H2 Mathematics 2017 Preliminary Exam Paper 1 Question Answer all questions [100 marks].

The diagram above shows a right circular cone with fixed radius *a* and fixed height *h*. A cylinder of radius *r* and height *x* is removed from the cone.
(i) Show that the volume of the remaining shape, *V*, is
$$\frac{\pi h}{3} \left(a^2 - 3r^2 + \frac{3r^3}{a} \right)$$
. [2]
(ii) As *r* varies, use differentiation to find the value of *r* that gives the minimum value of *V*, leaving your answer in terms of *a*. [4]
5 A line *L* passes through the points $A(3, -1, 0)$ and $B(11, 11, 4)$.
(i) Find the angle between *L* and the *y*-axis. [2]
(ii) State the geometrical meaning of $\left|\overline{OB}\left(\begin{matrix} 0\\0\\1 \end{matrix}\right)\right|$. [1]
The point $F(2a+1, a, a-1)$ is a point on *L*, where *a* is a positive constant.
The point *F* is such that $\overline{PF} = \begin{pmatrix} 3\\0\\2 \end{pmatrix}$ and the area of the triangle AFP is $\sqrt{\frac{59}{2}}$ units².
(iii) Determine the value of *a*. [3]
(iv) The point *C* on *L* is such that the ratio of the area of triangle AFP to the area of triangle *FCP* is 2:1. State the ratio $AF: CF$, justifying your answer. [2]
6 (i) Show that $\int e^{2x} \cos x \, dx = \frac{2}{5}e^{2x} \cos x + \frac{1}{5}e^{2x} \sin x + C$. [3]

Find the volume of the solid generated when the region bounded by $y = e^x \sqrt{(\cos x)}$ (ii) and $y = -\frac{2}{\pi}x + 1$ between x = 0 and $x = \frac{\pi}{2}$ is rotated through 2π radians about the x-axis, leaving your answer in exact form. [4] 7 Prove by the method of mathematical induction that (i) $\sum_{r=1}^{n} \frac{2}{r(r+2)} = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}$ for all positive integers of n. [5] Explain why $\sum_{r=1}^{n} \frac{2}{r(r+2)}$ is a convergent series, and state the value of the sum to (ii) infinity. [2] (iii) Using the result in part (i), find $\sum_{r=5}^{N} \frac{2}{(r-2)(r-4)}$. [2] Using the substitution y = ux, show that the differential equation 8 $x\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + y - 2$ can be reduced to the form $x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = 3x - 2.$ Hence, find the general solution to the differential equation $x\frac{dy}{dx} = 3x + y - 2$. [5] (i) State the equation of the locus where the stationary points of the solution curves lie. [1] Sketch, on a single diagram, the graph of the locus found in part (i) and two members (ii) of the family of solution curves, where the arbitrary constant in the general solution is equal to 1 and -1. [3] 9 It is given that

	1	$\left(\begin{array}{c} & & 2 \end{array} \right)$							
		$f(x) = \begin{cases} (x-1)^2 + 4 & , & k \le x < 3, \\ 3x-1 & , & 3 \le x \le 4, \end{cases}$							
		$\begin{bmatrix} 3x-1 & , & 3 \le x \le 4, \end{bmatrix}$							
		where $k \in \Box$, $k < 3$.							
	(i)	Sketch, for $k = 0$, the graph of $y = f(x)$, stating the coordinates of the turning point. Write down the range of f. [3]							
	(ii)	Explain why f^{-1} does not exist. State the smallest value of k for f^{-1} to exist. [2]							
	(iii)	Using the value of k in part (ii), find f^{-1} in similar form. [4]							
	(iv)	State the geometrical relationship between f and f^{-1} . The point $P(a, b)$, where a							
		and b are constants, lies on the graph $y = f(x)$. The point Q on the graph $y = f^{-1}(x)$							
		is the point corresponding to P . State the coordinates of Q . [2]							
10	(a)	It is given that $-1+i$ is a root of the equation $2z^3 + az^2 + bz + (3+i) = 0$.							
	(a)	It is given that $-1 + 1$ is a root of the equation $22 + 42 + 62 + (3+1) = 0$.							
		(i) Find the values of the real numbers <i>a</i> and <i>b</i> . [4]							
		(ii) Using these values of <i>a</i> and <i>b</i> , find the other roots of this equation. [3]							
	(b)	It is given that $w = -1 + (\sqrt{3})i$.							
		(i) Without using a calculator, find an exact expression for w^5 . Give your							
		answer in the form $re^{i\theta}$, where $r > 0$ and $0 \le \theta \le 2\pi$. [3]							
		(ii) Without using a calculator, find the three smallest positive whole number							
		values of <i>n</i> for which $\frac{w^*}{w^n}$ is a real number. [4]							
11	A cu	rve C_1 is defined parametrically by the equations $x = t - \frac{1}{t}$, $y = t + \frac{1}{t}$, $t \neq 0$.							
	(i)	Sketch C_1 , stating the equation of the asymptotes and coordinates of any points of							
		intersection with the y-axis. $[2]$							

