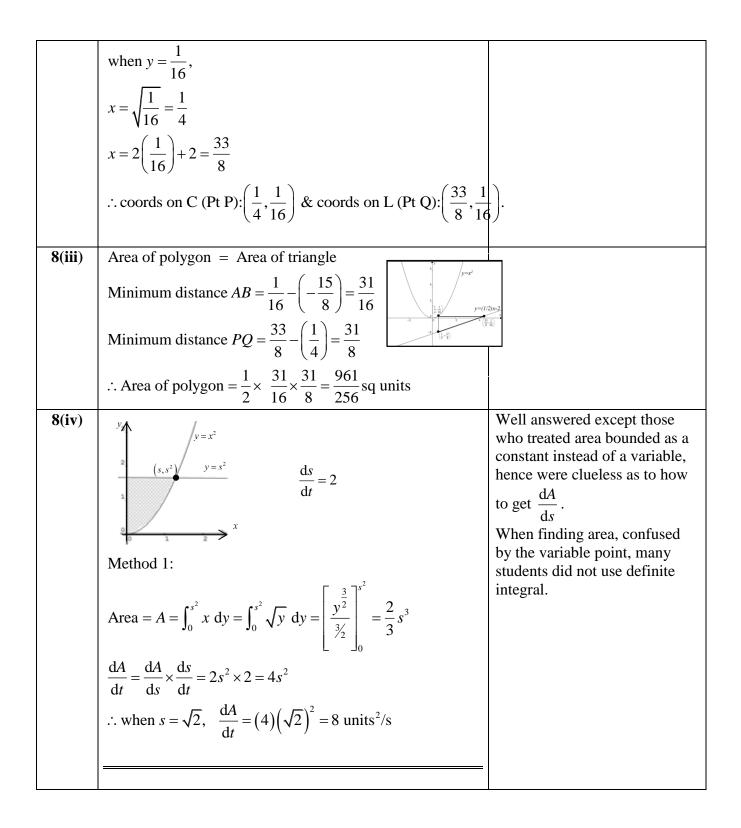
$$= 2\ln (1 + (x - \frac{x^{3}}{3!}) + ...)$$
In some answers, detailed workings were not shown clearly.
$$= 2 \left[\left(x - \frac{x^{3}}{3!} - \frac{\left(x - \frac{x^{3}}{3!} \right)^{2}}{2} + \frac{\left(x - \frac{x^{3}}{3!} \right)^{3}}{3} + ... \right]$$

$$= 2 \left[\left(x - \frac{x^{3}}{6} - \frac{x^{2}}{2!} + \frac{x^{3}}{3} + ... \right) \right]$$

$$= 2x - x^{2} + \frac{1}{3}x^{3} + ...$$
which is same as the expansion for y found in (i), up to and including the term in $x^{3} \Rightarrow$ verified.
$$\frac{\text{Method } 2:}{2}$$
RHS = $(1 + \sin x)^{2}$

$$= \left[(1 + x - \frac{x^{3}}{3!})^{2} + \frac{x^{3}}{6} + ...$$

$$= 1 + 2x + x^{2} - \frac{x^{3}}{3} + ...$$
LHS = e^{y}


$$= e^{\left[2x - x^{2} + \frac{1}{3}x^{3} \right] + \frac{\left(2x - x^{2} + \frac{1}{3}x^{3} \right)^{2}}{2!} + \frac{\left(2x - x^{2} + \frac{1}{3}x^{3} \right)^{2}}{3!} + ...$$

$$= 1 + 2x - x^{2} + \frac{1}{3}x^{3} + \frac{4x^{2} - 2x^{2} - 2x^{3}}{2} + \frac{8x^{3}}{6} + ...$$

$$= 1 + 2x + x^{2} - \frac{1}{3}x^{2} + ...$$
LHS = RHS $=$ wrifted.

7(a)	$2z + 1 = w \dots \dots$	Many students failed to see that z is a real number from eqn
	2z + 1 = a positive real number	(1), resulting in solving
	\Rightarrow Let $z = x$ and $w = a + bi$	simultaneous eqns with many unknown, which most failed to
	From (2): $2(a+bi) - x = 4 + 8i$	simplify and continue to solve
	\Rightarrow Comparing Re and Im parts,	correctly.
	2a - x = 4	
	$2b = 8 \Longrightarrow b = 4$	Some common mistakes:
	From (1): $2x + 1 = \sqrt{a^2 + b^2}$ (3)	1. $ w = w$
	Substitute $b = 4$ and $x = 2a - 4$ into (3):	2. $ w = \pm w$
	$2(2a-4)+1 = \sqrt{a^2+16} \Longrightarrow (4a-7)^2 = a^2+16$	3. $ w = \sqrt{a^2 + (ib)^2} = \sqrt{a^2 - b^2}$
	$16a^2 - 56a + 49 = a^2 + 16 \Longrightarrow 15a^2 - 56a + 33 = 0$	
	$\Rightarrow a = \frac{11}{15}$ or $a = 3$	
	$\Rightarrow x = -\frac{98}{15}$ or $x = 2$	
	but $2z + 1 = a$ positive real number	
	\Rightarrow when $x = -\frac{98}{15}$, $2z + 1 = 2\left(-\frac{98}{15}\right) + 1 < 0$	
	\Rightarrow reject $x = -\frac{98}{15}$ and $a = \frac{11}{15}$	
	$\Rightarrow x = 2, a = 3, b = 4$	
	$\Rightarrow z = 2, w = 3 + 4i$	
7(b)	$2e^{-\left(\frac{3+x+iy}{i}\right)} = 1 - i$	It's a surprise to see that many students didn't write1-i in
	$2e^{3i+xi-y} = \sqrt{2}e^{i\left(-\frac{\pi}{4}\right)}$	$re^{i\theta}$ form to solve the problem.
	•	Even if some did it, they made a
	$2e^{-y}e^{i(3+x)} = \sqrt{2}e^{i\left(-\frac{\pi}{4}\right)}$	mistake in the value of $3 1$
	\Rightarrow By comparing modulus and args:	$\theta = \frac{3}{4}\pi \text{ or } \frac{1}{4}\pi.$
	$2e^{-y} = \sqrt{2}$ and $3+x = -\frac{\pi}{4}$	In general, students have good
	$-y = \ln\left(\frac{\sqrt{2}}{2}\right) \qquad \Rightarrow x = -\frac{\pi}{4} - 3$	idea how to manipulate $-\left(\frac{3+x+iy}{i}\right)$
		to get $-y + 3i + xi$ and they also
	$\Rightarrow y = -\ln\left(\frac{\sqrt{2}}{2}\right)$ (or $\ln\sqrt{2}$ or $\frac{1}{2}\ln 2$)	have clear idea of comparing the modulus and argument terms.

8 (i)	Let V be the distance AB.	For many, distance was not
	$V = y_1 - y_2$ = $x^2 - \left(\frac{1}{2}x - 2\right)$ x = 1	even considered, instead look at gradients of <i>L</i> and <i>C</i> . Those who used distance, some were penalised for not checking nature of stationary value.
	$= x^{2} - \frac{1}{2}x + 2$ $\frac{dV}{dx} = 2x - \frac{1}{2}$	Many students made slips in simple calculations such as $2x = \frac{1}{2} \Rightarrow x = 1$
	$\frac{dx}{dx} = 2$ when $\frac{dV}{dx} = 0$, $x = \frac{1}{4}$	$2x - \frac{1}{2} \Longrightarrow x = 1,$ $y^{-\frac{1}{2}} = \frac{1}{4} \Longrightarrow y = \pm \frac{1}{2} \text{ etc.}$
	$\frac{d^2 V}{dx^2} = 2 > 0 \Longrightarrow \text{ min. value when } x = \frac{1}{4}$	4 2
	when $x = \frac{1}{4}$,	
	$y = \left(\frac{1}{4}\right)^2 = \frac{1}{16}$	
	$y = \frac{1}{2} \left(\frac{1}{4} \right) - 2 = -\frac{15}{8}$	
	$\therefore \text{ coords on C (Pt A):} \left(\frac{1}{4}, \frac{1}{16}\right) \& \text{ coords on L (Pt B):} \left(\frac{1}{4}, -\frac{15}{8}\right).$	
8(ii)	Let <i>H</i> be the distance <i>PQ</i> . $H = x_2 - x_1 = 2(y+2) - \sqrt{y}$	1
	$\frac{dH}{dy} = 2 - \frac{1}{2} y^{-\frac{1}{2}} $	
	when $\frac{\mathrm{d}H}{\mathrm{d}y} = 0$,	
	$2 - \frac{1}{2}y^{-\frac{1}{2}} = 0 \Longrightarrow 2 = \frac{1}{2}y^{-\frac{1}{2}}$	- J
	$\Rightarrow y = 4^{-2} = \frac{1}{16}$	
	$\frac{d^2 H}{dy^2} = \frac{1}{4} y^{-\frac{3}{2}}$	
	\Rightarrow when $y = \frac{1}{16}, \frac{d^2 H}{dy^2} = \frac{1}{4} \left(\frac{1}{16}\right)^{-\frac{3}{2}} = 16 > 0$	
	\Rightarrow min. value when $y = \frac{1}{16}$	

