H2 Mathematics 2017 Prelim Paper 1 Question Answer all questions [100 marks].

1	Wer all questions [100 marks]. Water is leaking at a rate of 2 cm ³ per minute from a container in the form of a cone, wi	th				
	its axis vertical and vertex downwards. The semi-vertical angle of the cone is 45° (s	ee				
	diagram). At time t minutes, the radius of the water surface is r cm. Find the rate of chan	ge				
		4]				
	[The volume of a cone of base radius <i>r</i> and height <i>h</i> is given by $V = \frac{1}{3}\pi r^2 h$.]					
2	Without using a calculator, solve the inequality					
	$\frac{x}{x-1} \le \frac{4}{x+2} . \tag{[}$	5]				
3	Do not use a calculator in answering this question.					
	Showing your working, find the complex numbers z and w which satisfy the simultaneous					
	equations					
	4iz - 3w = 1 + 5i and					
	2z + (1+i)w = 2 + 6i. [5]				
4	(a) The points A and B relative to the origin O have position vectors $3\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and	nd				
4	(a) The points A and B relative to the origin O have position vectors $3\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ at $-3\mathbf{i} + 2\mathbf{j}$ respectively.	IU				
	(i) Find the angle between \overrightarrow{OA} and \overrightarrow{OB} .	2]				
		2]				
	(ii) Thence of otherwise, find the shortest distance from <i>B</i> to fine OA.	<i>2</i>]				
	(b) The points C , D and E relative to the origin O have non-zero and non-parallelet	el				
	position vectors \mathbf{c} , \mathbf{d} and \mathbf{e} respectively. Given that $(\mathbf{c} \times \mathbf{d}) \cdot \mathbf{e} = 0$, state with	th				
	reason(s) the relationship between O, C, D and E .	2]				
5	(i) Prove by the method of differences that					

	$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{k}{2(n+1)(n+2)},$
	where k is a constant to be determined. [5]
	(ii) Explain why $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$ is a convergent series, and state its value. [2]
	(iii) Using your answer in part (i), show that $\sum_{r=1}^{n} \frac{1}{(r+2)^3} < \frac{1}{4}$. [2]
6	
U	A curve <i>C</i> has equation $y = \frac{ax+b}{cx+1}$, where <i>a</i> , <i>b</i> and <i>c</i> are positive real constants and $b > \frac{a}{c}$.
	(i) Sketch C , stating the equations of any asymptotes and the coordinates of the points
	where the curve crosses the axes. [3]
	The curve <i>C</i> is transformed by a scaling parallel to <i>y</i> -axis by factor $\frac{1}{2}$ and followed by a
	translation of 2 units in the positive x-direction.
	(ii) Find the equation of the new curve in the form of $y = f(x)$. [2]
	It is given that the new curve $y = f(x)$ passes through the points with coordinates
	$\left(3,\frac{3}{2}\right)$ and $(6,1)$, and that $y = \frac{3}{4}$ is one of the asymptotes of the new curve $y = f(x)$.
	(iii) Find the values of a, b and c . [5]
7	(i) Given that $f(x) = \tan\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$, show that $f'(x) = \frac{1}{2}\left[1 + (f(x))^2\right]$, and find
	f(0), $f'(0)$, $f''(0)$ and $f'''(0)$. Hence write down the first four non-zero terms in
	the Maclaurin series for $f(x)$. [7]
	(ii) The first three non-zero terms in the Maclaurin series for $f(x)$ are equal to the first
	three non-zero terms in the series expansion of $\frac{\cos(ax)}{1+bx}$. By using appropriate
	expansions from the List of Formulae (MF26), find the possible value(s) for the constants <i>a</i> and <i>b</i> . [5]

8	10 p	10 pirates live on a pirate ship and they are ranked based on their seniority.					
	(a)	(a) One day, the pirates found a treasure chest that consists of some gold coins. The					
	rule which the pirates adhered by to divide all the gold coins are based on their						
	seniority and is as follows: The most senior pirate will get 3 gold coins more that						
	the 2 nd most senior pirate. The 2 nd most senior pirate will also get 3 gold coins n						
	than the 3 rd most senior pirate and so on. Thus, the most junior pirate w						
		least 1	number of gold coins.				
		(i)	If the treasure chest contains 305 gold coins, find the number	of gold coins			
			the most senior pirate will get.	[3]			
		(ii)	Find the least number of gold coins the treasure chest must	contain if all			
			pirates get some (at least one) gold coins each.	[2]			
	(b)	The p	irates need to take turns, one at a time, to be on the lookout for the	eir ship. Each			
		day (2	24 hours) is divided into 10 shifts rotated among the 10 pirates. The	ne 1 st lookout			
		shift	starts from 10pm daily and it starts with the most junior pirate	to the most			
		senio	r pirate. The length of their shift is also based on their seniority.	The length of			
		shift for the most senior pirate is 10% less than that of the 2^{nd} most senior pirate.					
	The length of shift for the 2^{nd} most senior pirate is 10% less than that of the 3^{rd} most						
	senior pirate and so on. Thus, the most junior pirate has the longest shift.		ift.				
	(i) Show that the length of shift for the most jun		Show that the length of shift for the most junior pirate is 3	.6848 hours,			
	correct to 4 decimal places.		correct to 4 decimal places.	[2]			
		(ii)	Calculate the length of shift for the 6^{th} most junior pirate. Find	the start time			
			of his shift, giving your answer to the nearest minute.	[4]			
9	A cu	rve C	has parametric equations				
			$x = \sqrt{2}\cos\frac{t}{2}$, $y = \sqrt{2}\sin t$, for $-2\pi \le t \le 2\pi$.				
	(i)	Find	$\frac{dy}{dx}$ and verify that curve C has a stationary point at P with p	arameter $\frac{\pi}{2}$.			
		Hence	e find the equation of the normal to the curve at point P .	[3]			
	(ii)	Sketc	h C , indicating clearly all turning points and axial interce	pts in exact			
		form.		[4]			