	(ii) Show that the equation of the normal to C_1 at the point with parameter p is given by						
	$y = -\frac{p^2 + 1}{p^2 - 1}x + \frac{2(p^2 + 1)}{p}.$ [4]						
	(iii) The normal in part (ii) intersects the <i>x</i>-axis at the point <i>A</i> and the <i>y</i>-axis at the point <i>B</i>. Find, in terms of <i>p</i>, an expression for the area of the triangle <i>OAB</i>. [4]						
	The line <i>l</i> is the normal to C_1 when $p = 2$.						
	(iv) Find the equation of <i>l</i> . [1]						
	A curve C_2 is defined parametrically by the equations $x = 3at$, $y = -t^2 + a$, $t \in \Box$ where <i>a</i> is a non-zero constant.						
	(v) Given that l intersects C_2 , show that the parameter q of the point(s) of intersection satisfies the equation						
	$q^2 - 5aq + 5 - a = 0$.						
	Hence, determine the range of values of a such that l intersects C_2 at two distinct points. [3]						
12	As part of a project, a group of engineering students design two robots for a game. One robot is called 'Prey' and the other robot is called 'Predator'. The two robots are designed with the following specifications.						
	'Prey': It is designed to leap 1 m forward for the first leap. Subsequently, it leaps 2.5 cm less than the previous leap distance. 'Prey' shuts down when the leap distance is 0 or when it is caught by 'Predator'.						
	'Predator': It is designed to leap 2 m forward for the first leap. Subsequently, it leaps 90% of the previous leap distance. 'Predator' shuts down when 'Prey' shuts down or when it catches 'Prey'.						
	Both robots take each leap at the same time and the number of leaps taken is given by n . 'Predator' starts the game from the starting line while 'Prey' starts the game 7 m in front of 'Predator'.						
	 (i) Find the distance of 'Prey' and of 'Predator' from the starting line after <i>n</i> leaps, leaving your answers in terms of <i>n</i>. [2] 						

(ii) Explain why 'Predator' has to catch 'Prey' before 'Predator's distance from the starting line reaches 20 m. [2]
(iii) Using a graphical method, explain why 'Predator' will not catch 'Prey'. [3]
(iv) 'Prey' now starts the game 4 m in front of 'Predator'. 'Predator' catches 'Prey' on the *k*-th leap. Find the value of *k*. Calculate the distance of 'Predator' from the starting line after completing the *k*-th leap. [3]

– End Of Paper –

MI H2 Math PU3 Preliminary Examination Paper 1

QN	Topic Set	Answers						
1	Equations and							
	Inequalities	$S_n = 2n^2 + n$						
2	Integration techniques	$2\ln\left(\sqrt{x}+1\right)+c$						
3	Application of Integration	(i) The sum of the areas of <i>n</i> rectangles with equal width from $x = 0$ to $x = 1$, where the top right vertex of each rectangle lies on the curve.						
		(ii) L is the actual area under C from $x=0$ to $x=1$, $1-\cos 1$						
		(iii) Since the sum of the areas of the rectangles in part (i) is larger than the actual area under the curve $C, S > L$						
4	Differentiation & Applications	(ii) $r = \frac{2}{3}a$						
5	Vectors	(i) 36.7°						
		(ii) The length of projection of \overrightarrow{OB} onto the z – axis.						
		(iii) 2						
		(iv) 2:1						
6	Application of Integration	(ii) $\frac{1}{5}\pi e^{\pi} - \frac{2}{5}\pi - \frac{\pi^2}{6}$						
7	Sigma Notation and Method of Difference	(ii) $\frac{3}{2}$ (iii) $\frac{3}{2} - \frac{2N-5}{(N-3)(N-2)}$						
8	Differential Equations	$y = 3x \ln x + Cx + 2$						
		(i) $y = 2 - 3x$ (ii) $y = 3x \ln x - x + 2$ $y = 3x \ln x + x + 2$						

9	Functions	(i)
		(0,5) + (4,11) + (4
		Range of f, $R_f = [4, 11]$
		(ii) 1
		(iii) $f^{-1}(x) = \begin{cases} 1 + \sqrt{x-4} & , & 4 \le x < 8, \\ \frac{1}{3}x + \frac{1}{3} & , & 8 \le x \le 11, \end{cases}$
		(iv) The graph $y = f^{-1}(x)$ is the reflection of the graph $y = f(x)$ in the line $y = x$. The coordinates of Q is (<i>h</i> , <i>a</i>)
10	Complex numbers	(b,a). (a)(i) $a = 6, b = 7$
		(a)(ii) $z = -\frac{1}{2} - \frac{1}{2}i$ or $z = -\frac{3}{2} - \frac{1}{2}i$ (b)(i) $32e^{i\left(\frac{4\pi}{3}\right)}$
11	Differentiation &	(b)(ii) 2, 5, 8.
	Applications	(i) $x = t - \frac{1}{t}, y = t + \frac{1}{t}, t \neq 0.$
		(iii) $\frac{2(p^2+1)}{p^2} p^2-1 $ or $\frac{2}{p^2} p^4-1 $ units ²
		(iv) $y = -\frac{5}{3}x + 5$
		(v) $a < -0.978$ or $a > 0.818$ (3 s.f)
12	AP and GP	(i) $-0.0125n^2 + 1.0125n + 7$; $20(1-0.9^n)$
		(iv) 8; 11.4 m