	Method 2:	
	Area = A	
	= Area of rectangle – Area bounded by curve, x-axis and $x =$	S
	$= s \times s^{2} - \int_{0}^{s} y dx = s^{3} - \int_{0}^{s} x^{2} dx = s^{3} - \left[\frac{x^{3}}{3}\right]_{0}^{s} = \frac{2}{3}s^{3}$	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}s} \times \frac{\mathrm{d}s}{\mathrm{d}t} = 2s^2 \times 2 = 4s^2$	
	\therefore when $s = \sqrt{2}$, $\Rightarrow \frac{dA}{dt} = 4(\sqrt{2})^2 = 8$ units ² /s	
9(a)	By factor formula, $\sin\left(x+\frac{1}{4}\right)\pi - \sin\left(x-\frac{3}{4}\right)\pi = 2\cos\left[\frac{1}{2}\left(2x-\frac{1}{2}\right)\pi\right]\sin\left(\frac{1}{2}\pi\right)$ $= 2\cos\left(x-\frac{1}{4}\right)\pi.$	Many students expanded each term using compound angle formula then tried to collapse the terms back into one trig function, mostly without success.
		The most common error was to first factorise π out of the expression then use factor formula: $\sin(x+\frac{1}{4})\pi - \sin(x-\frac{3}{4})\pi$ $= \pi \left[\sin(x+\frac{1}{4}) - \sin(x-\frac{3}{4})\right]$
		$= \pi \left[\sin\left(x + \frac{1}{4}\right) - \sin\left(x - \frac{1}{4}\right) \right]$ which is ridiculous.
		Students need to realise that this is a 1-mark question which should not require page-long working.
	Hence	
	$\sum_{x=1}^n 2\cos\left(x-\frac{1}{4}\right)\pi$	Those who couldn't do the first part naturally were not able to do this part accurately.
	$=\sum_{x=1}^{n}\left[\sin\left(x+\frac{1}{4}\right)\pi-\sin\left(x-\frac{3}{4}\right)\pi\right]$	Amongst those who did, some
	$= \left[\sin\frac{5}{4}\pi - \sin\frac{1}{4}\pi\right] + \left[\sin\frac{9}{4}\pi - \sin\frac{5}{4}\pi\right] + \dots$	evaluated the value of each trigo expression and hence could not
	$+\left[\sin\left(n-\frac{3}{4}\right)\pi-\sin\left(n-\frac{7}{4}\right)\pi\right]+\left[\sin\left(n+\frac{1}{4}\right)\pi-\sin\left(n-\frac{3}{4}\right)\pi\right]$	see which terms cancelled out
	$=\sin\left(n+\frac{1}{4}\right)\pi-\sin\frac{1}{4}\pi$	using the method of difference: $\sum_{i=1}^{n} [x_i(x_i) - x_i(x_i)]^T$
	$=\sin\left(n+\frac{1}{4}\right)\pi-\frac{1}{\sqrt{2}}$	$\sum_{x=1}^{n} \left[\sin\left(x + \frac{1}{4}\right) \pi - \sin\left(x - \frac{3}{4}\right) \pi \right]$ = $\left[-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] + \left[\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] + \dots$ + $\left[\sin\left(n - \frac{3}{4}\right) \pi - \sin\left(n - \frac{7}{4}\right) \pi \right] + \left[\sin\left(n + \frac{1}{4}\right) \pi - \sin\left(n - \frac{3}{4}\right) \pi \right]$
	Therefore,	$+\lfloor \sin(n-\frac{\pi}{4})\pi - \sin(n-\frac{\pi}{4})\pi \rfloor + \lfloor \sin(n+\frac{\pi}{4})\pi - \sin(n-\frac{\pi}{4})\pi \rfloor$
	$\sum_{x=1}^{n} \cos\left(x - \frac{1}{4}\right) \pi = \frac{1}{2} \sin\left(n + \frac{1}{4}\right) \pi - \frac{1}{2\sqrt{2}}.$	

9(b)(i)		Biggest problem for the plot is
9(D)(I)	$R_{\rm f} = \begin{bmatrix} -2, 2 \end{bmatrix} $	students keying in to G.C.
		wrongly. Plotting
	$\frac{2}{y = f(x)}$	$Y = \sin\left(X + \frac{1}{4}\right)\pi - \sin\left(X - \frac{3}{4}\right)\pi$
	$(0,\sqrt{2})$	instead of
	$\left(-\frac{1}{4},0\right)$	$Y = \sin\left[\left(X + \frac{1}{4}\right)\pi\right] - \sin\left[\left(X - \frac{3}{4}\right)\pi\right]$
	$- \xrightarrow{(4,5)} 0 \xrightarrow{1} x$	
	$(-1,-\sqrt{2})$	Students should be careful, using brackets when appropriate.
		brackets when appropriate.
	-2	Once the graph is correctly
		plotted in the G.C. with the
		correct domain, they should
		notice that one full period is
		plotted, and that the range is easily read off the G.C.
(b)(ii)	Least value of <i>a</i> is $\frac{1}{4}$.	If graph is correctly sketched,
		least value of <i>a</i> is easily found.
	Let $y = 2\cos(x - \frac{1}{4})\pi$.	
	Then $\cos^{-1}\left(\frac{y}{2}\right) = \left(x - \frac{1}{4}\right)\pi \implies x = \frac{\cos^{-1}\left(\frac{y}{2}\right)}{\pi} + \frac{1}{4}.$	Method mark for making <i>x</i> the
	л т	subject of $y = 2\cos(x - \frac{1}{4})\pi$ is
	$\therefore \mathbf{f}^{-1} : x \mapsto \frac{1}{\pi} \cos^{-1}\left(\frac{x}{2}\right) + \frac{1}{4}, \qquad x \in \left[-\sqrt{2}, 2\right]$	awarded for any attempt to find
	$\therefore 1 x \mapsto -\cos \left(\frac{\pi}{2}\right) + \frac{\pi}{4}, x \in \left[-\sqrt{2}, 2\right]$	the inverse function, regardless
		of whether students' graphs are
		sketched correctly.
		Many students were careless in
		either not quoting the domain
		of f^{-1} or, for those who did,
		quoted it forgetting that domain of
		f is now restricted so that its inverse exsits.
(b)(iii)	fg exists $\Rightarrow R_{g} \subseteq D_{f}$	Inverse exsits.
	-	Students were not tenacious
	now $R_{\rm g} = \left[-\frac{13}{4}, -2 \right]$	enough to find $R_{\rm g}$ properly,
		perhaps discouraged from the
	and $D_{\rm f} = [a, 1]$	earlier parts. g is a straight
	since fg exists, $a \le -\frac{13}{4}$. Hence the greatest value of a is	forward function that can be
	4	sketched with the G.C., bearing in
	$-\frac{13}{4}$.	mind that there is a horizontal
	$[\mathbf{p} \in (\mathbf{p}) \in [13]]$	asymptote at $y = -2$.
	$R_{\rm fg} = f\left(R_{\rm g}\right) = f\left[-\frac{13}{4}, -2\right] = \left[-2, \sqrt{2}\right].$	
10(a)(i)	After one month, if she pays x at the beginning of the	Many students were confused
	month, she will owe the bank	about the interest rate, and
		hence multiplied by 1.1 or

	$(50000 - x) \times (1.001)$	1.01. Some merely took 0.1%
	Hence $(50000 - x) \times (1.001) = 50000 \implies x = 49.95$	of \$50,000.
	Abbie needs to pay \$49.95 (to the nearest cent) a month.	
(a)(ii)	One month after graduating, she owes $(50000-k) \times (1.00375)$. <i>n</i> months after graduating, she will owe $1.00375^{n} (50000-k) - 1.00375^{n-1}k 1.00375k$ $= 1.00375^{n} (50000) - k (1.00375^{n} + 1.00375^{n-1} + + 1.00375)$	While many students were able to deduce that this was the sum of a GP, a common mistake was thinking that the last/first term of the GP was 1 instead of 1.00375.
	$=1.00375^{n} (50000) - k \left[\frac{1.00375 (1.00375^{n} - 1)}{1.00375 - 1} \right]$ $=1.00375^{n} (50000) - \frac{803}{3} k (1.00375^{n} - 1) \qquad \text{(shown)}.$	
(a)(iii)	Sub $n = 120$, and $k = 500$:	Many students did not realise <i>n</i>
(a)(iii)	$300 \ n = 120, \text{ and } k = 500.$ $1.00375^{120} (50000) - \frac{803}{3} (500) (1.00375^{120} - 1) = 2467.11 > 0$	
	No, she cannot. A monthly payment of \$500 is not enough.	
	When $n = 120$,	
	$1.00375^{120}(50000) - \frac{803}{3}k(1.00375^{120} - 1) = 0$	
	\Rightarrow k = 516.26 (nearest cent)	
	She needs to pay \$516.26 per month.	
(b)(i)	Oustanding amount upon graduation = $1.001^{36} (50000)$	Some students used 1.00375 ³⁶ . Some took the 35 th power.
	= 51831.86	Many students did not realise
	Using Abbie's formula, but with a starting outstanding amount of \$51831.86, 1.00375 ¹²⁰ (51831.86) $-\frac{803}{3}k(1.00375^{120}-1) = 0$	they could use the same formula as (a)(iii) but with a different starting amount.
	$\Rightarrow k = 535.17 \text{ (nearest cent)}$ He needs to pay \$535.17 per month.	As with the previous parts, some interpreted the interest rate wrongly and used 1.1 or 1.01, and some thought <i>n</i> was in years.
(b)(ii)	120×535.17-50000=14220.43 (to 2 d.p.) He paid \$14220.43 in interest altogether.	Some students had very involved ways of calculating the interest, including summing the GP all over again. Many students did not subtract

