H2 Mathematics 2017 Prelim Exam Paper 1 Question

1	Mr Suba currence exchang rates:	ash returned ies back to ge	l to Singapo Singapore	ore after his to Dollars (S\$)	our in Europ 9. Three mo	e and wishes to convert his foreign oney changers offer the following
		Money Changer	1 Swiss Franc	1 British Pound	1 Euro	Total amount of S\$ Mr Subash would receive after currency conversion
		Α	S\$1.35	S\$1.80	S\$1.55	S\$1151.50
		В	S\$1.40	S\$1.85	S\$1.65	S\$1208.25
		С	S\$1.45	S\$1.75	S\$1.60	S\$1189.25
	How m	uch of each	currency h	as Mr Subasł	ı left after h	is tour? [4]
2	(a) Fi	and $\int \sin(2$	θ)cos(3 θ)	d <i>θ</i> .		[2]
	(b) U	se the subst	itution $\theta =$	\sqrt{x} to find the theorem of the tensor of	ne exact val	ue of $\int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) d\theta$. [5]
3	(i)	Using the fo	ormula for	$\sin P - \sin Q,$	show that	
			sin	$\left[\left(2r+1\right)\theta\right]-$	$\sin\left[\left(2r-1\right)\right]$	$\left[\theta\right] \equiv 2\cos\left(2r\theta\right)\sin\theta$. [1]
	(ii)	Given that	$\sin\theta \neq 0, u$	sing the meth	nod of differ	rences, show that
				$\sum_{r=1}^{n} \cos(2r\theta) =$	$=\frac{\sin\left[\left(2n+\frac{1}{2}\right)\right]}{2s}$	$\frac{1)\theta - \sin \theta}{\sin \theta}.$ [2]
	(iii)	Hence find	$\sum_{r=1}^{n} \cos^2 \left(\frac{r}{r} \right)^{n}$	$\left(\frac{r\pi}{5}\right)$ in terms	of <i>n</i> .	
		Explain wh	y the infinit	e series		
			$\cos^2($	$\left(\frac{\pi}{5}\right) + \cos^2\left(\frac{\pi}{5}\right)$	$\left(\frac{2\pi}{5}\right) + \cos^2\left(\frac{2\pi}{5}\right)$	$\left(\frac{3\pi}{5}\right)$ +
		is divergent				[3]
4	A fund each year show th	is started at ar. If withdr at the amou	\$6000 and awals of \$ <i>k</i> and in the fu	compound ir are made at nd at the beg	nterest of 3% the beginnin inning of th	% is added to the fund at the end of ng of each of the subsequent years, e $(n+1)$ th year is
				$\$\frac{100}{3}\Big[($	(180 - k)(1.0)	$(5)^n + k \Big].$

(iii)	It is now given that $\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Find the direction cosines of \overrightarrow{OG} .
	[2]
(a)	If $u = 2 - i \sin^2 \theta$ and $v = 2 \cos^2 \theta + i \sin^2 \theta$ where $-\pi < \theta \le \pi$, find $u - v$ in terms
	of $\sin^2 \theta$, and hence determine the exact expression for $ u-v $ and the exact
	value of $\arg(u-v)$. [6]
(b)	The roots of the equation $x^2 + (i-3)x + 2(1-i) = 0$ are α and β , where α is a
	real number and β is not a real number. Find α and β . [4]
(a)	When a liquid is poured onto a flat surface, a circular patch is formed. The area of the circular patch is expanding at a constant rate of 6π cm ² /s.
	 (i) Find the rate of change of the radius 24 seconds after the liquid is being poured. [3] (ii) Find the rate of change of the radius 24 seconds after the liquid is
	(ii) Explain whether the rate of change of the radius will increase or decrease as time passes. [1]
(b)	A cylindrical can of volume 355 cm^3 with height <i>h</i> cm and base radius <i>r</i> cm is made from 3 pieces of metal. The curved surface of the can is formed by bending a rectangular sheet of metal, assuming that no metal is wasted in creating this surface. The top and bottom surfaces of the can are cut from square sheets of metal with length $2r$ cm, as shown below. The cost of the metal sheets is K per cm ² .
	2r
	(i) Show that the total cost of metal used, denoted by C , is given by
	$C = K\left(\frac{710}{r} + 8r^2\right).$ [3]
	(ii) Use differentiation to show that, when the cost of metal used is a minimum, $h = 8$
	then $\frac{\pi}{r} = \frac{\sigma}{\pi}$. [5]
	(iii) (a) (b)

ANNEX B

XXJC H2 Math JC2 Preliminary Examination Paper 1

QN	Topic Set	Answers
1	Equations and Inequalities	He has <u>250 francs</u> , <u>125 pounds</u> and <u>380 euros</u> left.
2	Integration techniques	$2(a) \frac{1}{2}\cos\theta - \frac{1}{10}\cos(5\theta) + c$
		$2(b) - \frac{1}{2} - \frac{\pi}{4}$
3	Sigma Notation and Method of Difference	$3(iii) \frac{\sin\frac{(2n+1)\pi}{5}}{4\sin\frac{\pi}{5}} - \frac{1}{4} + \frac{1}{2}n$
4	AP and GP	4(i) at the beginning of <u>19th</u> year 4(ii) Least $k = 503$
5	Graphs and Transformation	5(a)
		5(b) (i) $(2, 1)$ $(2, 0)$ $(2, 0)$ $(2, 0)$ $(2, 0)$ $(2, -1)$ $(2, -1)$

		5(b) (ii)
6	Vectors	6(ii) Line <i>UM</i> : $\mathbf{r} = \mathbf{u} + \lambda (\mathbf{w} + \mathbf{v} - 2\mathbf{u}), \ \lambda \in \mathbb{R}$
		Line VN: $\overline{\mathbf{r} = \mathbf{v} + \mu(\mathbf{w} + \mathbf{u} - 2\mathbf{v})}, \ \mu \in \mathbb{R}$
		6(iii) Direction cosines of \overrightarrow{OG} are $\underline{\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}}$
7	Complex numbers	7(a) $u - v = 2\sin^2\theta - 2i\sin^2\theta$
		$ u-v = 2\sqrt{2}\sin^2\theta, \ \arg(u-v) = -\frac{\pi}{4}$
		7(b) $\alpha = 2, \beta = 1 - i$
8	Differentiation & Applications	8(a) (i) $\frac{1}{4}$ cm/s, (ii) $\frac{dr}{dt}$ will $\underline{\text{decrease}}$ as time passes
9	Functions	9(i) $R = 2$, $\alpha = \frac{\pi}{6}$ 9(ii) A = B $y = \cos x \rightarrow y = \cos(x+\alpha) \rightarrow y = R\cos(x+\alpha)$ A: Translation by α radians in the negative x- direction, followed by B: Scaling parallel to the y-axis by a scale factor R.