Blank Page

	(iii) Find the exact area bounded by the curve C . (You may first consider the area
	bounded by the curve C and the positive x-axis in the first quadrant.) [6]
10	
10	The plane p_1 has equation $\mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ 16 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, where λ and μ are real
	The plane p_1 has equation $\mathbf{r} = \begin{vmatrix} 1 \\ +\lambda \end{vmatrix} - 1 \begin{vmatrix} +\mu \\ +\mu \end{vmatrix} 1$, where λ and μ are real
	$\begin{pmatrix} 16 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$
	parameters. The point A has position vector $5\mathbf{i} - 6\mathbf{j} + 7\mathbf{k}$.
	(i) Find a cartesian equation of p_1 . [3]
	(\mathbf{i}) Find the position vector of the fact of norman disular from A to \mathbf{r} [4]
	(ii) Find the position vector of the foot of perpendicular from A to p_1 . [4]
	(1)
	The plane \mathbf{r} has equation $\mathbf{r} = 52$. The plane \mathbf{r} is obtained by reflecting \mathbf{r} shout
	The plane p_2 has equation $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} = 52$. The plane p_3 is obtained by reflecting p_2 about
	(3)
	p_1 . By considering the relationship between A and p_2 , or otherwise, find a cartesian
	equation of p_3 . [6]
11	A company intends to manufacture a cylindrical double-walled ceramic vacuum flask
	which can hold a fixed $V \text{ cm}^3$ of liquid when filled to the brim. The cylindrical vacuum
	flask is made up of an inner cylindrical aluminum casing (of negligible thickness) with
	height h cm and radius r cm and an outer cylindrical ceramic casing of fixed thickness k
	cm. There is a fixed k cm gap between the sides of the inner casing and outer casing where
	air has been removed to form a vacuum. The diagram below shows the view of the
	vacuum flask if it is dissected vertically through the centre.

- End Of Paper -

MJC H2 Math JC2 Preliminary Examination Paper 1

QN Topic Set Answers 1 Differentiation &	
1 1 Ditterentiation &	
Applications 7.07	
2 Equations and	
Inequalities $-2 < x < 1$	
3 Complex numbers $w = -3 + 5i$ and $z = 5 + 2i$	
4 Vectors (a)(i) 2.35 radian	
(a)(ii) $h = 2.58$	
5 Sigma Notation and (i) $k = 1$	
Method of Difference (ii) $\frac{1}{4}$	
6 Graphs and $1 \begin{bmatrix} a(x-2)+b \end{bmatrix}$	
6 Graphs and Transformation (ii) $y = \frac{1}{2} \left[\frac{a(x-2)+b}{c(x-2)+1} \right]$	
(iii) $a=3, b=6$ and $c=2$	
7 Maclaurin series (i) $f(0) = 1$; $f'(0) = 1$; $f''(0) = 1$; $f''(0) = 2$;	
$f(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 \cdots$	
(ii) $a = \pm 1$; $b = -1$	
8 AP and GP (a)(i) 44	
(a)(ii) 145	
(b)(ii) 1.05pm	
9 Application of $(x) dy 2\cos t$ 1	
9 Application of Integration (i) $\frac{dy}{dx} = -\frac{2\cos t}{\sin \frac{t}{2}}; x = 1$	
$\sin\frac{1}{2}$	
(iii) $\frac{16}{3}$ units ²	
10 Vectors (i) $-3x + y + 5z = 84$	
(-1)	
(ii) $\overrightarrow{OF} = \begin{vmatrix} -4 \end{vmatrix}$	
(17)	
(iii) $-31x + 22y + 5z = 308$	
11 Differentiation &	
Applications (iii) 49.7 cm ³	

1	Solution:
	$\tan 45^\circ = \frac{r}{h} \Longrightarrow r = h$
	$V = \frac{1}{3}\pi r^2 h$
	$V = \frac{1}{3}\pi h^3$
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \pi h^2$
	When $h = 0.3$,
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V}\frac{\mathrm{d}V}{\mathrm{d}t}$
	$=\frac{1}{\pi(0.3)^2}(-2)$
	$=-\frac{200}{9\pi}=-7.07$ (3s.f)
	9π The depth of water is decreasing at 7.07 cm per minute.
2	Solution:
	<i>x</i> 4
	$\frac{x}{x-1} \le \frac{4}{x+2}$
	$\frac{x}{x-1} - \frac{4}{x+2} \le 0$
	$\frac{x(x+2) - 4(x-1)}{(x-1)(x+2)} \le 0$
	$\frac{x^2 + 2x - 4x + 4}{(x - 1)(x + 2)} \le 0$
	$\frac{x^2 - 2x + 4}{(x - 1)(x + 2)} \le 0$
	$\frac{(x-1)^2 + 3}{(x-1)(x+2)} \le 0$
	Since $(x-1)^2 + 3 > 0$ for all $x \in \mathbb{R}$,
	(x-1)(x+2) < 0 -2 < x < 1
3	Solution:
	$4iz - 3w = 1 + 5i - \dots (1)$
	2z + (1+i)w = 2 + 6i(2)

$$(2) \times 2i$$

$$diz + 2i(1+i) w = 2i(2+6i)$$

$$diz + 2iw - 2w = 4i - 12 - \dots - (3)$$

$$(3) - (1):$$

$$diz + 2iw - 2w - (4iz - 3w) = (4i - 12) - (1 + 5i)$$

$$w + 2iw = -13 - i$$

$$(1+2i) w = -13 - i$$

$$w = \left(\frac{-13-i}{(1+2i)}\right) \left(\frac{1-2i}{(1-2i)}\right)$$

$$w = \frac{-13 + 26i - i - 2}{(1)^2 - (2i)^2}$$

$$w = \frac{-15 + 25i}{5}$$

$$w = -3 + 5i$$
Substitute $w = -3 + 5i$ into (2)

$$2z = 2 + 6i - (1+i)(-3 + 5i)$$

$$2z = 2 + 6i - (-3 + 5i) - 3i - 5)$$

$$2z = 2 + 6i - (-8 + 2i)$$

$$2z = 10 + 4i$$

$$z = 5 + 2i$$

$$\therefore w = -3 + 5i$$
Solution:
(a)(i) Let θ be the angle between \overline{OA} and \overline{OB} .