		50,000.
11(i)	$\int t^2 e^{-kt} dt = -\frac{1}{k} e^{-kt} (t^2) - \int -\frac{1}{k} e^{-kt} (2t) dt$ $= -\frac{1}{k} t^2 e^{-kt} + \frac{2}{k} \left[-\frac{1}{k} e^{-kt} (t) - \int -\frac{1}{k} e^{-kt} (1) dt \right]$ $= -\frac{1}{k} t^2 e^{-kt} - \frac{2}{k^2} t e^{-kt} - \frac{2}{k^3} e^{-kt} + D$	Some students were careless in the first step and could only be awarded the subsequent method mark if they proceeded to integrate by parts a second time.
	$= -e^{-kt} \left(\frac{1}{k} t^2 + \frac{2}{k^2} t + \frac{2}{k^3} \right) + D$	Some students integrated the terms incorrectly or made wrong choices for the terms. Students should remember that the aim of integration by parts is to obtain a simpler integral which can then be integrated (unless it requires the "loop" technique which is not the case for this question) and realise that something is wrong if they ended up with one which looks even more complicated.
		Few students left this part blank or did not proceed to do integration by parts a second time.
		Quite a number of students did not put the final expression in the required form and lost marks. Students are reminded to take note of the requirements of the questions.
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3}{4}x - pt^2$	Majority could not get this expression or even gave an expression for x in terms of t instead ($\frac{dx}{dt}$ was not even seen) which should not be the case since the question asked for a "differential equation".
		Some students also made mistakes in the unit for x (in hundred thousands) or missed out the " x " in the "0.75 x " term (or incorrectly wrote it as 0.75 t) or missed out the constant of proportionality " p ".

	$\begin{aligned} x &= u e^{\frac{3}{4}t} \Rightarrow \frac{d}{dt} = \frac{3}{4} u e^{\frac{3}{4}t} + e^{\frac{3}{4}t} \frac{d}{dt} \\ \frac{3}{4} u e^{\frac{3}{4}t} + e^{\frac{3}{4}t} \frac{d}{dt} = \frac{3}{4} u e^{\frac{3}{4}t} - pt^2 \Rightarrow \frac{d}{dt} = -pt^2 e^{-\frac{3}{4}t} \\ u &= p e^{-\frac{3}{4}t} \left(\frac{1}{\frac{3}{4}} t^2 + \frac{2}{(\frac{3}{4})^2} t + \frac{2}{(\frac{3}{4})^3} \right) + D \\ &= p e^{-\frac{3}{4}t} \left(\frac{4}{3} t^2 + \frac{32}{9} t + \frac{128}{27} \right) + D \\ \Rightarrow \frac{x}{e^{\frac{3}{4}t}} = p e^{-\frac{3}{4}t} \left(\frac{4}{3} t^2 + \frac{32}{9} t + \frac{128}{27} \right) + D \\ \therefore x = p \left(\frac{4}{3} t^2 + \frac{32}{9} t + \frac{128}{27} \right) + D e^{\frac{3}{4}t} \end{aligned}$ When $t = 0, x = 1$, $1 = p \left(\frac{128}{27} \right) + D \Rightarrow D = 1 - \frac{128}{27} p$ $x = p \left(\frac{4}{3} t^2 + \frac{32}{9} t + \frac{128}{27} \right) + \left(1 - \frac{128}{27} p \right) e^{\frac{3}{4}t} \end{aligned}$	Students would not be able to show the given differential equation if the expression in (i) was incorrect. Some students were not able to correctly differentiate $u e^{\frac{3}{4}t}$. Students should read the question carefully and if they are not able to show the required DE, students should still proceed to solve the given DE, and not solve their own incorrect DE, which was what many students incorrectly used $k = -\frac{3}{4}$ and were penalised. A few students failed to see the link to part (i) and redid the integration without using the results obtained in (i). Many students failed to substitute "x" back into the solution and of those who did, majority forgot the arbitrary constant D or forgot to multiply $e^{\frac{3}{4}t}$ to D – some even labelled $De^{\frac{3}{4}t}$ as another constant $E = De^{\frac{3}{4}t}$ which is incorrect since it now contains the variable t and is not just a product of constants. Many also failed to sub in the initial conditions, which was required to obtain the arbitrary constant in terms of p. Some did so in the next part but no
		initial conditions, which was required to obtain the arbitrary constant in terms of <i>p</i> . Some
(iv)	When $p = \frac{1}{3}$,	Parts (iv) and (v) were badly

	$x = \frac{1}{3} \left(\frac{4}{3}t^{2} + \frac{32}{9}t + \frac{128}{27} \right) + \left(-\frac{47}{81} \right) e^{\frac{3}{4}t}$	done as students were not likely to obtain the answers to these parts if their expression for x was incorrectly in (iii) – only a handful of students could obtain the correct final expression for x in (iii).
	Maximum number of players on the game = 365 000. Yes, $x = 0$ when $t = 4.35$ months.	Students were expected to use the GC (graph) for this part and not expected to differentiate, solve the equation, etc to find the maximum value or the <i>t</i> - value which gave 0 players - only 2 marks are awarded for the two required answers and students can get the hint from the marks allocation that they were not expected to manually find these answers on their own.
(v)	For $x = 0$ after some time, $1 - \frac{128}{27} p < 0 \Rightarrow p > \frac{27}{128} = 0.211$	This required students to see that the coefficient of the exponential term, $\left(1-\frac{128}{27}p\right)e^{\frac{3}{4}t}$, in the expression for <i>x</i> found in (iii) had to be negative in order for there to be no players after some time. However, as mentioned in (iii), only a handful of students had the exponential term in their solution for <i>x</i> , thus this part was not well done.