|--|

Qn. No.	Question
1	Let $S_n = an^2 + bn + c$ where <i>a</i> , <i>b</i> and <i>c</i> are constants
	$S_1 = 3 \qquad \Rightarrow a + b + c = 3$
	$S_3 = 21 \qquad \Rightarrow 9a + 3b + c = 21$
	$S_{10} = 210 \Rightarrow 100a + 10b + c = 210$
	Using GC, $a = 2$, $b = 1$, $c = 0 \implies S_n = 2n^2 + n$
2	,
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{2x^{\frac{1}{2}}} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}v} = 2x^{\frac{1}{2}}$
	$\int \frac{1}{x + \sqrt{x}} dx = \int \frac{1}{x + x^{\frac{1}{2}}} \frac{dx}{dv} dv$
	where $\frac{1}{x+x^{\frac{1}{2}}} \frac{dx}{dv} = \frac{1}{x+x^{\frac{1}{2}}} \left(2x^{\frac{1}{2}}\right) = \frac{2}{\left(x+x^{\frac{1}{2}}\right)\left(x^{-\frac{1}{2}}\right)} = \frac{2}{\left(x^{\frac{1}{2}}+1\right)} = \frac{2}{v}$
	$\int \frac{1}{x + \sqrt{x}} \mathrm{d}x = \int \frac{2}{v} \mathrm{d}v$
	$=2\int \frac{1}{v} dv$
	$=2\ln v + c$
	$= 2\ln\left(\sqrt{x}+1\right) + c$
3	(i) The sum of the areas of <i>n</i> rectangles with equal width from $x=0$ to $x=1$, where the top right vertex of each rectangle lies on the curve.
	(ii) L is the actual area under C from $x=0$ to $x=1$.
	$L = \int_0^1 \sin x \mathrm{d}x$
	$=\left[-\cos x\right]_{0}^{1}$
	$= -\cos 1 + \cos 0$
	$=1-\cos 1$ i.e. $a=1, b=1$
	(iii) Since the sum of the areas of the rectangles in part (i) is larger than the actual area under the curve C , $S > L$

2017 PU3 H2 Prelim II Paper	1 Suggested Solutions
-----------------------------	------------------------------

4
(i)

$$\frac{r}{a} = \frac{h-x}{h}$$

$$\therefore x = h - \frac{hr}{a}$$

$$V = \frac{1}{3}\pi a^{2}h - \pi r^{2}\left(h - \frac{hr}{a}\right)$$

$$= \frac{\pi h}{3}\left(a^{2} - 3r^{2} + \frac{3r^{3}}{a}\right) \text{ (shown)}$$
(ii)

$$\frac{dV}{dr} = \frac{\pi h}{3}\left(-6r + \frac{9r^{2}}{a}\right)$$
For max/min volume: $\frac{dV}{dr} = 0$

$$\frac{\pi h}{3}\left(-6r + \frac{9r^{2}}{a}\right) = 0$$

$$-6r + \frac{9r^{2}}{a} = 0$$

$$r\left(-6 + \frac{9r^{2}}{a}\right) = 0$$

$$r = 0 \text{ (reject as } r > 0) \text{ or } r = \frac{2}{3}a$$

$$\frac{\text{Method 1 (2^{nd} derivative test)}}{\frac{d^{2}V}{dr^{2}}} = \frac{\pi h}{3}\left(-6 + \frac{18r}{a}\right)$$
At $r = \frac{2}{3}a$:

$$\frac{d^{2}V}{dr^{2}} = \frac{\pi h}{3}\left(-6 + \frac{18}{a}\left(\frac{2}{3}a\right)\right) = 2\pi h > 0$$
Therefore the volume is a minimum when $r = \frac{2}{3}a$.

$$\frac{\text{Method 2 (1st derivative test)}}{\frac{r}{dr}} = \frac{2}{3}a + \frac$$

 $\frac{2}{3}a^+$ Positive

Therefore the volume is a minimum when
$$r = \frac{2}{3}a$$
.
5 (i)
 $\overline{AB} = \begin{pmatrix} 8\\12\\4 \end{pmatrix} = 4\begin{pmatrix} 2\\3\\1 \end{pmatrix}$
The required angle, $\theta = \cos^{-1}\frac{\begin{pmatrix} 2\\3\\1\\0 \end{pmatrix}}{\sqrt{14\sqrt{1}}} = 36.7^{\circ}$ (1 d.p)
(ii)
The length of projection of \overline{OB} onto the z - axis .
(iii)
 $\frac{1}{2}|\overline{AF} \times \overline{PF}| = \sqrt{\frac{59}{2}}$
 $\frac{1}{2} \begin{pmatrix} 2a-2\\a+1\\a-1 \end{pmatrix} \times \begin{pmatrix} 3\\0\\2 \end{pmatrix} = \sqrt{\frac{59}{2}}$
 $\frac{1}{2} \begin{pmatrix} 2(a+1)\\1-a\\-3(a+1) \end{pmatrix} = 2\sqrt{\frac{59}{2}}$
 $\sqrt{4(a+1)^2 + (1-a)^2 + 9(a+1)^2} = 2\sqrt{\frac{59}{2}}$
 $13(a+1)^2 + (1-a)^2 = 118$
 $14a^2 + 24a - 104 = 0$
 $7a^2 + 12a - 52 = 0$
 $(7a + 26)(a-2) = 0$
 $a = -\frac{26}{7}$ (rejected as $a > 0$) or $a = 2$
Accept: Using GC, $a = 2$ or $a = -3.7143$ (rejected as $a > 0$)
(iv)