$$\left(\frac{3}{(-1)} \int_{0}^{(-3)} \left(\frac{3}{2}\right) \\ 0 \\ \theta = \cos^{-1} \left(\frac{-11}{\sqrt{19}\sqrt{13}}\right) = 134.4^{\circ} (1 \text{ d.p}) = 2.35 \text{ radian } (3 \text{ s.f})$$
(a)(ii) Let h be the shortest distance from B to line OA .

$$\sin 134.42^{\circ} = \frac{h}{|b|}$$

$$h = \sqrt{13} \sin 134.42^{\circ}$$

$$= 2.5752$$

$$= 2.58 \text{ units } (3 \text{ s.f})$$

(b) Let $\mathbf{c} \times \mathbf{d} = \mathbf{s}$. 1) $\mathbf{s} \cdot \mathbf{e} = 0 \implies \mathbf{s}$ is perpendicular to \mathbf{e} . 2) $\mathbf{c} \times \mathbf{d} = \mathbf{s} \implies \mathbf{s}$ is perpendicular to both \mathbf{c} and \mathbf{d} . Since s is perpendicular to c, d and e and c, d and e passes through common point $O \Rightarrow$ points O, C, D and E are coplanar. Solution: 5 (i) Let $\frac{1}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r+2}$ Using 'cover-up' rule, $A = \frac{1}{2}, \qquad B = -1, \qquad C = \frac{1}{2}$ $\therefore \frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{r+1} + \frac{1}{2(r+2)}$ $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \sum_{r=1}^{n} \left(\frac{1}{2r} - \frac{1}{r+1} + \frac{1}{2(r+2)} \right)$ = $\left| \frac{1}{2} - \frac{1}{2} + \frac{1}{6} \right|$ $+\frac{1}{4}-\frac{1}{3}+\frac{1}{8}$ $+\frac{1}{6}-\frac{1}{4}+\frac{1}{10}$ $+\frac{1}{8}-\frac{1}{5}+\frac{1}{12}$ +... $+\frac{1}{2(n-2)}-\frac{1}{n-1}+\frac{1}{2n}$ $+\left(\frac{1}{2n-1}\right)-\frac{1}{n}$ $+\frac{1}{2(n+1)}$ $+\frac{1}{2n}$ $-\frac{1}{n+1}+\frac{1}{2(n+2)}$ $=\frac{1}{2}-\frac{1}{2}+\frac{1}{4}+\frac{1}{2(n+1)}-\frac{1}{n+1}+\frac{1}{2(n+2)}$ $=\frac{1}{4}-\frac{1}{2(n+1)}+\frac{1}{2(n+2)}$ $=\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$ (proven) $\therefore k = 1$

(ii)
As
$$n \to \infty$$
, $\frac{1}{2(n+1)(n+2)} \to 0$, $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} \to \frac{1}{4}$
 $\therefore \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$ is a convergent series.
 $\therefore \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4}$
(iii)
For all $r \ge 1$,
 $(r+2)^3 > r(r+1)(r+2)$
 $\frac{1}{(r+2)^3} < \frac{1}{r(r+1)(r+2)}$
 $\sum_{r=1}^{n} \frac{1}{(r+2)^3} < \frac{1}{r(r+1)(r+2)}$
 $\sum_{r=1}^{n} \frac{1}{(r+2)^3} < \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$
 $\sum_{r=1}^{n} \frac{1}{(r+2)^3} < \frac{1}{4} - \frac{1}{2(n+1)(n+2)} > 0 \text{ for all } n \ge 1$
6 Solution:
(i)
(i)
 $y = \frac{ax+b}{cx+1}$
 $y = \frac{a}{c}$
(ii) Equation of new curve: $y = \frac{1}{2} \left[\frac{a(x-2)+b}{c(x-2)+1} \right]$

Since the new curve y = f(x) passes through the points with coordinates (iii) $\left(3,\frac{3}{2}\right)$ and $\left(6,1\right)$: $\frac{3}{2} = \frac{1}{2} \left[\frac{a(3-2)+b}{c(3-2)+1} \right]$ $3 = \frac{a+b}{c+1}$ a+b=3c+3a+b-3c=3 -----(1) $1 = \frac{1}{2} \left[\frac{a(6-2)+b}{c(6-2)+1} \right]$ $2 = \frac{4a+b}{4c+1}$ 4a + b = 8c + 24a + b - 8c = 2 -----(2) Since $y = \frac{3}{4}$ is one of the asymptotes of y = f(x), $\frac{3}{4} = \frac{1}{2} \left(\frac{a}{c} \right)$ $\frac{a}{c} = \frac{3}{2}$ 2a - 3c = 0 -----(3) Solving equations (1), (2) and (3) using GC, a=3, b=6 and c=2. 7 Solution: (i) $f(x) = tan\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ $f'(x) = \frac{1}{2}\sec^2\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ $=\frac{1}{2}\left[1+\tan^{2}\left(\frac{1}{2}x+\frac{1}{4}\pi\right)\right]$ $=\frac{1}{2}\left(1+\left(f(x)\right)^{2}\right) \qquad \text{(shown)}$ f''(x) = f(x)f'(x) $f'''(x) = f(x)f''(x) + (f'(x))^2$ f(0) = 1, f'(0) = 1, f''(0) = 1,

$$f^{(n)}(0) = 2.$$

$$\therefore f(x) = 1 + x + \frac{1}{2}x^{2} + \frac{1}{3}x^{3} \cdots$$
(ii)

$$\frac{\cos(ax)}{1 + bx} = \left(1 - \frac{(ax)^{2}}{2!} + \cdots\right) \left(1 + (-1)(bx) + \frac{(-1)(-2)}{2!}(bx)^{2} + \cdots\right)$$

$$= \left(1 - \frac{a^{2}x^{2}}{2} + \cdots\right) (1 - bx + b^{2}x^{2} + \cdots)$$

$$\approx 1 - bx + b^{2}x^{2} - \frac{a^{2}x^{2}}{2}$$

$$= 1 - bx + \left(b^{2} - \frac{a^{2}}{2}\right)x^{2}$$
Comparing coefficients,
 $x : b = -1$
 $x^{2} : b^{2} - \frac{a^{2}}{2} = \frac{1}{2} \Rightarrow \frac{a^{2}}{2} = \frac{1}{2} \Rightarrow a = \pm 1$