		9(iii)
		$ \begin{array}{c} y \\ 2 \\ \sqrt{3} \\ 0 \\ -2 \\ \end{array} $ $ \begin{array}{c} (11\pi) \\ 6 \\ (2\pi, \sqrt{3}) \\ (2\pi, \sqrt{3}) \\ \hline x \\ \end{array} $
		Range of f, R _f = $[-2, 2]$ 9(iv) Largest $k = \frac{\overline{5\pi}}{\underline{6}}$ $g^{-1}(x) = \cos^{-1} \frac{x}{2} - \frac{\pi}{6}$
		9(v) Since $R_h = [-2, +\infty)$ and $D_f = [0, 2\pi]$, $R_h \not\subset D_f$, fh does not exist.
10	Binomial Expansion	10(iv) $a = \sqrt{3}$
11	Application of Integration	11(a) (i) $m = 0$ or 1 11(a) (ii) $\frac{3}{2}$ units ²

H2 Mathematics 2017 Prelim Exam Paper 1 Solution

1	Let <i>x</i> , <i>y</i> and <i>z</i> be the amount of Francs, Pounds & Euro Mr Subash has left respectively.
	1.35x + 1.80y + 1.55z = 1151.50
	1.40x + 1.85y + 1.65z = 1208.25
	1.45x + 1.75y + 1.60z = 1189.25
	Using GC $r = 250$ $y = 125$ $z = 380$
	He has $\underline{250 \text{ francs}}$, $\underline{125 \text{ pounds}}$ and $\underline{380 \text{ euros}}$ left.
2	(a) Dy Easter Formula
4	(a) By Factor Formula, $\sin(2\theta) = \sin(2\theta) - \frac{1}{2} \left[\sin(5\theta) + \sin(-\theta) \right]$
	$\sin(2\theta)\cos(3\theta) = \frac{1}{2} \left[\sin(3\theta) + \sin(-\theta) \right]$
	$= \frac{1}{2} \left[\sin(5\theta) - \sin(\theta) \right]$
	$\int \sin(2\theta)\cos(3\theta)d\theta = \int \frac{1}{2} \left[\sin(5\theta) - \sin(\theta)\right]d\theta$
	$\int dx (x) dx (x) dx$
	$= \frac{1}{2}\cos\theta - \frac{1}{10}\cos(5\theta) + c$
	(b) $\theta = \sqrt{\pi} \Rightarrow \sqrt{x} = \sqrt{\pi} \Rightarrow x = \pi$
	$\theta = \sqrt{\frac{\pi}{2}} \Longrightarrow \sqrt{x} = \sqrt{\frac{\pi}{2}} \Longrightarrow x = \frac{\pi}{2}$
	$\theta = \sqrt{x} \implies \frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}.$
	$\int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} \theta^3 \cos\left(\theta^2\right) \mathrm{d}\theta$
	$=\int_{\frac{\pi}{2}}^{\pi} x\sqrt{x} \left(\cos x\right) \left(\frac{1}{2\sqrt{x}}\right) dx$
	$=\frac{1}{2}\int_{\frac{\pi}{2}}^{\pi}x\cos xdx\qquad$
	$\frac{du}{dr} = 1$
	$= \frac{1}{2} \left[x \sin x \right]_{\frac{\pi}{2}}^{\pi} - \int_{\frac{\pi}{2}}^{\pi} 1(\sin x) dx \right] \qquad dx \qquad v = \sin x$
	$=\frac{1}{2}\left(0-\frac{\pi}{2}+\left[\cos x\right]_{\frac{\pi}{2}}^{\pi}\right)$
	$\frac{2(2^{2})}{1[\pi(1-\alpha)]}$
	$=\frac{1}{2}\left[-\frac{1}{2}+(-1-0)\right]$
	$=-\frac{1}{2}-\frac{\pi}{4}$
	<u> 2 4</u>

$$\begin{array}{l} \mathbf{3} \quad (\mathbf{i}) \\ \sin\left[(2r+1)\theta\right] - \sin\left[(2r-1)\theta\right] \\ \equiv 2\cos\left(\frac{2r+1}{2}\right)\theta + (2r-1)\theta \\ \equiv 2\cos\left(2r\theta\right)\sin\theta \quad [\text{Shown}] \\ (\mathbf{ii}) \text{ From } (\mathbf{i}), \sin\left[(2r+1)\theta\right] - \sin\left[(2r-1)\theta\right] = 2\cos\left(2r\theta\right)\sin\theta \\ \Rightarrow \cos\left(2r\theta\right) = \frac{\sin\left[(2r+1)\theta\right] - \sin\left[(2r-1)\theta\right]}{2\sin\theta} \\ \therefore \sum_{r=1}^{n} \cos\left(2r\theta\right) = \sum_{r=1}^{n} \frac{\sin\left[(2r+1)\theta\right] - \sin\left[(2r-1)\theta\right]}{2\sin\theta} \\ = \frac{1}{2\sin\theta} \left[\frac{\sin 3\theta - \sin \theta}{\sin \theta} \\ + \sin 3\theta - \sin \theta \\ + \sin 2\theta - \sin 5\theta \\ + \cdots \\ + \sin(2n-1)\theta - \sin(2n-3)\theta \\ + \sin(2n-1)\theta - \sin(2n-3)\theta \\ + \sin(2n-1)\theta - \sin(2n-3)\theta \\ = \frac{1}{2\sin\theta} \left[\frac{\cos\left(\frac{2r\pi}{5}\right) + 1}{2\sin\theta} \right] \\ = \frac{\sin\left[(2n+1)\theta\right] - \sin\alpha}{2\sin\theta} \quad [\text{Shown}] \\ (\mathbf{iii}) \sum_{r=1}^{n} \cos^{2}\left(\frac{r\pi}{5}\right) = \sum_{r=1}^{n} \frac{\cos\left(\frac{2r\pi}{5}\right) + 1}{2} \\ = \frac{1}{2}\sum_{r=1}^{n} \cos\left(\frac{2r\pi}{5}\right) + \sum_{r=1}^{n} \frac{1}{2} \qquad \left(\text{Let } \theta = \frac{\pi}{5} \right) \\ = \frac{1}{2} \left[\frac{\sin\left(\frac{2n+1}{5}\pi\right) - \sin\frac{\pi}{5}}{2\sin\frac{\pi}{5}} \right] + \frac{1}{2}n \\ = \frac{\sin\left(\frac{2n+1}{5}\pi\right)}{4\sin\frac{\pi}{5}} - \frac{1}{4} + \frac{1}{2}n \\ As \ n \to \infty, \ -\frac{1}{4} + \frac{1}{2}n \to \infty \text{ and } \left| \sin\frac{(2n+1)\pi}{5} \right| \le 1, \\ \therefore \ \sum_{r=1}^{n} \cos^{2}\left(\frac{r\pi}{5}\right) \to \infty. \\ \therefore \text{ the series } \cos^{2}\left(\frac{\pi}{5}\right) + \cos^{2}\left(\frac{2\pi}{5}\right) + \cos^{2}\left(\frac{3\pi}{5}\right) + \dots \text{ is divergent.} \end{array}$$