of the equation.2A curve C has parametric equations $x = \cos t$ $y = \frac{1}{2} \sin 2t$ where $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$.(i) Find the equation of the normal to C at the point P with parameter p.The normal to C at the point when $t = \frac{2\pi}{3}$ cuts the curve again. Find the coordinatethe point of intersection.(ii) Sketch C, clearly labelling the coordinates of the points where the curve crosses the and y- axes.(iii) Find the cartesian equation of C.The region bounded by C is rotated through π radians about the x-axis. Find the ex- volume of the solid formed.3(i) Find $\int \frac{x}{(1+x^2)^2} dx$.(ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k(\frac{x}{1+x^2} + \tan^{-1}x) + c$, where c is an arbitrary constant, and k is a constant to be determined.(iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$.(iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer.4(a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with the z-axis, where 0° $\le \theta \le 90^\circ$. Show that d is parallel to $i + j + \sqrt{2}k$.	[2] <i>x</i> -
$x = \cos t$ $y = \frac{1}{2}\sin 2t$ where $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$. (i) Find the equation of the normal to <i>C</i> at the point <i>P</i> with parameter <i>p</i> . The normal to <i>C</i> at the point when $t = \frac{2\pi}{3}$ cuts the curve again. Find the coordinate the point of intersection. (ii) Sketch <i>C</i> , clearly labelling the coordinates of the points where the curve crosses the and <i>y</i> - axes. (iii) Find the cartesian equation of <i>C</i> . The region bounded by <i>C</i> is rotated through π radians about the <i>x</i> -axis. Find the exvolume of the solid formed. 3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1}x\right) + c$, where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	s of [2] <i>x</i> -
where $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$. (i) Find the equation of the normal to <i>C</i> at the point <i>P</i> with parameter <i>p</i> . The normal to <i>C</i> at the point when $t = \frac{2\pi}{3}$ cuts the curve again. Find the coordinate the point of intersection. (ii) Sketch <i>C</i> , clearly labelling the coordinates of the points where the curve crosses the and <i>y</i> - axes. (iii) Find the cartesian equation of <i>C</i> . The region bounded by <i>C</i> is rotated through π radians about the <i>x</i> -axis. Find the exposure of the solid formed. 3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1}x\right) + c$, where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	s of [2] <i>x</i> -
(i) Find the equation of the normal to <i>C</i> at the point <i>P</i> with parameter <i>p</i> . The normal to <i>C</i> at the point when $t = \frac{2\pi}{3}$ cuts the curve again. Find the coordinate the point of intersection. (ii) Sketch <i>C</i> , clearly labelling the coordinates of the points where the curve crosses the and <i>y</i> - axes. (iii) Find the cartesian equation of <i>C</i> . The region bounded by <i>C</i> is rotated through π radians about the <i>x</i> -axis. Find the exposure of the solid formed. 3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1}x \right) + c$, where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	s of [2] <i>x</i> -
The normal to <i>C</i> at the point when $t = \frac{2\pi}{3}$ cuts the curve again. Find the coordinate the point of intersection. (ii) Sketch <i>C</i> , clearly labelling the coordinates of the points where the curve crosses the and <i>y</i> - axes. (iii) Find the cartesian equation of <i>C</i> . The region bounded by <i>C</i> is rotated through π radians about the <i>x</i> -axis. Find the ex- volume of the solid formed. (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1}x\right) + c$, where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	s of [2] <i>x</i> -
3 (i) Find the cartesian equation of <i>C</i> . The region bounded by <i>C</i> is rotated through π radians about the <i>x</i> -axis. Find the ex- volume of the solid formed. 3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1}x \right) + c$, where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	[2] <i>x</i> -
 (ii) Sketch C, clearly labelling the coordinates of the points where the curve crosses the and y- axes. (iii) Find the cartesian equation of C. The region bounded by C is rotated through π radians about the x-axis. Find the exvolume of the solid formed. 3 (i) Find \$\int \frac{x}{(1+x^2)^2}\$ dx. (ii) By using the substitution x = tan θ, show that \$\int \frac{1}{(1+x^2)^2}\$ dx = k\$ \$\left(\frac{x}{1+x^2} + tan^{-1}x \right) + c\$, \$\text{where } c\$ is an arbitrary constant, and k is a constant to be determined. (iii) Hence find \$\int \frac{x^2}{(1+x^2)^2}\$ dx. (iv) Using all of the above, find \$\int \frac{x^2 + 2x + 5}{(1+x^2)^2}\$ dx, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and \$\theta\$ with the x- and y-axes, and \$\theta\$ with the x- and y-axes, and \$\theta\$ with the x- and \$\text{y-axes} and \$\text{y-x}\$ with both the x- and y-axes, and \$\theta\$ with the x- and \$\text{y-axes} and \$\theta\$ with the x- and \$\text{y-axes}\$. 	<i>x</i> -
and y- axes. (iii) Find the cartesian equation of C. The region bounded by C is rotated through π radians about the x-axis. Find the ex- volume of the solid formed. 3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	
(iii) Find the cartesian equation of C. The region bounded by C is rotated through π radians about the x-axis. Find the ex- volume of the solid formed. (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	F11
The region bounded by C is rotated through π radians about the x-axis. Find the exvolume of the solid formed. 3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	[1]
3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	[2]
3 (i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	
(i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	[3]
(i) Find $\int \frac{x}{(1+x^2)^2} dx$. (ii) By using the substitution $x = \tan \theta$, show that $\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c$, where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	
$\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c,$ where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx.$ (iv) Using all of the above, find $\int \frac{x^2+2x+5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	[2]
$\int \frac{1}{(1+x^2)^2} dx = k \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c,$ where <i>c</i> is an arbitrary constant, and <i>k</i> is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx.$ (iv) Using all of the above, find $\int \frac{x^2+2x+5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	
where c is an arbitrary constant, and k is a constant to be determined. (iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2+2x+5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	
(iii) Hence find $\int \frac{x^2}{(1+x^2)^2} dx$. (iv) Using all of the above, find $\int \frac{x^2+2x+5}{(1+x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	5.63
(iv) Using all of the above, find $\int \frac{x^2 + 2x + 5}{(1 + x^2)^2} dx$, simplifying your answer. 4 (a) (i) The unit vector d makes angles of 60° with both the <i>x</i> - and <i>y</i> -axes, and θ with	[5]
4 (a) (i) The unit vector d makes angles of 60° with both the x- and y-axes, and θ with	[3]
	[2]
the z-axis, where $0^{\circ} < \theta < 90^{\circ}$. Show that d is parallel to $\mathbf{i} + \mathbf{i} + \sqrt{2}\mathbf{k}$.	h
	[3]
(ii) The line <i>m</i> is parallel to d and passes through the point with coordinates	
(2,-1,0). Find the coordinates of the point on <i>m</i> that is closest to the point w	th
coordinates $(3,2,0)$.	[3]
(b) The plane p_1 has equation $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 5$, and the line <i>l</i> has equation	
$\frac{x-a}{2} = \frac{y-1}{b} = -\frac{z}{2}$, where <i>a</i> and <i>b</i> are constants.	
Given that <i>l</i> lies on p_1 , show that $b = 1$ and find the value of <i>a</i> .	
(i) The plane p_2 contains <i>l</i> and is perpendicular to p_1 . Find the equation of p_2	[2]
the form $\mathbf{r} \cdot \mathbf{n} = c$, where <i>c</i> is a constant to be determined.	

Section A: Pure Mathematics [40 marks]

(ii)	The variable point $P(x, y, z)$ is equidistant from p_1 and p_2 . Find the o	cartesian
	equation(s) of the locus of P.	[3]

Section B: Statistics [60 marks]

5	A group of 12 students consists of 5 bowlers, 4 canoeists and 3 footballers.										
	(i) The group sits at a round table with 12 seats. In how many different ways can they sit so										
	(-)		• 1			ort sit toge				•	[2]
	(ii)		-	•	1	•		vs can they	v stand so	that <i>either</i> (
	()										
	bowlers are all next to one another or the canoeists are all next to one another								[2]		
	(iii)	Find	Find the number of ways in which a delegation of 8 can be selected from this group if it								
	()					m each of				8r	[2]
6	Ale								he randon	n variable X	<u> </u>
						Alex and I					
	(i)		w that $P(X)$								[2]
	(ii)		late the p			on of X.					[2]
	(iii)					nd Var (X)).				[3]
7	It ha	as beer	1 suggeste	d that the	optimal p	H value for	or shampe	o should	be 5.5, to	match the	pН
	leve	l of he	althy scal	p. Any pH	I value that	at is too lo	w or too ł	nigh may l	have unde	sirable effe	cts
	on t	he use	r's hair an	d scalp. A	A shampoo	o manufac	turer want	ts to inves	tigate if tl	ne pH level	of
										% significan	
	leve	l. He r	neasures t	he pH valı	ue, <i>x</i> , of <i>n</i>	randomly	chosen bo	ttles of sha	ampoo, wl	here <i>n</i> is larg	ge.
	(a)	In th	e case wh	ere $n = 30$), it is fou	nd that \sum	x = 178.2	and $\sum x$	$r^2 = 1238.6$	522.	
		(i)					ation mean	n and vari	iance, and	carry out t	
		(••)		e 10% sig			C		.11		[6]
		(ii)							that the f	pH value o	
		In th		-		normal di			a the action		[1]
	(b)										
		in (a). (i) State the critical region for the test $[1]$									
		(i) State the critical region for the test. [1] (ii) Given that n is large and that the nonvelotion variance is found to be 6.5 find the									
		(ii) Given that n is large and that the population variance is found to be 6.5, find the greatest value of n that will result in a foreurable sufference for the manufacturer at									
		greatest value of n that will result in a favourable outcome for the manufacturer at the 10% significance level. [3]									
			the 1070	significal							[]]
8	A s	wim s	chool tak	es in bot	h male a	nd female	primary	school st	udents fo	r competiti	ive
	A swim school takes in both male and female primary school students for competitive swimming lessons. The school assesses its students' progress each year by recording the time,										
	<i>t</i> seconds, each student takes to swim a 50-metre lap in breaststroke, and the number of months,										
		-					-	-		ents are show	
			wing tabl					·			
		100	6	7	10	12	15	19	21	24	
		m									
		t	92.32	87.11	66.12	59.41	53.94	43.82	42.07	41.45	
	(i)	why	a linear n	nodel wou	ld not be	suitable to	predict th	e time tak	en by a st	in, in conte udent to sw at the scho	vim ool.
1											[2]

	It is	desired to	fit a model of the	form $\ln(t-C) =$	a + bm, where C is	s a suitable cons	tant. The			
	prod	luct moment correlation coefficient r between m and $\ln(t-C)$ for some possible values of								
	C are	are shown in the table below.								
		С	36	37	38	39				
		r	-0.992114		-0.992681	-0.992192				
	(ii)	Calculat	e the value of r for	C = 37 giving	your answer correc	t to 6 decimal nl	aces [1]			
	(ii) (iii)				se the most approp	-				
		your cho	oice.				[2]			
			-		of C that you have a		Cive on			
	(iv)		ation of C in the c		gression line of l	n(t-C) on m .	[2]			
	(v)	-		-	t the school for 9 r	months clocked				
		60.33 se	econds for a lap o	f breaststroke. U	sing your regression					
	()		s swimming ability			41	[2]			
	(vi)		1		ion process so that he students in the fi		-			
			,				[1]			
9	(i)				e batch of manufac					
		-			dom sample of 10 les, the batch is rej		batch. If			
		-			that are defective		that the			
		probabil	ity that a batch of a	rticles is accepted	l is 0.866, correct to	o three significan	-			
		To conf	in the decision	another increates	fallows the same	nno oduno with	[1]			
		To confirm the decision, another inspector follows the same procedure with another random sample of 10 articles from the batch. If the conclusion of both inspectors are the								
		same, the batch will be accepted or rejected as the case may be. Otherwise, one of the								
		-			ple of 10 from the					
		accepted	•	d if there are at	least 2 defective	articles. Otherw	'1se, 1t 1s			
		-	e probability that a	batch is eventual	ly accepted,		[3]			
			e expected number				[4]			
	(ii)	In order	to cut labour cost	an alternative pr	ocedure is introdu	ced. A random s	ample of			
	(11)			-	e sample contains r		-			
				-	ple contains more					
					exactly 2 defective defective article the					
					t the proportion of					
					batch is accepted i					
			A = (1	$(1+9p)(1-p)^9+4$	$5p^2(1-p)^{18}$.		[2]			
		-	•	-	ted, more than 80	of them will be a	-			
		is 0.98, f	find the value of p				[3]			
10	(a)	An exan	nination taken by	a large number o	f students is marke	ed out of a total	score of			
		100. It is	s found that the me	ean is 73 marks ar	nd that the standard	l deviation is 15	marks.			
		. ,	•		tion is not a good i	model for the dis				
			marks for the exame marks for a ran		0 students is recor	ded. Find the pr	[1] obability			
				-	between 70 and 75	-	[2]			