8 Solution:
(a)(i)
Let *a* be the number of gold coins the most junior pirate will get.
 $\frac{10}{2} \left[2a + (10 - 1)(3)\right] = 305$
 $a = 17$
No of gold coins for most senior pirate = $17 + (10 - 1)(3)$
 $= 44$
(a)(ii)
Least no of gold coins = $\frac{10}{2} \left[2(1) + (10 - 1)(3)\right]$
 $= 145$
(b)(i)
Let *b* be the length of shift for the most junior pirate
 $\frac{b}{1 - 0.9} (1 - 0.9^{(0)}) = 24$
 $b = 3.6848 \ln(to 4 d.p.)$ (shown)
(b)(ii)
Length of shift for 6th most junior pirate = $3.6848(0.9)^{5}$
 $= 2.18 \ln r$

Area =
$$4\int_{0}^{\sqrt{2}} y \, dx$$

= $4\int_{0}^{\pi} \sqrt{2} \sin t \cdot \left(-\frac{\sqrt{2}}{2} \sin \frac{t}{2}\right) dt$
= $4\int_{0}^{\pi} \sin t \cdot \sin \frac{t}{2} \, dt$
= $8\int_{0}^{\pi} \sin t \cdot \sin \frac{t}{2} \, dt$
= $8\int_{0}^{\pi} \frac{t}{3} \sin^{2} \frac{t}{2} \cos \frac{t}{2} \, dt$
= $8\left[\frac{2}{3} \sin^{2} \frac{t}{2}\right]_{0}^{\pi}$
= $\frac{16}{3} \text{ units}^{3}$
Alternative Method
Area = $4\int_{0}^{\sqrt{2}} y \, dx$
= $4\int_{0}^{\pi} \sqrt{2} \sin t \cdot \left(-\frac{\sqrt{2}}{2} \sin \frac{t}{2}\right) dt$
= $4\int_{0}^{\pi} \sin t \cdot \sin \frac{t}{2} \, dt$
= $-2\int_{0}^{\pi} \cos \frac{3t}{2} - \cos \frac{t}{2} \, dt$
= $-2\left[\frac{2}{3} \sin \frac{3t}{2} - 2\sin \frac{t}{2}\right]_{0}^{\pi}$
= $\frac{16}{3} \text{ units}^{3}$
10 Solutions:
(i) $\left(\frac{3}{-1}\right) \times \left(\frac{1}{2}\right) = \left(\frac{-3}{1}\right)$
 $r \cdot \left(\frac{-3}{1}\right) = \left(-\frac{1}{3}\right) \cdot \left(\frac{-3}{1}\right) = 84$
Cartesian equation of p_{1} is $-3x + y + 5z = 84$.
(ii) $\overline{OA} = \left(\frac{5}{-6}\right)$
Let the foot of perpendicular from A to p_{1} be F.

$$\overline{OF} = \begin{pmatrix} 5\\-6\\7 \end{pmatrix} + \beta \begin{pmatrix} -3\\1\\5 \end{pmatrix} = \begin{pmatrix} 5-3\beta\\7+5\beta \end{pmatrix} \text{ for some } \beta \in \mathbb{R}$$

Since *F* lies on p_1 ,
$$\begin{pmatrix} 5-3\beta\\-6+\beta\\7+5\beta \end{pmatrix} \cdot \begin{pmatrix} -3\\-6\\7 \end{pmatrix} = 84$$

 $\beta = 2$
 $35\beta + 14 = 84$
 $\beta = 2$
 $\vdots \ \overline{OF} = \begin{pmatrix} 5-6\\-6+2\\7+10 \end{pmatrix} = \begin{pmatrix} -1\\-4\\17 \end{pmatrix}$
Note that *A* lies on p_2 since $\begin{pmatrix} 5\\-6\\7 \end{pmatrix} \cdot \begin{pmatrix} 1\\-2\\5 \end{pmatrix} = 52$.
Let *A'* be the point of reflection of *A* about p_1 .
Note that *A'* lies on p_3 .
 $\overline{OF} = \frac{\overline{OA} + \overline{OA'}}{2}$
 $\overline{OA'} = 2\overline{OF} - \overline{OA} = 2 \begin{pmatrix} -1\\-4\\17 \end{pmatrix} - \begin{pmatrix} 5\\-6\\-6 \end{pmatrix} = \begin{pmatrix} -7\\-2\\27 \end{pmatrix}$
 $p_1 : -3x + y + 5z = 84.$
 $p_2 : \mathbf{r} \cdot \begin{pmatrix} 1\\-2\\5 \end{pmatrix} = 52 \implies x - 2y + 5z = 52$
By GC, the line of intersection between p_1 and p_2 is $\mathbf{r} = \begin{pmatrix} -44\\-48\\0 \end{pmatrix} + \alpha \begin{pmatrix} 3\\4\\1 \end{pmatrix}, \ \alpha \in \mathbb{R}$
A vector parallel to p_3 is $\overline{OA'} - \begin{pmatrix} -44\\-48\\0 \end{pmatrix} = \begin{pmatrix} -7\\-2\\27 \end{pmatrix} - \begin{pmatrix} -44\\-48\\0 \end{pmatrix} = \begin{pmatrix} 37\\-46\\27 \end{pmatrix}$
 $\begin{pmatrix} 37\\46\\27 \end{pmatrix} \times \begin{pmatrix} 3\\4\\1 \end{pmatrix} = \begin{pmatrix} -62\\-44\\10 \end{pmatrix} = 2 \begin{pmatrix} -31\\22\\5 \end{pmatrix}$

H2 Mathematics 2017 Prelim Paper 2 Question Answer all questions [100 marks].