Yr	Amount at the beginning	Amount at the end
	of yr	of yr
1	6000	6000(1.03)
2	6000(1.03) – <i>k</i>	[6000(1.03) - k](1.03) = 6000(1.03) ² - k(1.03)
3	$6000(1.03)^{2} - k(1.03) - k$ $= 6000(1.03)^{2} - k(1.03) - k$	$\begin{bmatrix} 6000(1.03)^2 - k(1.03) - k \end{bmatrix} (1.03)$ = 6000(1.03) ³ - k(1.03) ² - k(1.03)

By inspection, amount in the fund at the end of *n*th year = $6000(1.03)^n - k(1.03)^{n-1} - k(1.03)^{n-2} - ... - k(1.03)$ Amount in the fund at the beginning of (n + 1)th year

Anothin in the rank at the beginning of
$$(n + 1)$$
 in year

$$= 6000(1.03)^{n} - k(1.03)^{n-1} - k(1.03)^{n-2} - \dots - k(1.03) - k$$

$$= 6000(1.03)^{n} - k \left\{ \frac{1[1 - (1.03)^{n}]}{1 - 1.03} \right\}$$

$$= 6000(1.03)^{n} + \frac{100}{3} k \left[1 - (1.03)^{n} \right]$$

$$= \frac{100}{3} \left[180(1.03)^{n} + k - k(1.03)^{n} \right]$$

$$= \frac{100}{3} \left[(180 - k)(1.03)^{n} + k \right] \quad \text{[Shown]}$$
(i) Given $k = 400$,

$$\frac{100}{3} \left[(180 - 400)(1.03)^{n} + 400 \right] < 1000$$

$$-220(1.03)^{n} + 400 < 30$$

$$(1.03)^{n} > \frac{37}{22} \text{ (or 1.6818)}$$

$$n \ln 1.03 > \ln \frac{37}{22}$$

$$n > \frac{\ln \frac{37}{22}}{\ln 1.03} = 17.6 (3 \text{ sf})$$
Least $n = 18$

Or: use GC, table of values gives least n = 18n+1 = 19Therefore, at the beginning of 19th year, the amount in the fund will be less than \$1000 for the first time (ii) When $n+1=16 \Rightarrow n=15$. $\frac{100}{3} \left[(180 - k) (1.03)^{15} + k \right] \leq 0$ $(180 - k)(1.03)^{15} + k \leq 0$ $180(1.03)^{15} + k \left[1 - (1.03)^{15}\right] \leq 0$ $k \left[1 - (1.03)^{15} \right] \leq -180(1.03)^{15}$ $k\left[(1.03)^{15} - 1\right] \ge 180(1.03)^{15}$ $k \geq \frac{180(1.03)^{15}}{(1.03)^{15} - 1}$ $k \geq 502.6$ Least k = 503 (nearest integer) Or: from GC (plot graph or table of values), least k = 503 (nearest integer) (a) $(x-2)^2 = a^2(1-y^2)$ 5 $\Rightarrow \frac{(x-2)^2}{a^2} + y^2 = 1$ $\Rightarrow \frac{(x-2)^2}{a^2} + \frac{(y-0)^2}{1^2} = 1,$ 1<*a*<2 **(b)(i)** $y = \frac{1}{f(x)}$ $x = -\sqrt{2}$ $x = \sqrt{2}$ 1/2 0

$$\overline{OC} = \mathbf{u} + \frac{1}{3}(\mathbf{w} + \mathbf{v} - 2\mathbf{u})$$

$$= \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) \quad (\text{Shown})$$
(iii) $\mathbf{u} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$

$$\overline{OC} = \frac{1}{3}\begin{bmatrix} 1\\0\\0 \end{bmatrix} + \begin{pmatrix} 0\\1\\0 \end{bmatrix} + \begin{pmatrix} 0\\0\\1 \end{bmatrix} = \begin{pmatrix} \frac{1}{3}\\\frac{1}{3}$$

 $= 0 + \left(-\frac{\pi}{4}\right) = -\frac{\pi}{4}$ (b) Method 1 Solve α first then factorise quadratic expression or use sum of roots $x^{2} + (i-3)x + 2(1-i) = 0$ Sub. $x = \alpha \in \Box$, $\alpha^2 + (i-3)\alpha + 2(1-i) = 0$ $(\alpha^2 - 3\alpha + 2) + i(\alpha - 2) = 0$ Comparing imaginary parts, $\alpha - 2 = 0$ $\alpha = 2$ $x^{2} + (i-3)x + 2(1-i) = (x-2)(x-\beta)$ Comparing constants, $2(1-i) = 2\beta$ $\therefore \beta = 1 - i$ Or: Sum of roots, $\alpha + \overline{\beta} = -(i-3)$ $2+\beta = 3-i$ $\therefore \beta = 1 - i$ Factorise the quadratic expression first Method 2 $x^{2} + (i-3)x + 2(1-i) = (x-\alpha)(x-\beta)$ Comparing coefficients of *x*, $i-3 = -(\alpha + \beta)$ $\alpha + \beta = 3 - i \qquad (1)$ Comparing constants, $\alpha\beta = 2-2i \qquad (2)$ $\beta = 3-i-\alpha \qquad (3)$ $\beta = 3 - i - \alpha$ From (1), $\alpha(3-i-\alpha) = 2-2i$ Sub. (3) into (2), $3\alpha - \alpha^2 - \alpha i = 2 - 2i$ Comparing imaginary parts, $\alpha = 2$ $\overline{\beta} = 3 - i - 2$ Sub. into (3), $\therefore \beta = 1 - i$ Or: Let $\beta = a + bi$, where $a \in \Box$, $b \in \Box$ and $b \neq 0$ $x^{2} + (i-3)x + 2(1-i) = (x-\alpha)[x-(a+bi)]$ Comparing coefficients of *x*, $i-3 = -a-bi-\alpha$ b = -1 (Comparing imaginary parts) $a + \alpha = 3$ (1) (Comparing real parts) Comparing constants, $2-2i = \alpha(a+bi)$