(b) The interquartile range of a distribution is the difference between the upper and lo quartile values for the distribution. The lower quartile value, l , of a distribution X , is s that $P(X < l) = 0.25$. The upper quartile value, u , of the same distribution is such					
	$\mathbf{P}(X < u) = 0.75.$				
(c)	The marks of another examination is known to follow a normal distribution. If a student who scores 51 marks is at the 80th percentile, and the interquartile range is found to be 10.8 marks, find the mean mark and the standard deviation of the marks scored by students who took the examination. [5] In a third examination, the marks scored by students are normally distributed with a mean				
	of 52 marks and a standard deviation of 13 marks.				
	(i) If 50 is the passing mark and 289 students are expected to pass, how many candidates are there? [2]				
	 (ii) Find the smallest integer value of <i>m</i> such that more than 90% of the candidates will score within <i>m</i> marks of the mean. [3] 				

2017 ACJC JC2 H2 Mathematics 9758

Qns	Solutions	Remarks
1	$z^{3} - 4(1+i)z^{2} + (-2+9i)z + 5 - i = 0$	Quite a large number of
	$(z-(1+i))(Az^{2}+Bz+C)=0$	students say that $1-i$ is
	By comparing coefficients,	another root, which is
	$z^3: A = 1$	wrong because not all the coefficients are real.
		Students who did this
	$z^0:-(1+i)C=5-i$	gets a 0.
	$\Rightarrow C = \frac{5-i}{-(1+i)} = -2+3i$	
	$z^{2}: B - (1 + i) = -4(1 + i)$	When comparing
	$\Rightarrow B = -3(1+i)$	coefficients, many
		students use $a+ib, c+id$
	$\Rightarrow (z - (1+i))(z^2 - 3(1+i)z - 2 + 3i) = 0$	as the two other roots which resulted in
	Solving $(z^2 - 3(1+i)z - 2 + 3i) = 0$:	unnecessarily tedious
		and complicated
	$z = \frac{-(-3(1+i)) \pm \sqrt{(-3(1+i))^2 - 4(1)(-2+3i)}}{2(1)}$	working.
	2(1)	C
	$=\frac{3+3i\pm\sqrt{8+6i}}{2}$	About half who used the
	2	quadratic formula had
	$=\frac{3+3i\pm(3+i)}{2}=3+2i$ or i	problem evaluating
	2	$\sqrt{8+6i}$, which can be
	\therefore other 2 roots are $z = 3 + 2i$ or $z = i$	done using GC.
2(i)	$x = \cos t$	Generally students were able
	$y = \frac{1}{2}\sin 2t$	to write down the eqn of normal at point with
		parameter <i>p</i> .
	$\frac{dy}{dt} = \cos 2t$	However, some wrote
	$\frac{dy}{dx} = \frac{dt}{dx} = \frac{\cos 2t}{-\sin t}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}p} \times \frac{\mathrm{d}p}{\mathrm{d}x}$. Although no
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\cos 2t}{-\sin t}$	mark is deducted here,
		students should realize that p
	$\left \frac{dy}{dx} \right _{t=p} = \frac{\cos 2p}{-\sin p} \Rightarrow \text{gradient of normal} = \frac{\sin p}{\cos 2p}$	in most cases is a constant
		(though not specified by
	\Rightarrow equation of normal at $\left(\cos p, \frac{1}{2}\sin 2p\right)$:	question) and $\frac{dy}{dp} = 0$.
	$1 \cdot sin p$	A minority wrote the eqn of
	$y - \frac{1}{2}\sin 2p = \frac{\sin p}{\cos 2p} (x - \cos p)$	normal as
		$y - \frac{1}{2}\sin 2p = \frac{\sin t}{\cos 2t} (x - \cos p)$
	$y = \frac{\sin p}{\cos 2p} x + \frac{1}{2} (\sin 2p - \tan 2p)$	without putting $t = p$.
		Many careless mistakes in
		evaluating the cosine and 2π
		sine values when $t = \frac{2\pi}{3}$,
		resulting in wrong eqns of

Preliminary Examination Paper 2 Markers Report

		1 1
	\Rightarrow equation of normal at $t = \frac{2\pi}{3}$: $\sqrt{3}$	normal, such as $y = -\sqrt{3}x - \frac{\sqrt{3}}{4},$
	$y = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}x + \frac{1}{2}\left(-\frac{\sqrt{3}}{2} - \sqrt{3}\right) \Rightarrow y = -\sqrt{3}x - \frac{1}{4}\left(3\sqrt{3}\right)(1)$	$y = \sqrt{3}x - \frac{3\sqrt{3}}{4}$ etc
	To find point of intersection of normal and C (when the normal cuts C again),	Many did not understand that the question is asking for
	Substitute $x = \cos t$ and $y = \frac{1}{2}\sin 2t$ into (1):	point of intersection between the curve and the normal at $t = \frac{2\pi}{2}$ and simply sub
	$\frac{1}{2}\sin 2t = -\sqrt{3}\left(\cos t\right) - \frac{1}{4}\left(3\sqrt{3}\right)$	$t = \frac{2\pi}{3}$ to find the point.
	$\frac{1}{2}\sin 2t + \sqrt{3}\left(\cos t\right) + \frac{1}{4}\left(3\sqrt{3}\right) = 0$	Those who correctly sub
	From GC, 2π	$x = \cos t$ and $y = \frac{1}{2}\sin 2t$ into (1) often did not use GC to solve
	$t = 2.094395$ (corresponds to $t = \frac{2\pi}{3}$) or $t = 3.495928$	the eqn, and simply stopped at this step.
	\Rightarrow point normal meets C again:	
	$\left(\cos(3.495928), \frac{1}{2}\sin(2(3.495928))\right) = (-0.938, 0.325)$	
2(ii)	<u>↑</u> ×	Many did not note the range
	(-1.0) 0	of values of <i>t</i> and sketched 2 loops. A number of students did not give the coordinates of the <i>x</i> - intercept.
2(iii)	Method 1: $x = \cos t \implies x^2 = \cos^2 t$	Many simply wrote the eqn
	$y = \frac{1}{2}\sin 2t \implies y = \sin t \cos t$	as $y = \sin 2(\cos^{-1} x)$ and did not go on to simplify.
	$y = \frac{1}{2} \sin 2t \implies y = \sin t \cos t$ $\Rightarrow y^2 = \sin^2 t \cos^2 t = (1 - \cos^2 t) \cos^2 t = (1 - x^2) x^2$	Those who used method 2
	$\therefore \text{ Cartesian equation: } y^2 = (1 - x^2)x^2$	often omitted the negative sign.
	Method 2:	
	$x = \cos t \Longrightarrow \cos t = \frac{x}{1}, \sin t = \frac{\pm\sqrt{1-x^2}}{1} \left(\because \frac{\pi}{2} \le t \le \frac{3\pi}{2}\right)$	
	$y = \frac{1}{2}\sin 2t \Longrightarrow y = \sin t \cos t = \pm \sqrt{1 - x^2} (x)$	
	$\therefore \text{ Cartesian equation: } y = \pm x \sqrt{1 - x^2}$	