1	r	complex number z has modulus 3 and argument $\frac{2\pi}{3}$.			
	(i)	Find the modulus and argument of $\frac{-2i}{z^*}$, where z^* is the complex conjugate			
		of <i>z</i> , leaving your answers in the exact form. [3]			
	(ii)	Hence express $\frac{-2i}{z^*}$ in the form of $x+iy$, where x and y are real constants, giving			
		the exact values of x and y in non-trigonometrical form. [2]			
	(iii)	The complex number w is defined such that $w = 1 + ik$, where k is a non-zero real			
		constant. Given that $\frac{-2iw}{z^*}$ is purely imaginary, find the exact value of k. [2]			
2	Two	students are investigating the rate of change of the amount of water in a reservoir,			
4	<i>x</i> mi	llion cubic metres, at time <i>t</i> hour during a rainfall.			
	Stuc	lent A suggests that x and t are related by the differential equation $\frac{d^2x}{dt^2} = \frac{2}{(t+1)^3}$.			
	(i)	Find the general solution of this differential equation. [3]			
	Student B assumes that the amount of water flowing into the reservoir depends only on				
	the 1	rainfall and is at a constant rate of k million cubic metres per hour. The rate at which			
		er flows out from the reservoir is proportional to the square of the amount of water in reservoir.			
	(ii)	If the amount of water in the reservoir stabilizes at 0.5 million cubic metres, show that the rate of change of the amount of water in the reservoir can be modelled by			
		the differential equation $\frac{dx}{dt} = k(1-4x^2)$. [2]			
	(iii)	Find x in terms of k and t , given that there are initially 1 million cubic metres of			
		water in the reservoir. [5]			
3	The	function f is defined by			
		$f: x \mapsto \ln(x^2 - 1), x \in \mathbb{R}, x > 1.$			
	(i)	Find f^{-1} in similar form. [3]			

Blank Page

Blank Page

	(i) Show that $k = 1 - 9\theta$. Find, in terms of θ , the probability distribution of <i>X</i> . [2]
	(ii) Find $E(X)$ in terms of θ and hence show that $Var(X) = 26\theta - 196\theta^2$. [3]
	(iii) The random variable Y is related to X by the formula $Y = a + bX$, where a and b
	are non-zero constants. Given that $\operatorname{Var}(Y) = \frac{1}{3}b^2$, find the value of θ . [3]
7	Coloured lego pieces are packed into boxes of 20 pieces by a particular manufacturer. Each box is made up of randomly chosen coloured lego pieces. The manufacturer
	produces a large number of lego pieces every day. On average, 15% of lego pieces are
	red. Explain why binomial distribution is appropriate for modelling the number of red
	lego pieces in a box. [2]
	 (i) Find the probability that a randomly chosen box of lego pieces contains at least 4 red lego pieces. [2]
	 (ii) A customer buys 50 randomly chosen boxes containing lego pieces. Find the probability that no more than 19 of these boxes contain at least 4 red lego pieces.
	It is given instead that the proportion of lego pieces that are red is now p . The probability
	that there is at least one red lego piece but fewer than four red lego pieces in a box, is
	0.22198, correct to 5 significant figures. Write down an equation involving p and hence
	find the value of p , given that $p > 0.2$. [4]
8	In an assembly line, a machine is programmed to dispense shampoo into empty bottles
	and the volume of shampoo dispensed into each bottle is a normally distributed
	continuous random variable X . Under ordinary conditions, the expected value of X
	is 325 ml.
	 (i) After a routine servicing of the machine, the assembly manager suspects that the machine is dispensing more shampoo than expected. A random sample of 60 bottles is taken and the data is as follows:

	Volume of shampoo (correct to nearest ml)	324	325	326	327	328	329	330
	Number of bottles	16	20	9	8	4	1	2
	Find unbiased estima to 2 decimal places. Test, at the 5% signifi					-		[2]
	Explain what it mean question.	t by the p	ohrase 'at	t 5% sigr	ificance	level' ir	the con	text of the [1]
	 (ii) Due to the assembly dispense 325 ml of two-tailed test, at the accurately. Given tha distributed with stand 	shampo 5% signi t the volu ard devia	o. Anoth ficance le me of sha tion 1.2 r	ner rando evel, con ampoo di ml, find t	om samp cluded th spensed he set of	ple of 5 nat the re into each values t	50 is tal ecalibrati n bottle i	xen and a on is done s normally volume of
	the 50 bottles can tak		-					[4]
9	The consumer price inde consumption goods and se It is commonly used as a	ervices co	ommonly	purchase	d by res	ident hou	useholds	over time.
	household expenditure su monthly expenditure of an	-	using an	d food r				
	household expenditure su	h average e housing 2005, the	using an househo and fooc price ind	d food r ld. l price in lex is 100	nade up dex from). For ex-	about h n 2005 to ample, th	alf of th 2012, whe food p	he average where 2005
	household expenditure su monthly expenditure of an The table below shows the is the base period, i.e. in 2 of 104.6 in 2007 means the Year	h average housing 2005, the at averag	using an househo and food price ind e food pr	d food r ld. l price in lex is 100 rices incr	nade up dex from). For ex- eased by	about h n 2005 tc ample, th 4.6% fre 9 201	alf of th 2012, w ne food p om 2005 0 2011	he average where 2005 price index to 2007.
	household expenditure su monthly expenditure of an The table below shows the is the base period, i.e. in 2 of 104.6 in 2007 means th	a average housing 2005, the at average $2005 2 2005 2 100 1 100 1 100 1 100 1 1$	using an househo and food price ind e food pr 2006 20 00.7 10	d food r ld. l price in lex is 100 rices incr	nade up dex from 0. For ex- eased by $08 \qquad 200$ $\overline{0.8} \qquad 123$	about h n 2005 to ample, th 4.6% fro 9 2010 .1 124.	alf of the conduct o	he average where 2005 price index to 2007.