 $= \alpha(a-i) = \alpha a - \alpha i$ $\alpha = 2$ (Comparing imaginary parts) $\overline{a} = 3 - \alpha = 3 - 2 = 1$ Sub. into (1), $\therefore \beta = 1 - i$ Method 3 Solve x first using quadratic formula $\overline{x^2 + (i-3)}x + 2(1-i) = 0$ $x = \frac{-(i-3)\pm\sqrt{(i-3)^2-4(1)[2(1-i)]}}{2}$ = $\frac{3-i\pm\sqrt{i^2-6i+9-8+8i}}{2} = \frac{3-i\pm\sqrt{2i}}{2}$ = $\frac{3-i\pm(1+i)}{2}$ (use GC to find $\sqrt{2i}$) = 2 or 1 - i $\therefore \alpha = 2 \text{ and } \beta = 1 - i$ For comparison purpose: If GC is **not** used to find $\sqrt{2}i$, then the algebraic works will look as follows: $\sqrt{2i} = a + bi$, where $a \in \Box$, $b \in \Box$ Let $2\mathbf{i} = a^2 - b^2 + 2ab\mathbf{i}$ Compring real parts, $a^2 - b^2 = 0$ $a^2 = b^2$ $a = \pm b$ (1) Compring imaginary parts, ab = 1 (2) a = b, When $a^2 = 1$ Sub. into (2), $a = \pm 1$ When a = 1, b = 1. When a = -1, b = -1 $\pm \sqrt{2i} = \pm (1+i)$ When a = -b $-b^2 = 1$ (NA : $b \in \Box$) Sub. into (2), $\therefore x = \frac{3-i\pm(1+i)}{2} = 2 \text{ or } 1-i$ $\therefore \alpha = 2 \text{ and } \beta = 1 - i$ (a)(i) Let $A \text{ cm}^2$ be area of the circular patch. 8 $A = \pi r^2$ $\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$ $\frac{dA}{dA} = 6\pi \text{ cm}^2/\text{s}$, a constant Given

This means that, in 1 s, A increases by 6π cm² constantly. A = 0When t = 0, $A = 24 \times 6\pi = 144\pi$ When t = 24, $\pi r^2 = 144\pi$ r = 12 (reject r = -12 since r > 0) $\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi(12) = 24\pi$ $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ $6\pi = 24\pi \frac{\mathrm{d}r}{\mathrm{d}t}$ $\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{4}$ \therefore rate of change of the radius is $\frac{1}{4}$ cm/s. $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ (a)(ii) $6\pi = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}$ $\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{6\pi}{2\pi r} = \frac{3}{r}$ Method 1 As r increases, $\frac{dr}{dt} = \frac{3}{r}$ decreases, $\therefore \frac{dr}{dt}$ will $\frac{decrease}{dt}$ as time passes. Method 2 $\frac{d\left(\frac{dr}{dt}\right)}{dt} = \frac{d\left(\frac{3}{r}\right)}{dr} \times \frac{dr}{dt}$ $= \frac{-3}{r^2} \left(\frac{3}{r}\right) = \frac{-9}{r^3} < 0$

 $\therefore \frac{\mathrm{d}r}{\mathrm{d}t} \text{ will } \underline{\underline{\mathrm{decrease}}} \text{ as time passes }.$

(b)(i)
$$V = \pi r^{2}h$$
$$355 = \pi r^{2}h$$
$$\pi rh = \frac{355}{r}$$
$$C = K(2\pi rh) + 2K(4r^{2})$$
$$= K\left[2\left(\frac{355}{r}\right) + 8r^{2}\right]$$

$$= K\left(\frac{710}{r} + 8r^{2}\right) \quad \text{(Shown)}$$
(b)(ii) $\frac{dC}{dr} = \left(-\frac{710}{r^{2}} + 16r\right)K$
For C to be a minimum, $\frac{dC}{dr} = 0$.
 $-\frac{710}{r^{2}} + 16r = 0$
 $-710 + 16r^{3} = 0$
 $r^{3} = \frac{355}{8}$
 $r = \sqrt[3]{\frac{355}{8}} = 3.54 \quad (3 \text{ sf})$
 $\frac{d^{2}C}{dr^{2}} = \left(\frac{1420}{r^{3}} + 16\right)K = \left(\frac{1420}{\frac{335}{8}} + 16\right)K = 48K > 0$
Or
 $\boxed{\frac{r}{\frac{dC}{dr^{2}}} = \left(\frac{1420}{r^{3}} + 16\right)K = \left(\frac{1420}{\frac{335}{8}} + 16\right)K = 48K > 0$
Or
 $\boxed{\frac{r}{\frac{dC}{dr^{2}}} = \left(\frac{1420}{r^{3}} + 16\right)K = \left(\frac{3.5}{\frac{3}{8}} + 3.54\right)K = 48K > 0$
So, $r = \sqrt[3]{\frac{355}{8}}$ does give the minimum cost.
Recall $355 = \pi r^{2}h$
 $h = \frac{355}{\pi r^{3}}$
 $= \frac{8}{\pi} \quad \text{(Shown)}$
 9 (i) $\sqrt{3} \cos x - \sin x = R\cos(x + \alpha)$
 $R = \sqrt{(\sqrt{3})^{2} + 1^{2}} = \sqrt{4} = 2$
 $\alpha = \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$
(ii) $y = \sqrt{3} \cos x - \sin x = 2\cos\left(x + \frac{\pi}{6}\right)$
 $y = \cos x \rightarrow y = \cos(x + \alpha) \rightarrow y = R\cos(x + \alpha)$

	$k = \frac{10\sin x}{\sqrt{2}\sin(\pi - x)}$	
	$\sqrt{3} \sin\left(\frac{\pi}{6} - x\right)$	
	$=\frac{10\sin x}{\sqrt{3}\left(\sin\frac{\pi}{6}\cos x - \cos\frac{\pi}{6}\sin x\right)}$	
	10 <i>x</i>	
	$\approx \frac{1}{\sqrt{3} \left[\frac{1}{2} \left(1 - \frac{x^2}{2} \right) - \frac{\sqrt{3}}{2} x \right]}$	
	$=\frac{10x}{\sqrt{2}\left[\left(\frac{1}{2}\right)^{2}\right]}$	
	$\frac{\sqrt{3}}{2} \left[\left(1 - \frac{x^2}{2} \right) - \sqrt{3} x \right]$	
	$=\frac{20x}{\sqrt{3}}\left[1 - \left(\sqrt{3}x + \frac{x^2}{2}\right)\right]^{-1}$	
	$\approx \frac{20x}{\sqrt{3}} \left(1 + \sqrt{3} x \right)$	
	$=\frac{20}{\sqrt{3}}\left(x+\sqrt{3}x^2\right)$	
11	(a)(i) $x = \frac{3m}{1-3}, y = \frac{3m^2}{1-3}, m \ge 0$	
	$1+m^{2} \qquad 1+m^{2}$ $y = x$	
	$3m^2$ $3m$	
	$\frac{1}{1+m^3} = \frac{1}{1+m^3}$	
	m(m-1) = 0	
	$m = \underline{0 \text{ or } 1}$	
	(a)(ii) when $m = 0$, $y = 0$.	
	When $m = 1$, $y = \frac{1}{1+1} = \frac{1}{2}$.	
	<i>y</i>	
	m = 1	<u>Notes</u> :
	$(1\frac{1}{2},1\frac{1}{2})$	Use GC to trace the path to
	by symmetry	see how <i>m</i> varies when the
		point moves along the path.
	$m = \frac{1}{2} (1 + \frac{1}{2})$	
	(13,3)	
	$O_m = 0$ x	