	Method 3:	
	$x = \cos t \Rightarrow x^2 = \cos^2 t \Rightarrow \cos 2t = 2\cos^2 t - 1 = 2x^2 - 1$	
	$y = \frac{1}{2}\sin 2t \Longrightarrow \sin 2t = 2y$	
	Using $\sin^2 2t + \cos^2 2t = 1$,	
	$(2y)^{2} + (2x^{2} - 1)^{2} = 1$	
	$\therefore \text{ Cartesian equation: } 4y^2 + (2x^2 - 1)^2 = 1$	
	Method 1: $\int_{-1}^{0} \pi y^{2} dx$ $= \pi \int_{-1}^{0} (1 - x^{2}) x^{2} dx$ $= \pi \int_{-1}^{0} x^{2} - x^{4} dx = \pi \left[\frac{x^{3}}{3} - \frac{x^{5}}{5} \right]_{-1}^{0} = \frac{2}{15} \pi \text{ units}^{3}$	Many did not realize that method 1 is the desired method and were stucked with method 2 as they did not know how to integrate the integrand.
	Method 2 (not advised): $x = \cos t \Rightarrow \frac{dx}{dt} = -\sin t$	For method 2, common mistakes include wrong limits, or writing volume as $2\int_{-1}^{0} \pi y^2 dx$.
	when $x = 0$, $t = \frac{\pi}{2}, \frac{3\pi}{2}$ (can use either)	
	when $x = -1$, $t = \pi$	
	$\int_{-1}^0 \pi y^2 \mathrm{d}x$	
	$=\pi \int_{\pi}^{\frac{3\pi}{2}} \left(\frac{1}{2}\sin 2t\right)^2 \left(-\sin t\right) dt$	
	$= -\pi \int_{\pi}^{\frac{3\pi}{2}} (\sin t \cos t)^2 (\sin t) dt$	
	$= -\pi \int_{\pi}^{\frac{3\pi}{2}} \sin^2 t \cos^2 t \left(\sin t\right) dt$	
	$= -\pi \int_{\pi}^{\frac{3\pi}{2}} (1 - \cos^2 t) \cos^2 t (\sin t) dt$	
	$= -\pi \int_{\pi}^{\frac{3\pi}{2}} \left(\cos^2 t - \cos^4 t\right) \left(\sin t\right) \mathrm{d}t$	
	$= -\pi \left(-\int_{\pi}^{\frac{3\pi}{2}} (\cos t)^2 (-\sin t) dt + \int_{\pi}^{\frac{3\pi}{2}} (\cos t)^4 (-\sin t) dt \right)$	
	$= -\pi \left(-\left[\frac{(\cos t)^{3}}{3} \right]_{\pi}^{\frac{3\pi}{2}} + \left[\frac{(\cos t)^{5}}{5} \right]_{\pi}^{\frac{3\pi}{2}} \right)$	
	$= -\pi \left(-0 - \frac{1}{3} + 0 + \frac{1}{5} \right) = \frac{2}{15} \pi \text{ units}^{3}$	
3(i)	$\int \frac{x}{(1+x^2)^2} \mathrm{d} x = \frac{1}{2} \int \frac{2x}{(1+x^2)^2} \mathrm{d} x = -\frac{1}{2(1+x^2)} + c$	This is a simple question. No one should be getting this wrong.

$$\begin{aligned} \mathbf{3(ii)} & x = \tan \theta \Rightarrow \frac{dx}{d\theta} = \sec^2 \theta \\ & \int \frac{1}{(1+x^2)^2} \, dx = \int \frac{1}{(1+\tan^2 \theta)^3} \sec^2 \theta \, d\theta & x = \tan \theta \\ \sin \theta = \frac{x}{\sqrt{1+x^2}} \\ &= \int \frac{1}{\sec^2 \theta} \, d\theta = \int \cos^2 \theta \, d\theta & \cos \theta = \frac{1}{\sqrt{1+x^2}} \\ &= \int \frac{1}{\sec^2 \theta} \, d\theta = \int \cos^2 \theta \, d\theta & \cos \theta = \frac{1}{\sqrt{1+x^2}} \\ &= \int \frac{\cos 2\theta + 1}{2} \, d\theta = \frac{1}{2} \left(\frac{\sin 2\theta}{2} + \theta \right) & \sqrt{1+x^2} \\ &= \frac{1}{2} \left(\sin \theta \cos \theta + \theta \right) + c & \cos \theta = \frac{1}{\sqrt{1+x^2}} \\ &= \frac{1}{2} \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c & 1 \\ &= \frac{1}{2} \left(\frac{x}{1+x^2} + \tan^{-1} x \right) + c & \sin \theta \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{1}{1+x^2} \right) + c & \sin \theta \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{1}{1+x^2} \right) + c & \cos^2 \theta + 1 \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, dx \\ &= \frac{1}{2} \left(\tan^{-1} x - \frac{x}{1+x^2} \right) + c & (1+x^2)^2 \, d$$

(a)(ii)	$\mathbf{d} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{1}{\sqrt{2}}\mathbf{k} //\mathbf{i} + \mathbf{j} + \sqrt{2}\mathbf{k}$ $m: \mathbf{r} = \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix}$ $\begin{pmatrix} \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} - \begin{pmatrix} 3\\2\\0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} = 0$ $\therefore (-1-3) + \lambda (\mathbf{l}^2 + \mathbf{l}^2 + \sqrt{2}^2) = 0 \Rightarrow \lambda = 1$ Therefore position vector of point is $\begin{pmatrix} 2\\-1\\0 \end{pmatrix} + \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} = \begin{pmatrix} 3\\0\\\sqrt{2} \end{pmatrix}$ Coordinates = $(3, 0, \sqrt{2})$ OR $\overline{AN} = (\overline{AP} \cdot \mathbf{d})\mathbf{d} = \frac{\begin{pmatrix} \begin{pmatrix} 3\\2\\0\\0\\0\\\sqrt{2} \end{pmatrix} \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix}} \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix}} = \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix}$ $\therefore \overline{ON} = \overline{OA} + \overline{AN} = \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix} = \begin{pmatrix} 3\\0\\\sqrt{2} \end{pmatrix}$	 (2) poor presentation with regard to the treatment of vectors and scalars, for e.g. d = 0.5. In addition, the showing part needs to be worked on. Students have to present steps logically and quote relevant information from the question as part of their reasoning. This is a simple part. No one should be getting this wrong. There were still students who upon not being able to show (a)(i), decided that (a)(ii) was not doable and had no attempt on it. A variety of methods were applied, though the easiest one is shown first on the left. Students who applied the vector of the projection with modulus sign instead of brackets could arrive at the answer as well, but they were not awarded the full marks due to a conceptual error. Of those who could do this part, around 50% of them lost the answer mark for not expressing
	$Coordinates = (3, 0, \sqrt{2})$	in coordinates form.
4(b)	$l: \frac{x-a}{2} = \frac{y-1}{b} = -\frac{z}{2} \Rightarrow l: \mathbf{r} = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ b \\ -2 \end{pmatrix}$ $\begin{pmatrix} 2 \\ b \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 0 \Rightarrow 2 + 2b - 4 = 0 \Rightarrow b = 1$ $\begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 5 \Rightarrow a + 2 = 5 \Rightarrow a = 3$	This was generally well- done, though a minority wrote $\begin{pmatrix} a+2\lambda\\ 1+b\lambda\\ -2\lambda \end{pmatrix} \cdot \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} = 5$ $\Rightarrow a+2\lambda+2+2b\lambda-4\lambda = 5$ but obviously did not understand why $2\lambda+2b\lambda-4\lambda = 0$.
(b)(i)	p_2 perpendicular to $p_1 \Rightarrow \mathbf{n}_1 // p_2$	Some used longer method
	$p_2: \mathbf{r} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-2 \end{pmatrix} + \mu \begin{pmatrix} 1\\2\\2 \end{pmatrix}$	where they solved $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = 0 \text{and} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 0$ Some remembered that the direction vector of line of intersection is $\mathbf{n}_1 \times \mathbf{n}_2$ and