	(i)	Show that the value of the missing housing price index for 2011 is 136 (nearest					
		integer), given that the regression line of y on x is $y = 54.271 + 0.48363x$, correct to					
		5 significant figures. [2]					
	(ii)	Draw the scatter diagram for these values, labelling the axes clearly. Comment on					
		the suitability of the linear model. [3]					
	(iii)	It is required to estimate the housing price index in 2016 where the food price index					
		in 2016 is 134.6. Find the equation of an appropriate regression line for y and \sqrt{x}					
		and use it to fin	d the required estimate. I	Explain why this estimate might	not be		
		reliable.			[4]		
	(iv)	Find the product	moment correlation coeff	icient between <i>y</i> and \sqrt{x} .	[1]		
	(v)	To simplify reco	ordings and calculations, i	t would be more convenient to t	tabulate		
		$\frac{x}{100}$ and $\frac{y}{100}$ in	nstead. Without any furth	her calculations, explain if the	product		
		moment correla	tion coefficient between	$\sqrt{\frac{x}{100}}$ and $\frac{y}{100}$ would differ fr	om the		
		value obtained in	n part (iv).		[1]		
10	(i)	Factory A produces nuts whose mass may be assumed to be normally distributed					
		with mean μ grams and standard deviation σ grams. A random sample of 50 nuts is					
		taken. It is given that the probability that the mean mass is less than 247 grams is					
		0.018079, correct to 5 significant figures. It is also given that the probability that					
		the total mass exceeds 12600 grams is 0.78397, correct to 5 significant figures. Find					
		the values of μ a	nd σ , giving your answers	to the nearest grams.	[5]		
	(ii)	(For this question, you should state clearly the values of the parameters of any					
		normal distribution you use.)					
		Factory <i>B</i> produces bolts and nuts. The masses, in grams, of bolts and nuts produced					
		are modelled as having independent normal distributions with means and standard					
		deviations as shown in the table:					
			Mean Mass (in grams)	Standard Deviation (in grams)			
		Bolts	745	7.3			
		Nuts	250	5			

- (a) Find the probability that the mass of a randomly chosen bolt differs from 3 times the mass of a randomly chosen nut by at least 40 grams. [4]
- (b) This factory introduces a new process which is able to reduce the mass of each nut by 10%. Find the probability that the total mass, after the introduction of this process, of 10 randomly chosen nuts is less than 2.24 kg. [3]

- End Of Paper -

ANNEX B

MJC H2 Math JC2 Preliminary Examination Paper 2

QN	Topic Set	Answers				
1	Complex numbers	(i) $\frac{2}{3}$; $\frac{\pi}{6}$				
		3 6				
		(ii) $\frac{\sqrt{3}}{3} + \frac{1}{3}i$				
2	Differential Equations	(iii) $k = \sqrt{3}$				
2		(i) $x = \frac{1}{t+1} + at + b$, where $b \in \mapsto$				
		(iii) $x = \frac{1+3e^{4kt}}{6e^{4kt}-2}$ or $\frac{1}{3e^{4kt}-1} + \frac{1}{2}$				
3	Functions					
5	FUNCTIONS	(i) $f^{-1}: x \mapsto \sqrt{1 + e^x}, x \in \mapsto$				
		(iv) $R_{gh} = [0, 6]$				
4	Integration techniques	(i) $c = e - 1$				
		(ii) 1				
5	P&C, Probability	(iii) e-1 (a)(i) 78624000				
5	r &O, r robability	(a)(i) 27081600				
		(b) 6151600000				
6	DRV	(i)				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		$P(X = x) \qquad \theta \qquad 3\theta \qquad 5\theta \qquad 1 - 9\theta$				
		$\Sigma = \Sigma(M) = 4 + 140$				
		(ii) $E(X) = 4 - 14\theta$				
	Discusial Distribution	(iii) $\theta = 0.0144$				
7	Binomial Distribution	(i) 0.715 (ii) 0.715				
		(iii) $p = 0.250$				
8	Hypothesis Testing	(i) $\overline{x} = 325.58$; $s^2 = 2.35$				
		p - value = 0.00169 < 0.05				
		(ii) $\{\overline{x} \in \mapsto 324.67 < \overline{x} < 325.33\}$				
9	Correlation & Linear	(iii) $\sqrt{x} = 0.0896y + 0.860; x = 167$				
	Regression	(iv) $r = 0.979$				
10	Normal Distribution	(i) $\mu = 255$; $\sigma = 27$				
		(ii)(a) 0.0214				
		(ii)(b) $P(T < 2240) = 0.241$ (3s.f.)				