LHS =
$$\frac{2}{(1)(1+2)} = \frac{2}{3}$$

RHS = $\frac{3}{2} - \frac{2(1)+3}{(1+1)(1+2)} = \frac{4}{6} = \frac{2}{3} = LHS$
P₁ is true.
Assume that P_k is true for some $k \in Z^+$ i.e. $\sum_{r=1}^{k} \frac{2}{r(r+2)} = \frac{3}{2} - \frac{2k+3}{(k+1)(k+2)}$.
Prove P_{k+1} is true i.e. $\sum_{r=1}^{k+1} \frac{2}{r(r+2)} = \frac{3}{2} - \frac{2k+5}{(k+2)(k+3)}$.
LHS
= $\sum_{r=1}^{k} \frac{2}{r(r+2)} + T_{k+1}$
= $\frac{3}{2} - \frac{2k+3}{(k+1)(k+2)} + \frac{2}{(k+1)(k+3)}$
= $\frac{3}{2} - \frac{2k+3}{(k+1)(k+2)(k+3)}$
= $\frac{3}{2} - \frac{2k^2 + 7k + 5}{(k+1)(k+2)(k+3)}$
= $\frac{3}{2} - \frac{2k^2 + 7k + 5}{(k+1)(k+2)(k+3)}$
= $\frac{3}{2} - \frac{(2k+5)(k+1)}{(k+1)(k+2)(k+3)}$
= $\frac{2k+5}{(k+2)(k+3)}$ = RHS
P_{k+1} is true
Since P₁ is true, and P_k is true implies P_{k+1} is true,
by Mathematical Induction, $\sum_{r=1}^{n} \frac{2}{r(r+2)} = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}$ for $n \in Z^+$.
(ii)
 $n \to \infty, \frac{2n+3}{(n+1)(n+2)} \to 0, \sum_{r=1}^{n} \frac{2}{r(r+2)} \to \frac{3}{2}$
The series converges to a value. \therefore the series is a convergent series.
 $\sum_{r=1}^{n} \frac{2}{r(r+2)} = \frac{3}{2}$
(iii)

	$\sum_{r=5}^{N} \frac{2}{(r-2)(r-4)}$
	$\xrightarrow{\text{letting}}{r=l+4} \xrightarrow{\sum_{l+4=5}^{l+4=N}} \frac{2}{(l+4-2)(l+4-4)}$
	$=\sum_{l=1}^{N-4} \frac{2}{l(l+2)}$
	$=\frac{3}{2} - \frac{2(N-4) + 3}{(N-4+1)(N-4+2)}$
	$=\frac{3}{2} - \frac{2N-5}{(N-3)(N-2)}$
8	y = ux
	$\frac{\mathrm{d}y}{\mathrm{d}x} = u + x \frac{\mathrm{d}u}{\mathrm{d}x}$
	$x\left(u+x\frac{\mathrm{d}u}{\mathrm{d}x}\right) = 3x+ux-2$
	$ux + x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = 3x + ux - 2$
	$x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = 3x - 2 \text{ (shown)}$
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{3x-2}{x^2}$
	$\int \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x = \int \frac{3x-2}{x^2} \mathrm{d}x$
	$\int du = \int \frac{3}{x} - \frac{2}{x^2} dx$
	$u = 3\ln\left x\right + \frac{2}{x} + C$
	$\frac{y}{x} = 3\ln x + \frac{2}{x} + C$
	$y = 3x \ln x + Cx + 2$
	(i)
	For stationary points, $\frac{dy}{dx} = 0$
	$\Rightarrow x(0) = 3x + y - 2$
	$\Rightarrow y = 2 - 3x$
	The equation of the locus is $y = 2 - 3x$.
	(ii)

$$\begin{aligned} \int_{1}^{-1} (x) &= \begin{cases} 1 + \sqrt{x - 4} &, 4 \le x < 8, \\ \frac{1}{3}x + \frac{1}{3} &, 8 \le x \le 11, \end{cases} \\ (iv) \\ \text{The graph } y = f^{-1}(x) \text{ is the reflection of the graph } y = f(x) \text{ in the line } y = x. \\ \text{The coordinates of } Q \text{ is } (b, a). \end{cases} \\ \textbf{10} \\ \text{Since } -1 + \text{ is a root of } 2z^3 + az^2 + bz + (3 + i) = 0, \\ 2(-1+i)^3 + a(-1+i)^2 + b(-1+i) + (3 + i) = 0 \\ 4 + 4i + a(-2i) - b + bi + 3 + i = 0 \\ \text{Comparing real parts:} \\ 4 - b + 3 = 0 \Longrightarrow b = 7 \\ \text{Comparing imaginary parts:} \\ 4 - 2a + b + 1 = 0 \Longrightarrow a = 6 \\ (a)(ii) \\ 2z^3 + 6z^2 + 7z + (3 + i) = 0 \\ [z - (-1+i)][2z^2 + (4 + 2i)z + (1 + 2i)]] = 0 \\ z = -1 + i (given) \text{ or } z = \frac{-(4 + 2i) \pm \sqrt{[(4 + 2i)^2 - 4(2)(1 + 2i)]}}{2(2)} \\ = \frac{(-4 - 2i) \pm 2}{4} \\ z = -\frac{1}{2} - \frac{1}{2}i \text{ or } z = -\frac{3}{2} - \frac{1}{2}i \\ (b)(i) \\ |^{-1 + i \sqrt{3}}| = 2 \\ \arg(-1 + i \sqrt{3}) = \pi - \tan^{-1}(\sqrt{3}) = \frac{2\pi}{3} \\ w^5 = \left(2e^{\left(\frac{2\pi}{3}\right)}\right)^5 = 32e^{\frac{(10\pi)}{3}} = 32e^{\frac{(\pi\pi)}{3}} \\ (b)(ii) \\ \frac{w^*}{w^*} = \frac{2e^{\left(-\frac{2\pi}{3}\right)}}{[2e^{\frac{(2\pi)}{3}}]^*} = 2^{1 - \alpha} e^{\left(-\frac{2\pi}{3} - 2\pi\right)} \end{aligned}$$