Area of (lower) half of the "leaf" is $\frac{1}{2}A = \int_{0}^{\frac{3}{2}} x \, dy - \text{area of } \Delta \qquad (\text{Note: } \int_{0}^{\frac{3}{2}} x \, dy = \text{shaded area})$ $A = 2\left[\int_{0}^{\frac{3}{2}} x \, dy - \frac{1}{2}\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)\right]$ = $2\left(\int_{0}^{\frac{3}{2}} x \, dy - \frac{9}{8}\right)$ (Shown) $2\left(\int_{0}^{\frac{3}{2}} x \, \mathrm{d}y - \frac{9}{8}\right) = 2\int_{0}^{1} \frac{3m}{1+m^{3}} \left[\frac{6m(1+m^{3}) - 3m^{2}(3m^{2})}{(1+m^{3})^{2}}\right] \mathrm{d}m - \frac{9}{4}$ $= 2\int_{0}^{1} \frac{3m(6m-3m^{4})}{(1+m^{3})^{3}} dm - \frac{9}{4}$ $= \frac{15}{4} - \frac{9}{4}$ (by GC) $=\frac{3}{2}$ $y = \ln x$ **(b)** $x = e^{y}$ $V_A = \pi \int_{a}^{c} (e^y)^2 dy$ $= \pi \int_{0}^{c} e^{2y} dy$ $= \pi \left[\frac{1}{2} e^{2y} \right]^c$ $=\frac{\pi}{2}(e^{2c}-1)$ $V_B = (1-c)\pi e^2 - \pi \int_c^1 (e^y)^2 dy$ or $\pi \int_c^1 [e^2 - (e^y)^2] dy$ $= \pi (1-c)e^2 - \pi \left[\frac{1}{2}e^{2y}\right]^1$ $= \pi (1-c)e^2 - \frac{\pi}{2}(e^2 - e^{2c})$ $V_A = V_B$ $\frac{\pi}{2}(e^{2c}-1) = \pi(1-c)e^2 - \frac{\pi}{2}(e^2 - e^{2c})$ $e^{2c} - 1 = 2e^2(1-c) - e^2 + e^{2c}$ $= 2e^2 - 2ce^2 - e^2 + e^{2c}$ $2ce^2 = e^2 + 1$

$$c = \frac{e^2 + 1}{2e^2}$$
 (Shown)

H2 Mathematics 2017 Prelim Exam Paper 2 Question

	One of the hillsides, H_1 3) and $(2, -3, 5)$ respectively.	, contains the point ctively. The point	Its A , B and C A is on the ri	with coordinate	es (3, 0, 2), (1, 0, r hillside H_2 has
	equation $2x - y + kz = 14$	4, where k is a cor	istant.		
	(i) Find a vector equat (ii) Show that $k = 4$ and	ion of H_1 in scalar deduce that point	r product form. B is also on the	e river	[4] [3]
	(iii) Write down a carter (iv) Show that <i>B</i> is the p	sian equation of the order the order of the	e river. at is nearest to	C. Hence find t	[1] the exact distance
	from C to the river.	e between BC and	Н		[3]
	(v) This actic angle		<i>m</i> ₂ .		[2]
4	 to determine whether to the safety limit of preservatives prese	vatives present, the work of fungus on surface area of 100 e rate at which it over time. They be e is such that the rate a of the piece of be e fungus. It is know s 40 cm ² five days rential equation ext at which 50% of t t to 2 decimal place int when the test is of A for any piec n in terms of the decimal places.	e Food Regulat a piece of bread) cm^2 . The staf is growing by elieve that the a te at which the read covered b wn that the initial after the expir pressing the ref he piece of bre es. ead just meets the concluded 2 w e of bread of the amount of pre	particular brain fory Authority of d over time after f from FRA est finding the are area, $A \text{ cm}^2$, or area is increasin y the fungus an ial area of fung ty date. lation between ad is covered to he safety limit veeks after the his brand to be eservatives pres-	(FRA) conducted er its expiry date. imate the amount ea of the piece of f fungus present t ng is proportional nd the area of the us is 20 cm ² and <i>A</i> and t . [1] by fungus, giving [6] of the amount of expiry date, find deemed safe for sent, giving your [2]) and sketch this [3]
5	The probability distribut	ion of a discrete ra	andom variable	e, X, is shown b	elow.
		$\frac{x}{P(X-r)}$	1	2	
		$\Gamma(\alpha - \lambda)$	u	D]
	Find $E(X)$ and $Var(X)$) in terms of <i>a</i> .			[5]
6	(i) Find the number of when	3-digit numbers	that can be for	med using the	digits 1, 2 and 3
	(a) no repetitions a(b) any repetitions	re allowed, are allowed,			[1] [1]