1	Solution:
	(i) Given $ z = 3$, $\arg(z) = \frac{2\pi}{3}$,
	$\left \frac{-2i}{z^*}\right = \frac{ -2i }{ z^* } = \frac{2}{3} (\because z = z^*)$
	$\operatorname{arg}\left(\frac{-2\mathrm{i}}{z^*}\right) = \operatorname{arg}\left(-2\mathrm{i}\right) - \operatorname{arg}\left(z^*\right)$
	$= -\frac{\pi}{2} - \left(-\frac{2\pi}{3}\right) (\because \arg(z^*) = -\arg(z))$
	$=\frac{\pi}{6}$
	(ii) $\frac{-2i}{z^*} = \frac{2}{3} \left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) \right]$
	$=\frac{2}{3}\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)$
	$=\frac{\sqrt{3}}{3}+\frac{1}{3}i$
	$\frac{(\text{iii})}{z^*} = \left(\frac{\sqrt{3}}{3} + \frac{1}{3}i\right)(1 + ik)$
	$=\frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}ki + \frac{1}{3}i - \frac{1}{3}k$
	Since $\frac{-2iw}{z^*}$ is purely imaginary,
	$\frac{\sqrt{3}}{2} - \frac{1}{2}k = 0$
	$ \begin{array}{c} 5 & 5 \\ k = \sqrt{3} \end{array} $
2	Solution:
	(i)

H2 Mathematics 2017 Prelim Exam Paper 2 Solution

$$\frac{d^{2}x}{dt^{2}} = \frac{2}{(t+1)^{3}}$$

$$\frac{dx}{dt} = \int 2(t+1)^{-3} dt$$

$$\frac{dx}{dt} = \frac{2(t+1)^{-2}}{-2} + a, \text{ where } a \in \mathbb{R}$$

$$= -(t+1)^{-2} + a$$

$$x = \int -(t+1)^{-2} + a dt$$

$$= (t+1)^{-1} + at + b, \text{ where } b \in \mathbb{R}$$

$$= \frac{1}{t+1} + at + b, \text{ where } b \in \mathbb{R}$$
(ii) $\frac{dx}{dt} = k - cx^{2}, k, c > 0$
When $x = 0.5, \frac{dx}{dt} = 0$

$$k = c(0.5)^{2}$$

$$c = 4k$$

$$\frac{dx}{dt} = k - 4kx^{2} = k(1 - 4x^{2}) \text{ (shown)}$$
(iii)

 $\frac{\mathrm{d}x}{\mathrm{d}t} = k - 4kx^2 = k\left(1 - 4x^2\right)$ $\int \frac{1}{1 - 4x^2} \, \mathrm{d}x = \int k \, \mathrm{d}t, \quad 1 - 4x^2 \neq 0$ $\frac{1}{2(2)}\ln\left|\frac{1+2x}{1-2x}\right| = kt + d, d \in \mathbb{R}$ $\frac{1}{4}\ln\left|\frac{1+2x}{1-2x}\right| = kt + d$ $\ln\left|\frac{1+2x}{1-2x}\right| = 4kt + 4d$ $\frac{1+2x}{1-2x} = \pm e^{4kt+4d} = Ae^{4kt} \text{ where } A = \pm e^{4d}$ When t = 0, x = 1, $\frac{1+2}{1-2} = A$ A = -3 $\frac{1+2x}{1-2x} = -3e^{4kt}$ $1 + 2x = -3e^{4kt} + 6xe^{4kt}$ $x(2-6e^{4kt}) = -3e^{4kt} - 1$ $x = \frac{-3e^{4kt} - 1}{2 - 6e^{4kt}} = \frac{1 + 3e^{4kt}}{6e^{4kt} - 2} \quad \text{or } \frac{1}{3e^{4kt} - 1} + \frac{1}{2}$ 3 Solution: (i) Let $y = \ln(x^2 - 1)$. $x = \pm \sqrt{1 + e^y}$ Since x > 1 > 0, $\therefore x = \sqrt{1 + e^y}$. $D_{f^{-1}} = R_{f}$ $=\mathbb{R}$ $f^{-1}: x \mapsto \sqrt{1 + e^x}, x \in \mathbb{R}$ (ii)

$$A_{n} = \frac{1}{n} \left(e^{0} + e^{\frac{1}{n}} + e^{\frac{2}{n}} + e^{\frac{3}{n}} + \dots + e^{\frac{n-2}{n}} + e^{\frac{n-1}{n}} \right)$$

$$= \frac{1}{n} \cdot \frac{e^{0} \left(1 - \left(e^{\frac{1}{2}} \right)^{n} \right)}{1 - e^{\frac{1}{2}}}$$

$$= \frac{1}{n} \cdot \frac{1 - e}{1 - e^{\frac{1}{2}}} = \frac{e - 1}{n \left(e^{\frac{1}{2}} - 1 \right)}$$

$$\therefore c = e - 1$$
(ii)
$$e^{x} - 1 = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \right) - 1 = x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$\lim_{x \to 0} \frac{1}{x} \left(e^{x} - 1 \right) = \lim_{x \to 0} \left[\frac{1}{x} \left(x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \right) \right]$$

$$= \lim_{x \to 0} \left(1 + \frac{x}{2!} + \frac{x^{2}}{3!} + \dots \right)$$

$$= 1$$
(iii)
$$\lim_{x \to \infty} \frac{e - 1}{n \left(e^{\frac{1}{2}} - 1 \right)} = \lim_{x \to 0} \frac{e - 1}{\frac{1}{x} \left(e^{x} - 1 \right)}$$

$$= e - 1$$
(iv)
$$e - 1 \text{ is the exact area under the graph of } y = e^{x} \text{ from } x = 0 \text{ to } x = 1.$$
area = $\int_{0}^{1} e^{x} dx = e - 1$.
Since the graph of $y = e^{x}$ is concave upwards, and $\frac{A_{n} + B_{n}}{2}$ is the sum of the area of n
trapeziums each of width $\frac{1}{n}$, the area of all trapeziums will be greater than the exact area under the graph, which is $\int_{0}^{1} e^{x} dx$.