Method 1 $\frac{1}{2^{1-n}} e^{i\left(-\frac{2\pi}{3} - \frac{2n\pi}{3}\right)} = 2^{1-n} \left[\cos\left(-\frac{2\pi}{3} - \frac{2n\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3} - \frac{2n\pi}{3}\right) \right]$ $=2^{1-n}\left[\cos\left(\frac{2\pi}{3}+\frac{2n\pi}{3}\right)-i\sin\left(\frac{2\pi}{3}+\frac{2n\pi}{3}\right)\right]$ Since $\frac{W^*}{w^n}$ is a real number, $\sin\left(\frac{2\pi}{3} + \frac{2n\pi}{3}\right) = 0$ $\frac{2\pi}{3} + \frac{2n\pi}{3} = \pi, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi...$ $2\pi + 2n\pi = 3\pi, 6\pi, 9\pi, 12\pi, 15\pi, 18\pi...$ $2n\pi = \pi, 4\pi, 7\pi, 10\pi, 13\pi, 16\pi...$ $n = \frac{1}{2}, 2, \frac{7}{2}, 5, \frac{13}{2}, 8, \dots$ The 3 smallest positive whole number values of *n* are 2, 5 and 8. Method 2 Since $\frac{w^*}{w^n}$ is a real number, $\arg\left(\frac{w^*}{w^n}\right) = k\pi, k \in \Box$ $-\frac{2n\pi}{3} - \frac{2\pi}{3} = k\pi$ $n = -1 - \frac{3k}{2}$ At k = -2: n = 2At k = -4: n = 5At k = -6: n = 8The 3 smallest positive whole number values of *n* are 2, 5 and 8. 11 (i) $x = t - \frac{1}{t}, \quad y = t + \frac{1}{t}, \quad t \neq 0.$ y=x (0,2) (0,-2)

(ii)

$$x = t - \frac{1}{t}, \quad y = t + \frac{1}{t}$$

$$\frac{dx}{dt} = 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2}, \quad \frac{dy}{dt} = 1 - \frac{1}{t^2} = \frac{t^2 - 1}{t^2}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{t^2 - 1}{t^2 + 1}$$
When $t = p$, the gradient of normal $= -\frac{p^2 + 1}{p^2 - 1}$
The required equation of normal:

$$y - \left(p + \frac{1}{p}\right) = -\frac{p^2 + 1}{p^2 - 1} \left[x - \left(p - \frac{1}{p}\right)\right]$$

$$y = -\frac{p^2 + 1}{p^2 - 1}x + \frac{p^2 + 1}{p^2 - 1} \left(p - \frac{1}{p}\right) + p + \frac{1}{p}$$

$$y = -\frac{p^2 + 1}{p^2 - 1}x + \frac{p^2 + 1}{p^2 - 1} \left(\frac{p^2 - 1}{p}\right) + \frac{p^2 + 1}{p}$$

$$y = -\frac{p^2 + 1}{p^2 - 1}x + \frac{2(p^2 + 1)}{p} \quad \text{(shown)}$$
(iii)
When $x = 0, y = \frac{2(p^2 + 1)}{p} \Rightarrow B\left(0, \frac{2(p^2 + 1)}{p}\right)$
When $y = 0, -\frac{p^2 + 1}{p^2 - 1}x + \frac{2(p^2 + 1)}{p} = 0$

$$x = \frac{2(p^2 - 1)}{p} \Rightarrow A\left(\frac{2(p^2 - 1)}{p}, 0\right)$$

	Area of triangle <i>OAB</i>
	$= \left \frac{1}{2} \left[\frac{2(p^2 + 1)}{p} \right] \left[\frac{2(p^2 - 1)}{p} \right] \right $
	$= 2 \left \frac{(p^2 + 1)(p^2 - 1)}{p^2} \right $
	$=\frac{2}{p^{2}} (p^{2}+1)(p^{2}-1) $
	$=\frac{2(p^{2}+1)}{p^{2}} p^{2}-1 \text{or} \frac{2}{p^{2}} p^{4}-1 \text{ units}^{2}$
	(iv) When $p = 2$,
	the equation of the normal is $y = -\frac{2^2 + 1}{2^2 - 1}x + \frac{2(2^2 + 1)}{2}$
	$y = -\frac{5}{3}x + 5$
	The equation of <i>l</i> is $y = -\frac{5}{3}x + 5$.
	(v) By substitution,
	$-q^2 + a = -\frac{5}{3}(3aq) + 5$
	$q^2 - 5aq + 5 - a = 0 (\text{shown})$
	For <i>l</i> to intersect C_2 at 2 distinct points,
	$b^2 - 4ac > 0$
	$(-5a)^2 - 4(1)(5-a) > 0$
	$25a^2 + 4a - 20 > 0$
	a < -0.978 or a > 0.818 (3 s.f)
12	(i) Distance of 'Prey' from starting line, A_n
	$= \frac{n}{2} [2(1) + (n-1)(-0.025)] + 7 = -0.0125n^2 + 1.0125n + 7$
	Distance of 'Predator' from starting line, G_n
	$=\frac{2(1-0.9^n)}{1-0.9}=20(1-0.9^n)$
	(ii)

1	The curve C has the equation $4(x-1)^2 + 9y^2 = 36$.							
	(i) Sketch, for $y \ge 0$, the curve <i>C</i> , stating the coordinates of the end points a turning point.							
	(ii)	By adding a suitable graph to your sketch in part (i), solve the inequality						
		$2\sqrt{\left[1 - \frac{(x-1)^2}{9}\right]} + 2 - (x-1)^2 \ge 0.$ [2]						
	(iii)	Hence, solve the inequality $2\sqrt{\left[1-\frac{(e^x-1)^2}{9}\right]} \ge \left(e^x-1\right)^2 - 2$. [2]						
	Two loci in the Argand diagram are given by the equations							
2		$ z-2+2i = 1$ and $\arg z = -\frac{\pi}{6}$.						
		6						
		complex numbers z_1 and z_2 , where $ z_1 < z_2 $, correspond to the points of intersection ese loci.						
	(i)	Draw an Argand diagram to show both loci, and mark the points represented by z_1 and z_2 . [3]						
	(ii)	Find the two values of z which represent points on $ z-2+2i =1$ such that						
		$ z-z_1 = z-z_2 .$ [4]						
	(iii)	Given that the complex number w satisfies $ w-2+2i \le 1$ and $\arg w \le -\frac{\pi}{6}$, find						
		the range of values of $\arg(w+3i)$. [3]						
3	(a)	It is given that $\tan^{-1} y = \ln(1+x)$.						
		(i) Show that $(1+x)\frac{dy}{dx} = 1 + y^2$. [1]						

H2 Mathematics 2017 Preliminary Exam Paper 2 Question Answer all questions [100 marks].