	$\begin{pmatrix} 2\\1\\-2 \end{pmatrix} \times \begin{pmatrix} 1\\2\\2 \end{pmatrix} = \begin{pmatrix} 6\\-6\\3 \end{pmatrix} / \begin{pmatrix} 2\\-2\\1 \end{pmatrix}$	wrote $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ but failed to include
	$ p_{2}: \mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 4 $	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 0$ as another
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	condition. A significant minority made careless mistakes while
		computing the vector product. They should remind themselves how to check for correctness of the vector
(b)(ii)	$\left \begin{pmatrix} x-3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \right $ $\left \begin{pmatrix} x-3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \right $	product. Only less than 30 students are able to do this part.
	$\frac{1}{\sqrt{9}} \begin{pmatrix} x-3\\ y-1\\ z \end{pmatrix} \cdot \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} = \frac{1}{\sqrt{9}} \begin{pmatrix} x-3\\ y-1\\ z \end{pmatrix} \cdot \begin{pmatrix} 2\\ -2\\ 1 \end{pmatrix}$	A handful gave good solutions, obtaining n as
	x-3+2(y-1)+2z = 2(x-3)-2(y-1)+z	$ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} $ or
	$\Rightarrow x + 2y + 2z - 5 = 2x - 2y + z - 4$ $\Rightarrow x - 4y - z = -1$	$\begin{pmatrix} 1\\2\\2 \end{pmatrix} - \begin{pmatrix} 2\\-2\\1 \end{pmatrix} = \begin{pmatrix} -1\\4\\1 \end{pmatrix}.$
	or $\Rightarrow x + 2y + 2z - 5 = -(2x - 2y + z - 4)$	(2) (1) (1)
5 (i)	$\Rightarrow 3x + 3z = 9 \Rightarrow x + z = 3$ Number of ways = (3 - 1)! · 5! · 4! · 3! = 34 560	Generally well done
5 (ii)	Number of ways	Most students added the
	= N(5 bowlers together) + N(4 canoeists together)	three numbers instead of
	-N(5 bowlers together & 4 canoeists together)	subtracting the case for
	$= 8! \cdot 5! + 9! \cdot 4! - 5! \cdot 5! \cdot 4!$	intersection:
	= 4838400 + 8709120 - 345600	$8! \cdot 5! + 9! \cdot 4! + 5! \cdot 5! \cdot 4!$
	= 13 201 920	If students had drawn a
		venn diagram, the correct operation would
		have been clearer.
5 (iii)	Number of ways	Very badly done,
c (m)	= N(Total) - N(0 bowlers) - N(0 canoeists) - N(0 footballers)	although there is a
	$={}^{12}C_8 - 0 - {}^8C_8 - {}^9C_8 = 485$	question in Tutorial 20
		Q9.
		Many did
		${}^{5}C_{1} * {}^{4}C_{1} * {}^{3}C_{1} * {}^{9}C_{1}$
		which is a gross
		overcount.
6 (i)	$P(X = 2) = P(A^{**}F^{*}, *A^{**}F) = 2\left(\frac{2\times3!}{5!}\right) = \frac{1}{5} = 0.2 \text{ (shown)}$ $P(X = 0) = P(AF^{***}, *AF^{**}, *AF^{**}, *AF^{*}, **AF) = 4\left(\frac{2\times3!}{5!}\right) = \frac{2}{5}$	6(i) and (ii) were very crucial parts to this question.
		Students who were unable to
6 (ii)	$P(X = 0) - P(AE *** *AE ** *AE ***AE) = A(2 \times 3!) - 2$	start finding the pdf of X, or did it wrongly, would not
	(A - 0) = 1(AI - 0), AI - 0,	did it wrongly, would not have been able to answer
	=0.4	(iii).
		Somo students lest montes for
	$P(X = 1) = P(A * F * *, *A * F *, **A * F) = 3\left(\frac{2 \times 3!}{5!}\right) = \frac{3}{10} = 0.3$	Some students lost marks for (i) because they lacked sufficient elaboration, e.g.
	P(X = 3) = P(A***F) = $\left(\frac{2\times3!}{5!}\right) = \frac{1}{10} = 0.1$	writing simply 4/20 or 2/10
		without justifying how they arrived at these numbers.
	x 0 1 2 3	They would have gotten the

6 (iii)	$P(X = x) = 0.4 = 0.3 = 0.2 = 0.1$ $E(X) = \sum_{all \ x} xP(X = x) = 0(0.4) + 1(0.3) + 2(0.2) + 3(0.1) = 1$ $E(X - 1)^2 = \sum_{all \ x} (x - 1)^2 P(X = x) = 1(0.4) + 0(0.3) + 1(0.2) + 4(0.1) = 1$ $Var(X) = E(X - \mu)^2 = E(X - 1)^2 = 1$	mark if they had drawn some diagram of how there are 4 ways of arranging Alex and his friend 2 persons apart (ignoring the arrangement of the other 3 people). A significant number of students assumed X was a binomial random variable. Students are also reminded to present sufficient working for the other probabilities in the table. This part was generally well done. Most of the errors came from the formula for $E(X - 1)^2$. A variety of methods were seen for calculating Var(X), but very few students figured out the shortest method: by the definition of Var(X), which
7(a)	Let <i>X</i> be the random variable "pH value of a randomly chosen	is $E[(X - \mu)^2]$. One way for students to check if their answer for Var(X) is correct is to know that variance cannot be a negative number.
(i)	bottle of shampoo". Unbiased estimate of population mean $= \overline{x}$ $= \frac{178.2}{30}$ $= 5.94$ Unbiased estimate of population variance $= s^{2}$ $= \frac{1}{29} \left(1238.622 - \frac{178.2^{2}}{30} \right)$ $= 6.21083$ $= 6.21 (3 \text{ s.f.})$ To test $H_{0}: \mu = 5.5$ against $H_{1}: \mu \neq 5.5$ at 10% significance level Under H_{0} , since $n = 30 > 20$ is large, $\overline{X} \sim N \left(5.5, \frac{6.21083}{30} \right)$ approx. by Central Limit Theorem Test statistic $Z = \frac{\overline{X} - 5.5}{\sqrt{\frac{6.21083}{30}}} \sim N(0,1)$ approx.	

	Value of test statistic $z = \frac{5.94 - 5.5}{\sqrt{\frac{6.21083}{30}}} = 0.967$ (3 s.f.)	
	Either Since $-1.64 < 0.967 < 1.64$, <i>z</i> lies <u>outside</u> the critical region	
	\Rightarrow Do <u>not</u> reject H ₀	
	Or p -value = 0.334 > 0.1 \Rightarrow Do <u>not</u> reject H ₀	
	\therefore There is insufficient evidence at 10% significance level to conclude that the mean pH value of the shampoo is not 5.5.	
	<u>Comments</u> The best solutions for this question are a result of careful attention to the way students phrase their working and calculate the required values. If students take some time to understand the rationale for writing things a certain way, they would be able to appreciate the principles behind a statistical hypothesis test.	
	Students are encouraged to spell out "unbiased estimate of" rather than just writing \overline{x} or s^2 . Some students even wrote "pop. mean/variance" or μ and σ^2 instead of the unbiased estimates.	
	The correct alternative hypothesis has been hinted in the question ("too high or too low"). Presentation wise, a number of students wrote subscripts on μ , which is not necessary.	
	Many students are still writing the wrong mean in the distribution for \overline{X} . The phrase "Under H ₀ " implies that we're assuming that the population mean	
	$\mu = 5.5$, therefore E(\overline{X}) = 5.5. Students should also be aware of whether CLT is used.	
	An alarming number of students attempted to write down the formula of the p -value, and then seemed to calculate the p -value using normalcdf instead of the Z-test. Students should only attempt to do this if they're very sure of the correct formula for the p -value in the respective tests; otherwise, they're better off using the Z-test function in the GC and letting it do its work.	
	Some students keyed in the wrong σ into the GC, which resulted in an extremely low <i>p</i> -value.	
	The final part of comparing <i>p</i> -value to significance level and the conclusion was also horribly done. Students generally made some permutation of the following mistakes:	
	 Dividing the <i>p</i>-value by 2, or using the <i>p</i>-value for the one-tail test Comparing <i>p</i>-value to 0.05 instead of 0.1 	
	 Comparing wrongly (e.g. 0.334 < 0.1) Mixing up the results of the test (e.g. 0.334 > 0.1, hence reject H₀) 	
	5. Mixing up "sufficient/insufficient evidence" and " H_0/H_1 is true/not true".	
	In particular, students should learn that the purpose of the test is to use the evidence to try and prove that H_1 is true, and hence the final conclusion must	
	reflect this (i.e. is there sufficient evidence to conclude that \mathbf{H}_1 is true?).	
(-)(*)		This question has highlights 1
(a)(ii)	It is not necessary to assume X is normally distributed. As the sample size is large, by Central Limit Theorem, \overline{X} is approximately normally distributed.	This question has highlighted a fundamental conceptual error that many students have about CLT: that CLT allows us to approximate X as a normal distribution. It
		therefore results in answers

		ranging from "No, CLT says X is normal" to "Yes, since CLT says X is normal". Because it is very easy for students to simply give the correct answer "No" with a superficial explanation, the marking of this part is very much stricter. Many students simply said "It is not necessary, since n is large, it is approximately normal by CLT". These are important concepts that need to be corrected so students can have a better picture of how CLT is used.
(b)(i)	Critical region of the test is $z < -1.64485$ or $z > 1.64485$ $\Rightarrow \underline{z < -1.64 \text{ or } \underline{z} > 1.64} (3 \text{ s.f.})$	The phrases "critical value" and "critical region" are added into the new syllabus, so students must know and distinguish between them. A number of students gave just the critical values. Also, critical region is usually expressed in terms of the test statistic (in our case, z). Finally, there are also students who gave the non- critical region as the critical region. One way to rectify this is to reinforce the fact that the critical region is also known as the rejection region (i.e. rejection of H ₀).
(b)(ii)	Value of test statistic $z = \frac{5.94 - 5.5}{\sqrt{\frac{6.5}{n}}} = \frac{0.44\sqrt{n}}{\sqrt{6.5}}$ For a favourable outcome at 10% significance level, do not reject H_0 $\Rightarrow z$ lies <u>outside</u> the critical region $\Rightarrow -1.64485 < \frac{0.44\sqrt{n}}{\sqrt{6.5}} < 1.64485$ $\Rightarrow \frac{-1.64485\sqrt{6.5}}{0.44} < \sqrt{n} < \frac{1.64485\sqrt{6.5}}{0.44}$ $\Rightarrow n < \left(\frac{1.64485\sqrt{6.5}}{0.44}\right)^2$ $\Rightarrow n < 90.837$ Hence largest $n = 90$	Students who are careless with reading the questions would have used either $\frac{178.2}{n}$ as the sample mean or 6.2108 as s^2 . Some students were confused about what the "favourable outcome" meant about the rejection of H ₀ . This involves understanding the context of the problem. A significant portion of students only wrote down z < 1.64485 and not the full non-critical region. Credit was only given if the correct inequality with the <i>p</i> -value was given earlier; the assumption is that with the correct inequality, students would be able to use invNorm to find the correct critical value. Otherwise, the

	full region should be written down. It is actually also possible to obtain the correct answer with $z > -1.64485$, but the earlier inequality would have been more appropriate since the test statistic here is positive.
	Students were also generally very careless with solving inequalities.