	(c) each digit may be used at most twice. [2]
	(ii) Find the number of 4-digit numbers that can be formed using the digits 1, 2 and 3 when each digit may be used at most twice. [5]
7	At a canning factory, cans are filled with potato puree. The machine which fills the cans is set so that the volume of potato puree in a can has mean 420 millilitres. After the machine is recalibrated, a quality control officer wishes to check whether the mean volume has changed. A random sample of 30 cans of potato puree is selected and the volume of the puree in each can is recorded. The sample mean volume is \overline{x} millilitres and the sample variance is 12 millilitres ² .
	 (i) Given that x̄ = 418.55, carry out a test at the 1% level of significance to investigate whether the mean volume has changed. State, giving a reason, whether it is necessary for the volumes to have a normal distribution for the test to be valid. [6] (ii) Use an algebraic method to calculate the range of values of x̄, giving your answer correct to 2 decimal places, for which the result of the test at the 1% level of significance would be to reject the null hypothesis. [3]
8	In this question you should state clearly the values of the parameters of any normal distribution you use.
	 The mass of a tomato of variety A has normal distribution with mean 80 g and standard deviation 11 g. (i) Two tomatoes of variety A are randomly chosen. Find the probability that one of the tomatoes has mass more than 90 g and the other has mass less than 90 g. [3] The mass of a tomato of variety B has normal distribution with mean 70 g. These tomatoes are packed in sixes using packaging that weighs 15 g. (ii) The probability that a randomly chosen pack of 6 tomatoes of variety B including packaging, weighs less than 450 g is 0.8463. Show that the standard deviation of the mass of a tomato of variety B is 6 g, correct to the nearest gram. [4] (iii) Tomatoes of variety A are packed in fives using packaging that weighs 25 g. Find the probability that the total mass of a randomly chosen pack of variety B, using 6 g as the standard deviation of the standard mass of a randomly chosen pack of variety B, using 6 g as the standard deviation of the standard mass of a randomly chosen pack of variety B, using 6 g as the standard deviation of the standard mass of a randomly chosen pack of variety B, using 6 g as the standard deviation of the standard mass of a randomly chosen pack of variety B, using 6 g as the standard the standard deviation of the standard mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard deviation deviation of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen pack of variety B, using 6 g as the standard the total mass of a randomly chosen
9	deviation of the mass of a tomato of variety <i>B</i> . [5] A jar contains 5 identical balls numbered 1 to 5. A fixed number, <i>n</i> , of balls are selected
	 and the number of balls with an even score is denoted by X. (i) Explain how the balls should be selected in order for X to be well modelled by a binomial distribution. [2]
	Assume now that <i>X</i> has the distribution $B\left(n, \frac{2}{5}\right)$.
	(ii) Given that $n = 10$, find $P(X \ge 4)$. [2]
	 (iii) Given that the mean of X is 4.8, find n. [2] (iv) Given that P(X = 0 or 1) < 0.01, write down an inequality for n and find the least value of n. [3]

	Sha who	wn and Arvind take turns to draw one ball from the jar at random. The first person o draws a ball with an even score wins the game. Shawn draws first.
	(v)	Show that the probability that Shawn wins the game is $\frac{3}{5}$ if the selection of balls is
	(vi)	done without replacement.[2]Find the probability that Shawn wins the game if the selection of balls is done with replacement.[2]
10	(a)	Traffic engineers are studying the correlation between traffic flow on a busy main road and air pollution at a nearby air quality monitoring station. Traffic flow, x , is recorded automatically by sensors and reported each hour as the average flow in vehicles per hour for the preceding hour. The air quality monitoring station provides, each hour, an overall pollution reading, y , in a suitable unit (higher readings indicate more pollution). Data for a random sample of 8 hours are as follows.
		Traffic flow, x 1796 1918 2120 2315 2368 2420 2588
		Pollution reading, y 1.0 2.2 3.5 4.2 4.3 4.5 4.9
		(i) Draw the scatter diagram for these values, labelling the axes. [2]
		It is thought that the pollution y can be modelled by one of the formulae $y = a + bx$ $y^2 = c + dx$
		where <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are constants.
		 (ii) Find the value of the product moment correlation coefficient between (a) x and y, (b) x and y². [2]
		(iii) Use your answers to parts (i) and (ii) to explain which of $y = a + bx$ or
		$y^2 = c + dx$ is the better model. [2]
		 (iv) It is required to estimate the value of <i>y</i> for which <i>x</i> = 2000. Find the equation of a suitable regression line, and use it to find the required estimate. [2] (v) The local newspaper carries a headline "Heavy traffic causes air pollution". Comment briefly on the validity of this headline in the light of your results. [1]
	(b)	The diagram below shows an old research paper that has been partially destroyed. The surviving part of the paper contains incomplete information about some bivariate data from an experiment. Calculate the missing constant at the end of the equation of the second regression line. [3]
		The mean of x is 4.4. The
		The equation of the regression line of y on x is $y = 2.5x + 3.8$.
		The equation of the regression line of x on y is $x = 1.5y^{-1}$

<u>JJC H2 Math JC2 Preliminary Examination Paper 2</u>
--

QN	Topic Set	Answers
1	Maclaurin series	(i) $\frac{dy}{dy} = \frac{\cos x}{\cos x}$
		$dx + \sin x$
		(ii) $\frac{d^4 y}{dx^4} = -\left(e^{-y}\right)^2 - e^{-y}\left(\frac{dy}{dx}\right)^2 \text{ or } -e^{-y}\left[e^{-y} + \left(\frac{dy}{dx}\right)^2\right]$
		(iii) $\ln(1+\sin x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 + \dots$
2	Differentiation & Applications	(ii) $y = \left(\tan\theta - \frac{1}{6}\sec\theta\right)x + \frac{5}{4}$
3	Vectors	
		(i) $\mathbf{r} \cdot 5 = 21$
		(6)
		(iii) $\frac{x-3}{-2} = z-2$, $y = 0$ or $\frac{x-1}{-2} = z-3$, $y = 0$
		$(iv) \sqrt{14}$
1	Differential Equations	(v) 49.3° or 0.861 rad
4		(i) $\frac{dA}{dt} = kA(100 - A)$
		(ii) 7.07 days
		(iii) $79.58 \le A \le 100$
		(iv) $A = \frac{100e^{(\frac{1}{5}\ln\frac{3}{5})t}}{4 + e^{(\frac{1}{5}\ln\frac{3}{5})t}}$ or $\frac{100e^{0.196t}}{4 + e^{0.196t}}$
		A
		20
5	DRV	$E(X) = 2-a$ and $Var(X) = a-a^2$
6	P&C, Probability	(i) (a) 6, (b) 27, (c) 24
		(ii) 54

7	Hypothesis Testing	(i) Since <i>p</i> -value = $0.0242 > \alpha = 0.01$, we do not reject
		H_0 at 1% level of significance and conclude that there is
		insufficient evidence that the population mean volume has changed.
		It is not necessary for the volumes to have a normal
		distribution for the test to be valid as $n = 30$ is large.
		(ii) $\bar{x} \le 418.34$ or $\bar{x} \ge 421.66$
8	Normal Distribution	(i) 0.297
		(iii) 0.364
9	Binomial Distribution	(i) (1) Selection of balls is done with replacement.
		(2) The balls are thoroughly mixed before each
		selection.
		(1) 0.618
		(111) 12
		(iv) $\left(\frac{3}{5}\right)^n + n\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)^{n-1} < 0.01$, least $n = 14$
		(vi) $\frac{5}{8}$ or 0.625
10	Correlation & Linear	(a) (ii) (a) 0.959, (b) 0.995
	Regression	(iii) $y^2 = c + dx$ is the better model since
		• From (i), the points on the scatter diagram seem
		to lie on a concave downward curve.
		• From (ii), the product moment correlation
		coefficient between x and y^2 is closer to 1, as
		compared to that between <i>x</i> and <i>y</i> .
		(iv) $y^2 = 0.0279x - 48.0$, $y = 2.79$ when x 2000.
		(v) May not be valid as coorelation does not necessarily
		imply causation.
		(b) 17.8