Blank Page

			π	[0]					
	$\pi_2: ax + 2y - z =$	$a \in 3$, where $a \in a \in a$, $a \in a$	is $\frac{\pi}{4}$, find the value of <i>a</i> . [2]						
	(v) Find the line of i	ntersection between t	he planes π_1 and π_2 .	[1]					
	(vi) π_3 has equation $bx + y + z = c$, where $b, c \in \ldots$ Given that π_1, π_2 and π_3 hav								
	points in common, describe the geometrical relationship between the three planes.								
	What can be said about the values of b and c? [3]								
5	Resilience Primary School has 500 students who are either Chinese, Indian or Malay, as seen in the table below.								
	seen in the table below.								
	Chinese Indian Malay								
	Boys	114	8	93					
	Girls	122	77	86					
	The National Eve Cont	no wish os to son dust	a autoria at Desilianee	Drimory School to find					
	The National Eye Centre wishes to conduct a survey at Resilience Primary School to f out the number of hours students spend on electronic devices each week, using a samp of 50 students.								
	(i) Explain how stratified sampling can be carried out in this context.(ii) Give two reasons why systematic sampling may not be appropriate.								
	(ii) Give two reasons why systematic sampling may not be appropriate.								
6	In another survey conducted by the National Eye Centre, it was found that p % a								
	and the remaining are girls. The probability that a randomly chosen boy wears spectacl								
	is 0.3 and the probability that a randomly chosen girl wears spectacles is 0.24.								
	(i) Find the value of p , given that the probability that a randomly chosen child wears								
	spectacles is 0.267. [2](ii) For a general value of <i>p</i>, the probability that a randomly chosen child that wears								
	spectacles is a girl is denoted by $f(p)$. Show that $f(p) = \frac{4(100-p)}{(400+p)}$. Prove by differentiation that f is a decreasing function for $0 \le p \le 100$, and explain what t								
	statement means	in the context of the	question.	[5]					
7	In this question you sh	ould state clearly all d	listributions that you u	ise, together with the					
	values of the appropria	te parameters.							
		<u></u>							
	-		•	buted with means and					
	The mass, in grams, of broccoli and carrots are normally distributed with means and standard deviations as shown in the table below.								

	Mean (g) Standard deviation (g) Broccoli μ σ											
	Carrot 180 15											
	 (i) Given that the probability that the mass of a randomly chosen broccoli does not exceed 250g is 0.788 and the probability that the mass of a randomly chosen broccoli exceeds 236g is 0.625, find the values of μ and σ. (ii) Find the probability that the mass of a randomly chosen broccoli lies within 5 groups of a randomly chosen broccoli lie										[3]	
	(ii)		the probar randomly	-		s of a rand	omly cho	osen broco	coli lies w	rithin 5 g	rams [2]	
	 (iii) 120 broccoli are randomly chosen. Using a suitable approximation, find the probability that there are fewer than 90 broccoli with a mass not exceeding 250g (iv) Determine, with explanation, whether the mass of a vegetable chosen randoml from a basket containing an equal number of broccoli and carrots follows a not distribution.)g.[3]		
										•		
8	The table gives the values of eight observations of bivariate data, <i>x</i> and <i>y</i> .											
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
	 (i) Draw a scatter diagram for these values, labelling the axes clearly. Dete outlier by labelling it as P in your scatter diagram. (ii) By omitting P, explain if y = ax² + b or y = a ln x + b is the better mod data. 								[2]			
	 (iii) Using the more appropriate model found in part (ii), calculate the equation of least-squares regression line. (iv) Interpret, in the context of the question, the least squares estimates of <i>a</i> and <i>b</i>. (v) Use the regression line found in part (iii) to predict the value of <i>y</i> when <i>x</i> = Comment on the reliability of your answer. 								uation c	of the [1]		
									<i>a</i> and <i>b</i> .	[2]		
									= 4.5. [2]			
9	repoi days	rted a has c	past record s 178. The hanged. A K, is summ	authorit random	ies suspec sample of	t that due	to globa	l warming	g, the nun	nber of r	•	