0(3)		
8 (i)		
	(time for 1	
	lap in sec)	
	92.32 - *	3 important points to
	X	note for scatter diagram:
		1) axes <i>t</i> and <i>m</i> labelled
		2) extreme values
	×	labelled
	×	3) 8 points in total
	×	- , - F
	41.45	
	6 24 m	
	(no. of months)	
	A linear model would imply that in the long run, the time taken to	Acceptable answers
	swim a lap would be <u>negative</u> , which is unrealistic.	include:
	swin a rap would be <u>negative</u> , which is uncensue.	- negative time
	(Note: Extrapolation is not accepted as a reason, as the question	- zero time
	isn't looking for a reason based on the data obtained.)	
8(ii)	Using GC, for $C = 37$, $r = -0.992555$	R : 6 d.p.
8(iii)	The most appropriate value for <i>C</i> is $\underline{38}$, as the magnitude of its	Acceptable answers
0(III)	corresponding value of r is closest to 1.	include:
	corresponding value of 7 is closest to 1.	
		$ r \approx 1$
		- <i>r</i> ≈ −1
		Quite a number of
		scripts had "closet"
		instead of "closest"!
8(iv)	From GC, least squares regression line of $\ln(t-38)$ on <i>m</i> is	R : use $C = 38$
0(11)	$\ln(t-38) = 5.01236 - 0.16349m$	R : $\ln(t-38)$ on <i>m</i>
		3 s.f. for final answer
	$\Rightarrow \ln(t-38) = 5.01 - 0.163m (3 \text{ s.f.})$	
		Please note that
	C = 38 is the <u>fastest time</u> that a student can expect to complete a	<i>C</i> is NOT the gradient;
	lap of breaststroke <u>after spending a long time</u> at the swim school.	<i>C</i> is NOT the <i>y</i> -intercept
		Acceptable answers
	(Making <i>t</i> the subject in the equation of the regression line gives	include:
	us	- fastest time after a
		long period
	$t = 38 + e^{5.01 - 0.163m}$, so as $m \to \infty, t \to 38$.)	- shortest time after a
		long period
8 (v)	When $m = 9$, $t = 38 + e^{5.01236 - 0.16349(9)}$	Acceptable answers
	$= 72.50 \ (2 \text{ d.p.})$	include:
	A timing of 60.33 seconds is well below the expected timing of	- very strong
	72.50 seconds. Therefore, we can say that the student is	- very talented
	exceptionally strong in his/her swimming ability.	- way above average
8 (vi)	The 8 randomly selected students might have been of different	The following may not
0(1)	•	
	genders and ages. To make the results fairer, data could be	give fairer results:
	collected separately based on genders and age ranges.	- increase sample size
		- increase frequency
		- group by ability
		(beginner, intermediate,
		advanced) is subjective
		~ ~

9 (a)	Let X be the random variable 'number of defective articles in	Although most people
	sample of 10'. $X \sim B(10, 0.065)$	are able to do this part,
	P(accepting a batch) = $P(X \le 1) = 0.86563 = 0.866$	there are quite a number
		of students who doesn't know how to do this
		basic question. Or some
		calculated this manually
		instead of using
		Binomial distribution.
(i)	P(batch eventually accepted)	Most students who got this wrong did not
	$= (0.86563)^2 + 2(0.86563)(1 - 0.86563)(0.86563)$	multiply by 2 for the
	= 0.95069	second case.
	= 0.951	
		Some did not
		understand the question and interpret it as a
		geometric series
		question.
(ii)	Let <i>N</i> be the number of articles examined per batch.	About 30% have no clue
	$N = \begin{cases} 20 & \text{if both findings agree} \\ 30 & \text{otherwise} \end{cases}$	how to do this part. 40%
	N = 30 otherwise	of those who attempted
	$P(N = 20) = (0.86563)^2 + (1 - 0.86563)^2 = 0.76737$	missed out some cases, such as RR or did not
	P(N = 30) = 1 - 0.76737 = 0.23263	multiply by 2 to account
	$\therefore E(N) = 20(0.76737) + 30(0.23263) = 22.3$	for AR and RA.
9 (b)	Let Y be the random variable 'number of defective articles in a	Except for some who
) (N)	sample of 10'. $Y \sim B(10, p)$	did not interpret the
	$A - P(Y < 1) + P(Y - 2) \cdot P(Y - 0)$	question properly, this
	$= {}^{10}C_0p^0(1-p)^{10} + {}^{10}C_1p^1(1-p)^9 + {}^{10}C_2p^2(1-p)^8 \cdot {}^{10}C_0p^0(1-p)^1$	₀ part is quite well done
	$= c_0 p (1-p) + c_1 p (1-p) + c_2 p (1-p) + c_0 p (1-p)$	for those who attempted
	$= (1-p)^{10} + 10p(1-p)^9 + 45p^2(1-p)^{18}$	it. Except for those who did not use the formula
	$= (1+9p)(1-p)^9 + 45p^2(1-p)^{18} (\text{shown})$	and thus left out ${}^{10}C_1$ or
	Lat W ha the rendern variable (number of constable betal	$^{10}C_2$.
9 (b)	Let W be the random variable 'number of acceptable batches, out of 100 inspected'. $W \sim B(100, A)$	There are a good number students who
	$P(W > 80) = 0.98 \implies P(W \le 80) = 0.02$	have problem dealing
	By GC, $A = 0.876235$	with complement.
	$\therefore A = (1+9p)(1-p)^9 + 45p^2(1-p)^{18} = 0.87624$	$P(W > 80) = 0.98 \implies 1 - P(W \le 79) = 0.98$
	By GC, $p = 0.08$	A large number of
	y , r • • • •	students applied (CLT)
		erroneously or normal
		approximation to this
		qn, and took invNorm.
		Students should also be
		advised not to use table
		to solve for A as A is not
		an integer value.
10 (a) (i)	Let <i>X</i> be the random variable 'marks of an examination'. By GC, $P(X > 100) = 0.0359$ if $X \sim N(73, 15^2)$	

	i.e., there are 3.59% of the students scoring more than the maximum mark of 100, which is impossible.	students marks are not independent of one another / the mean should be around 50 / mark is a discrete random variable / mark cannot take negative values or values above 100. Students need to understand that normal distribution is a model to help analyze the data and can be applied as long the population is large and the values that it cannot take have negligible probabilities.
10 (a) (ii)	Since $n = 50 \ge 20$ is large, by Central Limit Theorem, $\overline{X} \sim N(73, \frac{15^2}{50})$ approximately. $\therefore P(70 < \overline{X} < 75) = 0.748$	Majority assumed X is normal and then applied CLT for \overline{X} . This questions shows that most people do not understand the meaning of \overline{X} .
10 (b)	Let <i>Y</i> be the random variable 'marks of a school examination'. $Y \sim N(\mu, \sigma^2)$ P(Y < 51) = 0.8 $P(Z < \frac{51 - \mu}{\sigma}) = 0.8$	Quite a number had problem with 80th percentile: P(Y > 51) = 0.8 & P(Y = 51) are WRONG!
	$\frac{51 - \mu}{\sigma} = 0.84162$ $\mu + 0.84162\sigma = 51$	Standardisation should be $Z = \frac{X - \mu}{\sigma}$
	P(μ -5.4 < Y < μ +5.4) = 0.5 P($\frac{-5.4}{\sigma}$ < Z < $\frac{5.4}{\sigma}$) = 0.5 P(Z < $-\frac{5.4}{\sigma}$) = 0.25 $-\frac{5.4}{\sigma}$ = -0.67449 ∴ σ = 8.01	Note that InvNorm $(0.8) = 0.84162$ InvNorm $(0.8) \neq 0.8$ Note the interquartile range and its related probability: P(Y < u) - P(Y < l) = 0.5 where $u - l = 10.8$
	$\therefore \mu = 51 - 0.84162(8.0061) = 44.3$	P(Y < u) - P(Y < l) = 10.8 is WRONG!
10 (c) (i)	Let <i>M</i> be the random variable 'marks of another school examination'. $M \sim N(52,13^2)$ P(50 < M) = 0.56113 Number of passes = (total candidature) $\times 0.56113 = 289$ \therefore total candidature = $289 \div 0.56113 = 515$	

10 (c)	$P(M-52 < m) > 0.9 \Longrightarrow P(52 - m < M < 52 + m) > 0.9$	P : Missing first step
(ii)	where $M \sim N(52, 13^2)$	R : <i>m</i> marks from mean, 90%, more than, etc.
	$\Rightarrow \mathbf{P}(M < 52 - m) < 0.05$	
	\Rightarrow 52-m<30.6	As 52 & 13 are given,
	\Rightarrow $m > 21.4$	there is no need for standardisation.
	\therefore Smallest integral value of $m = 22$	
	1	The preferred method is
	1	InvNorm(0.05, 52, 13).
	1	Trial and error using GC
	<u> </u>	table is not advisable.