1	(i)	у	=	$\ln(1+\sin x) \implies e^y = 1 + \sin x$
		$\frac{dy}{dt}$	=	$\frac{\cos x}{1+x}$ [B1]
		dx $d^2 y$		$(1+\sin x)(-\sin x) - (\cos x)(\cos x)$
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	=	$\frac{(1+\sin x)(-\sin x)(-\cos x)(\cos x)}{(1+\sin x)^2}$
			=	$\frac{-\sin x - \sin^2 x - \cos^2 x}{\left(1 + \sin x\right)^2}$
			=	$\frac{-\sin x - 1}{\left(1 + \sin x\right)^2} \qquad [A1]$
			=	$\frac{-(\sin x+1)}{(1+\sin x)^2}$
			=	$\frac{-1}{1+\sin x}$
			=	$\frac{-1}{e^y}$
			=	$-e^{-y}$ (Shown)
	(ii)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$	=	$-e^{-y}\left(-\frac{dy}{dx}\right)$
			=	$e^{-y}\frac{dy}{dx}$
		$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4}$	=	$e^{-y}\frac{d^2y}{dx^2} + e^{-y}\left(-\frac{dy}{dx}\right)\left(\frac{dy}{dx}\right)$
			=	$e^{-y}\left(-e^{-y}\right)-e^{-y}\left(\frac{dy}{dx}\right)^2$ (from (i))
			=	$\frac{-\left(e^{-y}\right)^{2}-e^{-y}\left(\frac{dy}{dx}\right)^{2}}{2} \text{ or } \frac{-e^{-y}\left[e^{-y}+\left(\frac{dy}{dx}\right)^{2}\right]}{2}$
	(iii)	When	x = 0.	
	()	у	=	$\ln 1 = 0$
		$\frac{dy}{dx}$	=	$\frac{\cos 0}{1+\sin 0} = 1$
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	=	$-e^0 = -1$
		$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$	=	1
		$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4}$	=	-1 - 1 = -2

H2 Mathematics 2017 Prelim Exam Paper 2 Solution

(ii) Equation of
$$H_2$$
 is $2x - y + kz = 14$.
Sub. $A(3, 0, 2)$ into equation of H_2 ,
 $2(3) - 0 + k(2) = 14$
 $\therefore k = 4$ (Shown)
Sub. $B(1, 0, 3)$ into LHS of equation of H_2 ,
LHS = $2x - y + 4z = 2(1) - 0 + 4(3) = 14 = \text{RHS}$
 $\therefore B$ is also in H_2 .
Since B is in both H_1 and H_2 , $\therefore B$ is on the river. (Deduced)
(iii) Recall $\overline{AB} = \begin{pmatrix} -2\\ 0\\ 1 \end{pmatrix}$, using $A(3, 0, 2)$ or $B(1, 0, 3)$,
a cartesian equation of the river (line AB) is
 $\frac{x-3}{-2} = z - 2$, $y = 0$ or $\frac{x-1}{-2} = z - 3$, $y = 0$
(iv) Since $\overline{BC} \cdot \overline{AB} = \begin{pmatrix} -3\\ -3\\ 2 \end{pmatrix} \begin{pmatrix} -2\\ 0\\ 1 \end{pmatrix} = 1(-2) + (-3)(0) + 2(1) = 0$,
 BC is perpendicular to AB .
 $\therefore B$ is the point on the river that is nearest to C .
Exact distance from C to the river
 $= |\overline{BC}| = \begin{vmatrix} 1\\ -3\\ 2\\ \end{vmatrix} = \sqrt{1+9+4} = \sqrt{14}$
(v) Acute angle between BC and H_2
 $\theta = \sin^{-1} \frac{\left| \begin{pmatrix} 2\\ -3\\ 2\\ 2 \end{pmatrix} \right|}{\sqrt{14}\sqrt{21}} = \sin^{-1} \frac{\sqrt{13}}{\sqrt{14}\sqrt{21}}$
 $= \frac{49.3^\circ}{0}$ or $\frac{0.861 \text{ rad}}{\sqrt{14}\sqrt{21}}$
4 (i) $\frac{dA}{dt} = kA(100 - A)$
(ii) $\int \frac{1}{A(100 - A)} dA = \int k dt$
By partial fractions,
 $\frac{1}{A(100 - A)} = \frac{1}{100A} + \frac{1}{100(100 - A)}$

(iii) When t = 14 (days), $\frac{A}{100 - A} = \frac{1}{4} e^{\left(\frac{1}{5} \ln \frac{8}{3}\right)^{(14)}}$ Method 1 Solve algebraically Α = 3.8963 (5 sf) 100 - A= (100-A)(3.8963) Α 389.63-3.8963A = 4.8963A = 389.63 = 79.58 (2 dp) A For the bread to be deemed safe for human consumption in terms of the amount of preservatives present, $79.58 \le A \le 100$ Method 2 Use GC to plot graphs Use GC to plot $y = \frac{A}{100 - A}$ and $y = \frac{1}{4} e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)^{(14)}} (\approx 3.8963)$ Look for the point of intersection (adjust window). A = 79.58 (2 dp) For the bread to be deemed safe for human consumption in terms of the amount of preservatives present, $79.58 \le A \le 100$ NORMAL FLOAT AUTO REAL RADIAN MP CALC INTERSECT 2=.25%e^((2.8%1n(8/3))) Intersection Y=3.8963006 X=79.576417 $\frac{A}{100-A} = \frac{1}{4} e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t}$ $A = \frac{1}{4} e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t} (100-A)$ $4A = e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t} (100-A) = 100 e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t} - A e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t}$ $\left[4 + e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t}\right]A = 100 e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t}$ (iv) $A = \frac{100e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t}}{4 + e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)t}} \text{ or } \frac{100e^{0.196t}}{4 + e^{0.196t}}$

	20	t
5	$b = 1 - a$ $E(X)$ $E(X^{2})$ $Var(X)$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	(•) II 1 ($= \underbrace{\underline{a-a^2}}_{12}$
6	(i) Use 1, 2 (a) (b) (c)	2 and 3 to form 3-digit numbers 3! = 6 $3 \times 3 \times 3 = 27$ <u>Method 1</u> <u>Consider the complement</u> Number of 3-digit numbers with all 3 digits the same (AAA) = 3 Required number = $27 - 3 = 24$ <u>Method 2</u> <u>Consider cases</u> <u>Case 1 Each digit is used exactly once</u> Number of 3-digit numbers = 6 (from (i)(a)) <u>Case 2 One digit is used twice (AAB)</u> Number of 3-digit numbers = ${}^{3}P_{2} \times \frac{3!}{2!} = 18$ (${}^{3}P_{2} = 3 \times 2: 3$ ways to select a digit to be used twice; 2 ways to select another digit) Total number of 3-digit numbers = $6 + 18 = 24$