		$\sum (x-8) = 2017.7, \qquad \sum x^2 = 372500.$
	(i)	Calculate the unbiased estimates of the mean and variance of <i>X</i> . [2]
	(ii)	Test, at the 5% level of significance, whether the mean number of rainy days per year has changed. State any assumptions used in your calculations.[4]
	(iii)	Explain, in the context of the question, the meaning of the <i>p</i> -value. [1]
	(iv)	The population variance is found to be 9 and the assumption used in part (ii) holds true. A test at the 5% level of significance whether the mean number of rainy days per year has changed was conducted. Find the range of values of \overline{x} such that the null hypothesis is not rejected. [3]
10	(a)	Find the number of ways in which the letters of the word MILLENNIUM can be arranged if
		(i) there are no restrictions, [1]
		(ii) the first and last letters are the same, and the letters E and U must be separated. [2]
		Four letters are randomly selected from the letters of the word MILLENNIUM to form a code word. Find the number of possible code words that can be formed. [2]
	(b)	Mr See (together with his wife and daughter) and Mrs Saw (together with her husband and two sons) came to visit their former teacher Mdm Rain during Millennium Institute's Homecoming Day. Find the number of ways Mr See and his family, Mrs Saw and her family, and Mdm Rain can be arranged if
		(i) they are around a table with ten indistinguishable chairs, such that the children are seated together. [2]
		(ii) the two empty chairs are removed and Mr See's daughter is seated between her parents and the See family are to be seated directly opposite Mdm Rain.[3]
11		is question you should state clearly all distributions that you use, together with the es of the appropriate parameters.
		number of people queuing to buy coffee at CoffeeVille in a period of 1 minute during h hour (12pm to 2pm) is a random variable with an average number of 2.9.
		e, in context, a condition under which a Poisson distribution would be a suitable ability model. [1]

	time that the number of people queuing to buy coffee at CoffeeVille in a period of 1 ate during the lunch hour follows the distribution $Po(2.9)$.
(i)	State the most probable number of people queuing in 1 minute. [1]
(ii)	Find the probability that in a period of 3 minutes, there are at most 5 people queuing to buy coffee. [2]
(iii)	N periods of 3 minutes are taken. Given that the probability that at least 7 periods of 3 minutes have at most 5 people queuing to buy coffee is more than 0.99, find the least value of N . [3]
(iv)	A random sample of 120 periods of 3 minutes is taken. Using a suitable approximation, find the probability that more than 12 periods of 3 minutes have exactly 4 people queuing. [3]
(v)	Explain why the Poisson model would probably not be valid if applied to the operating hours of CoffeeVille from 11am to 10pm. [1]

– End Of Paper –

QN	Topic Set	Answers
1	Equations and Inequalities	(i) (-0.88561, 1.56) (-2, 0) (ii) $-0.886 \le x \le 2.89$ (3 s.f) (i)
		(iii) $x \le 1.06$ (3 s.f)
2	Complex numbers	(i) $I_{m}(z)$ $R_{e}(z)$ R_{e
3	Maclaurin series	(a)(ii) $y = x - \frac{1}{2}x^2 + \frac{2}{3}x^3 + \dots$ (a)(iii) 2
4	Vectors	$(i) \underbrace{r}_{\tilde{u}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = -3$

		(ii) $\overrightarrow{ON} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{5}{3} \end{pmatrix}$ (iii) $\overrightarrow{OA'} = \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{7}{3} \end{pmatrix}$ (iv) $a = -\frac{1}{4}$ (v) $r = \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}, \beta \in \Box$ (vi) Either: the three planes are the sides of a triangular prism. OR: π_3 is parallel to the line of intersection of π_1 and π_2 , but does not contain it,
		$b = -\frac{5}{4}, \ c \neq 6$ (ii) $k = \frac{500}{50} = 10$
5	Sampling	(ii) $k = \frac{500}{50} = 10$
		Since $k = 10 > 8$ = number of Indian boys available, there is a possibility the Indian boys may not be represented.
		Systematic sampling does not ensure equal proportions of students being taken from each strata.
6	P&C, Probability	(i) $p = 45$ (ii) As the percentage of hous in the surrow increases the
		(ii) As the percentage of boys in the survey increases, the percentage that a girl wears spectacles decreases.
7	Normal Distribution	(i) $\mu \approx 240, \ \sigma \approx 12.5$
		(ii) 0.00200 (iii) 0.129
		(iv) It will not follow normal distribution as the mass of
		a randomly chosen vegetable from a basket containing
		an equal number of broccoli and carrot follows a bimodal distribution.

8	Q8 Topic	(i) (i) $y = a \ln x + b$ (ii) $y \approx 4.01 + 14.5 \ln x (3 \text{ s.f.})$ (iv) The expected value of y when $\ln x$ is 0 is 4.01. For every increase in $\ln x$ by 1 unit, expected value of y increases by 14.5 units. (v) $y = 25.9$, Reliable because $x = 4.5$ lies within the data range and $ r $ is close to 1
9	Hypothesis Testing	(i) $\overline{x} \approx 176$, $s^2 \approx 17.9$ (accept 17.2) (ii) <i>p</i> -value = 0.156 (accept 0.149) (iii) <i>p</i> -value is the smallest level of significance for which the null hypothesis of the mean number of rainy days per year is 178 will be rejected. (iv) $176 < \overline{x} < 180$
10	P&C, Probability	(a)(i) 226 800 (a)(ii) 15 120 (a)(last part) 876 (b)(i) 15 120 (b)(ii) 48
11	DRV	Average number of people queuing to buy coffee is a constant (i) 2 (ii) 0.135 (iii) 104 (iv) 0.00135 (v) Mean number of people queuing varies throughout the day.