	 				
5	Solution: (a)(i) Total number of possible passcodes = $26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7 = 78624000$ or = ${}^{26}C_3 \times 3! \times {}^{10}C_4 \times 4! = 78624000$				
	or = ${}^{26}P_3 \times {}^{10}P_4 = 78624000$ (a)(ii) <u>Case 1:</u> 1 st digit 4, 6, 8				
	4, 6, 8 (3 choices)	8 choices	7 choices	1, 3, 5, 7, 9 (5 choices)	
	Number of possible passcodes = $26 \times 25 \times 24 \times 3 \times 8 \times 7 \times 5 = 13104000$ <u>Case 2:</u> 1 st digit 3, 5, 7, 9				
	3, 5, 7, 9 (4 choices)	8 choices	7 choices	4 choices	
	Number of possible passcodes = $26 \times 25 \times 24 \times 4 \times 8 \times 7 \times 4 = 13977600$ Total number of possible passcodes = $13104000 + 13977600 = 27081600$ (b) Total number of possible passcodes = $26^3 \times 10^4 \times \frac{7!}{4!3!} = 6151600000$				
6	$= 26^{\circ} \times 10^{\circ} \times \frac{4!3!}{4!3!}$	= 010100000			
3	(i) x	1 2	3 4		

$P(X = x) \theta 3\theta 5\theta k$					
Since $\sum_{x} P(X = x) = 1$,					
$\frac{\partial h}{\partial t} = \frac{\partial h}{\partial t} + \frac{\partial h}{\partial t} + \frac{\partial h}{\partial t} = 1,$					
$\therefore k = 1 - 9\theta$					
Probability distribution of <i>X</i> is					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$P(X = x) \qquad \theta \qquad 3\theta \qquad 5\theta \qquad 1 - 9\theta$					
(ii)					
$E(X) = 1(\theta) + 2(3\theta) + 3(5\theta) + 4(1-9\theta)$					
$=\theta+6\theta+15\theta+4-36\theta$					
$= 4 - 14\theta$ $\Sigma(X^2) = 4^2(0) + 2^2(20) + 4^2(1 - 0.0)$					
$E(X^{2}) = 1^{2}(\theta) + 2^{2}(3\theta) + 3^{2}(5\theta) + 4^{2}(1 - 9\theta)$					
$= \theta + 12\theta + 45\theta + 16 - 144\theta$ $= 16 - 86\theta$					
$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\operatorname{E}(X)\right]^{2}$					
$= 16 - 86\theta - (4 - 14\theta)^2$					
$= 16 - 86\theta - (16 - 112\theta + 196\theta^{2})$					
$= 26\theta - 196\theta^2$					
(iii)					
Y = a + bX					
$\operatorname{Var}(Y) = \operatorname{Var}(a+bX)$					
$\operatorname{Var}(Y) = b^2 \operatorname{Var}(X)$					
$\frac{1}{3}b^2 = b^2\left(26\theta - 196\theta^2\right)$					
$196\theta^2 - 26\theta + \frac{1}{3} = 0 (\because b \neq 0)$					
Using GC,					
$\theta = 0.0144$ or $\theta = 0.118$ (rejected :: $0 < \theta < \frac{1}{9}$)					
Solution:					

Reject H₀ if p-value < 0.05 Under H₀, using GC, p - value = 0.00160 (3 s.f)0.00169 (3 s.f) or Conclusion: Since p - value = 0.00169 < 0.05, we reject H₀ and conclude that there is sufficient evidence, at the 5% significance level, that the mean volume dispensed is more than 325 ml. Thus, the assembly manager's suspicion is valid at 5% level of significance. There is a probability of 0.05 of concluding that the mean volume of shampoo dispensed is more than 325 ml when in fact, it is 325 ml. (ii) H₀: $\mu = 325$ H₁: $\mu \neq 325$ Given $X \sim N(\mu, \sigma^2)$ $\therefore \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ Test statistic: $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ Level of significance: 5% Since H₀ is not rejected, -1.9600 < z -value < 1.9600 $-1.9600 < \frac{\overline{x} - 325}{1.2} < 1.9600$ $\sqrt{50}$ $324.67 < \overline{x} < 325.33$ (2 d.p.) $\{\overline{x} \in \mathbb{R}: 324.67 < \overline{x} < 325.33\}$ 9 Solution: (i) Let *k* be the missing housing price index for 2011. $\overline{y} = 111.775$ and $\overline{x} = \frac{815.2 + k}{8}$ Since \overline{y} and \overline{x} lies on the regression line, $111.775 = 54.271 + 0.48363 \left(\frac{815.2 + k}{8}\right)$ k = 136 (3 s.f.)(shown) (ii)

$$123.1 \oint_{x} x^{x}$$

$$x^{x}$$

$$100 + \frac{x}{x}$$

$$\frac{x}{x}$$

$$\frac{x}{x}$$

$$\frac{x}{x}$$

$$\frac{x}{x}$$

$$\frac{x}{x}$$

$$\frac{x}{x}$$
From the scatter diagram, as x increases, y increases at a decreasing rate. Thus the linear model might not be the most appropriate model.
(iii) (Note that there is no clear independent variable.)
From GC, an appropriate regression line would be $\sqrt{x} = 0.0896y + 0.860$ (3 s.f.)
When $y = 134.6$, from GC, $x = 167$ (3 s.f.).
The estimated housing price index in 2016 is 167.
Since $y = 134.6$ falls outside the data range of y , the linear correlation between y and \sqrt{x} might no longer hold and thus, the estimate is unreliable.
(iv) From GC, $r = 0.979$ (3 s.f.).
(v) The product moment correlation coefficient between $\sqrt{\frac{x}{100}}$ and $\frac{y}{100}$ does not differ from the value obtained in part (iv) as the *r*-value is independent of the scale of measurement.
Note that: $\sqrt{\frac{x}{100}} = \frac{\sqrt{x}}{10}$ means that the values of \sqrt{x} undergo a scaling of 10 units and $\frac{y}{100}$ means that the values of y undergo a scaling of 100 units.
10
(i) Let X be the mass of a randomly chosen nut in grams.
 $X \sim N(\mu, \sigma^2)$
 $\overline{X} \sim N(\mu, \frac{\sigma^2}{50})$ and $X_1 + ... + X_{50} > N(50\mu, 50\sigma^2)$
Given $P(\overline{X} < 247) = 0.018079$ and $P(X_1 + ... + X_{50} > 12600) = 0.78397$
Standardizing, $Z \sim N(0, 1)$