Method 1 Consider the complement Total number of 4-digit numbers = $3^4 = 81$ Case 1 AAAB Number of 4-digit numbers = ${}^{3}P_{2} \times \frac{4!}{3!} = 24$ $({}^{3}P_{2} = 3 \times 2:3$ ways to select a digit to be used thrice; 2 ways to select another digit) Case 2 AAAA Number of 4-digit numbers = 3Total number of 4-digit numbers = 81 - (24 + 3) = 54Consider cases Method 2 Case 1 AABC Number of 4-digit numbers = $3 \times \frac{4!}{2!} = 36$ (3 ways to select the digit to be used twice) Case 2 AABB Number of 4-digit numbers = ${}^{3}C_{2} \times \frac{4!}{2! \times 2!} = 18$ $({}^{3}C_{2}$ ways to select the 2 digits each to be used twice) Total number of 4-digit numbers = 36 + 18 = 547 $H_0: \mu = 420$ (i) $H_1: \mu \neq 420$ $s^2 = \frac{30}{29}(12) = 12.414$ Under H_0 , since n = 30 is large, by Central Limit Theorem, $\overline{X} \sim N\left(420, \frac{12.414}{30}\right)$ approximately. Hence it is not necessary for the volumes to have a normal distribution for the test to be valid. Test statistic $Z = \frac{\overline{X} - 420}{\sqrt{\frac{12.414}{20}}} \sim N(0, 1)$ approximately $\alpha = 0.01$ From GC, $z = \frac{418.55 - 420}{\sqrt{\frac{12.414}{30}}} = -2.2541$ p-value = 0.0242 (3 sf) Since p-value = 0.0242 > $\alpha = 0.01$, we <u>do not reject</u> H₀ at 1% level of

	significance and conclude that there is <u>insufficient</u> evidence that the population mean volume has changed.								
		α α							
	(ii)	$\alpha = 0.01 \Rightarrow \frac{\alpha}{2} = 0.005$							
		Reject H_0 if $z \le -2.5758$ or $z \ge 2.5758$							
		$\frac{x + 20}{\sqrt{\frac{12.414}{30}}} \le -2$	or	$\frac{\chi - 420}{\sqrt{\frac{12.414}{30}}} \ge 2.5758$					
		$\overline{x} \leq 420 - 2.3$	or	$\overline{x} \ge 420 + 2.5758 \sqrt{\frac{12.414}{30}}$					
		$\overline{x} \le 418.34$		or	$\overline{x} \ge 4$	21.66			
8	Let A	g be the mass of a tomato of variety A and B g be the mass of a tomato of variety							
	B. $A \sim N$	3. $A \sim N(80 \ 11^2)$							
	(i)	P(A > 90) = 0	0.18165						
		P(one greater than 90 g and one less than 90 g)							
		$= 2 \times P(A > 90) \times P(A < 90)$							
		= 2(0.18165)(1-0.18165)							
		$= \underline{0.297} (3 \text{ si})$							
	Let B	Let $B \sim N(70, \sigma^2)$.							
	(ii)	Let S_B	$= B_1 + B_2$	$B_2 + + I_2$	$B_6 + 15$	ia N	$(125, 6\pi^2)$		
		S_B	$\sim N(0 \times 150) -$	0.8463	00)	1.e., IN	(433,00)		
		(450-4)	0.0405	0.0+0.5					
		$P\left(Z < \frac{430-2}{\sqrt{6}a}\right)$	$\left(\frac{1}{\sigma}\right) =$	0.8463					
			$\frac{15}{\sqrt{6}\sigma} =$	1.0207					
			σ =	$\frac{15}{1.0207}$	$\sqrt{6}$	=	6 (nearest	g) (Shown)	
	(iii)	$S_{\scriptscriptstyle B}$	~ N(43	5, 216)					
		Let S_A	$= A_1 + A_2$	2 + + <i>2</i>	$A_{5} + 25$				
		$S_{\scriptscriptstyle A}$	~ $N(5 \times$	80+25,	5×11^{2})		i.e., N(42	25, 605)	
		$S_A - S_B$	~ N(42	5-435,	605+21	16)	= N	(-10, 821)	
		$\mathbf{P}(S_A > S_B)$	$= P(S_A)$ $= 0.364$	$-S_B > 0$ (3 sf))				
			0.004	(5.51)					
9	(i) (1) S	Selection of ball	ls is done with	replacer	nent.				

The balls are thoroughly mixed before each selection. (2)Given $X \sim B\left(10, \frac{2}{5}\right)$ (ii) $P(X \ge 4) = =$ $1 - P(X \le 3)$ 0.618 (3 sf) (iii) Given 4.8 E(X) = $\Rightarrow \frac{2}{5}n = 4.8$ $n = \underline{12}$ Given $X \sim B\left(n, \frac{2}{5}\right)$ (iv) P(X = 0 or 1) <0.01 $\Rightarrow P(X=0) + P(X=1) <$ 0.01 $\Rightarrow \left(\frac{3}{5}\right)^n + n\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)^{n-1} < \\$ 0.01 From GC, least $n = \underline{14}$ **(v)** Without replacement, P(Shawn wins the game) $=\frac{2}{5}+\frac{3}{5}\left(\frac{2}{4}\right)\left(\frac{2}{3}\right)$ $=\frac{3}{5}$ (Shown) (vi) With replacement, P(Shawn wins the game) $=\frac{2}{5}+\frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)+\frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)+\dots$ $=\frac{2}{5}+\frac{2}{5}\left(\frac{3}{5}\right)^{2}+\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)^{4}+...$ $=\frac{\frac{2}{5}}{1-\left(\frac{3}{5}\right)^2}$ $=\frac{5}{8}$ or $\underline{0.625}$ 10 (i)

$$y^{2} = 0.027897(2000) - 47.985$$

$$= 7.809$$

$$\therefore y = 2.79 (3 \text{ sf}) \text{ or } 2.8 (1 \text{ dp, as shown in the table of values})$$
(v) May not be valid as correlation does not necessarily imply causation.
Or: May not be valid as there could be other factors relating traffic flow and air pollution.
(b) $y = 2.5x + 3.8$
 $\overline{y} = 2.5\overline{x} + 3.8$
 $= 2.5(4.4) + 3.8$
 $= 14.8$
Let $x = 1.5y - k$
 $\overline{x} = 1.5\overline{y} - k$
 $4.4 = 1.5(14.8) - k$
 $k = 22.2 - 4.4$
 $= 17.8$