1	The curve C has the equation $4(x-1)^2 + 9y^2 = 36$.	
	i) Sketch, for $y \ge 0$, the curve <i>C</i> , stating the coordinates of the end points and th turning point.	ne 3]
	ii) By adding a suitable graph to your sketch in part (i), solve the inequality	
	$2\sqrt{\left[1 - \frac{(x-1)^2}{9}\right]} + 2 - (x-1)^2 \ge 0.$ [2]	2]
	iii) Hence, solve the inequality $2\sqrt{\left[1-\frac{(e^x-1)^2}{9}\right]} \ge \left(e^x-1\right)^2 - 2$. [2]	2]
	olution:)	
	(-0.88561, 1.56) (-2,0) $(1,2)$ $(2.8856, 1.56)(4,0)$ x	
	$\begin{aligned} y(x-1)^{2} + 9y^{2} &= 36\\ y^{2} &= \frac{36 - 4(x-1)^{2}}{9}\\ y^{2} &= 4\left[1 - \frac{(x-1)^{2}}{9}\right]\\ y &= 2\sqrt{1 - \frac{(x-1)^{2}}{9}} \text{ (for } y \ge 0)\end{aligned}$	

H2 Further Mathematics 2017 Midyear Exam Paper 1 Solution

	$2\sqrt{1 - \frac{(x-1)^2}{9} + 2 - (x-1)^2} \ge 0$
	$2\sqrt{1 - \frac{(x-1)^2}{9}} \ge (x-1)^2 - 2$
	The suitable graph to be added is $y = (x-1)^2 - 2$.
	From the graph, $-0.88561 \le x \le 2.8856$
	$-0.886 \le x \le 2.89$ (3 s.f)
	(iii)
	By comparison, $x \rightarrow e^x$
	$0 \le e^x \le 2.8856$
	$\ln e^x \le \ln 2.8856$
	$x \le 1.06 (3 \text{ s.f})$
2	Two loci in the Argand diagram are given by the equations
	π
	$ z-2+2\mathbf{i} =1$ and $\arg z=-\frac{\pi}{6}$.
	The complex numbers z_1 and z_2 , where $ z_1 < z_2 $, correspond to the points of intersection of these loci.
	(i) Draw an Argand diagram to show both loci, and mark the points represented by z_1 and z_2 . [3]
	(ii) Find the two values of z which represent points on $ z-2+2i =1$ such that
	$ z - z_1 = z - z_2 .$ [4]
	(iii) Given that the complex number w satisfies $ w-2+2i \le 1$ and $\arg w \le -\frac{\pi}{6}$, find
	the range of values of $\arg(w+3i)$. [3]
	Solution: (i)
	$ z-2+2i = 1 \Rightarrow z-(2-2i) = 1$
	$ z-2+2i = 1 \Longrightarrow z-(2-2i) = 1$ arg $z = -\frac{\pi}{6}$

$$\begin{array}{l} (1+x)\frac{dy}{dx} = 1+y^2 \\ \text{Differentiating both sides with respect to } x: \\ (1+x)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 2y\frac{dy}{dx} \Rightarrow (1+x)\frac{d^2y}{dx^2} + (1-2y)\frac{dy}{dx} = 0 \\ \text{Differentiating both sides with respect to } x: \\ (1+x)\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + (1-2y)\frac{d^2y}{dx^2} + (-2)\left(\frac{dy}{dx}\right)^2 = 0 \\ (1+x)\frac{d^3y}{dx^3} + 2(1-y)\frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right)^2 = 0 \\ \text{When } x = 0, y = 0, \frac{dy}{dx} = 1, \frac{d^2y}{dx^2} = -1, \frac{d^3y}{dx^3} = 4 \\ y = 0 + (1)x + (-1)\frac{x^2}{2!} + (4)\frac{x^3}{3!} + \dots \\ y = x - \frac{1}{2}x^2 + \frac{2}{3}x^3 + \dots \\ \text{(iii)} \\ \mathbf{f}(x) = \mathbf{e}^x \tan\left[\ln\left(1+x\right)\right] \\ = \mathbf{e}^x \left(x - \frac{1}{2}x^2 + \frac{2}{3}x^3 + \dots\right) \\ = \left(1 + x + \frac{1}{2}x^2 + \dots\right) \left(x - \frac{1}{2}x^2 + \frac{2}{3}x^3 + \dots\right) \\ = x - \frac{1}{2}x^2 + \frac{2}{3}x^3 + \dots \\ \mathbf{f}(x) = x + \frac{1}{2}x^2 + \frac{2}{3}x^3 + \dots \\ \mathbf{f}'(x) = 1 + x + 2x^2 + \dots \\ \mathbf{f}'\left(\frac{1}{2}\right) = 1 + \frac{1}{2} + 2\left(\frac{1}{2}\right)^2 + \dots \approx 2 \\ \text{(b)} \end{array}$$

$$\frac{\sin\left(\frac{\pi}{3}+\theta\right)}{h} = \frac{\sin\left(\frac{\pi}{4}\right)}{k}$$

$$\sin\left(\frac{\pi}{3}+\theta\right) = \frac{h}{k}\left(\frac{1}{\sqrt{2}}\right)$$

$$\frac{h}{k}\left(\frac{1}{\sqrt{2}}\right) = \sin\left(\frac{\pi}{3}\right)\cos(\theta) + \cos\left(\frac{\pi}{3}\right)\sin(\theta) \quad \text{from MF15}$$

$$\frac{h}{k}\left(\frac{1}{\sqrt{2}}\right) \approx \left(\frac{\sqrt{3}}{2}\right)\left(1-\frac{\theta^2}{2}\right) + \frac{\theta}{2}$$

$$\frac{h}{k}\left(\frac{1}{\sqrt{2}}\right) \approx \frac{\sqrt{3}}{2} - \frac{\sqrt{3}\theta^2}{4} + \frac{\theta}{2}$$

$$\frac{h}{k}\left(\frac{1}{\sqrt{2}}\right) \approx \frac{1}{4}\left(2\sqrt{3}+2\theta-\sqrt{3}\theta^2\right)$$

$$\frac{h}{k} \approx \frac{\sqrt{2}}{2}\left(\sqrt{3}+\theta-\frac{\sqrt{3}}{2}\theta^2\right) \text{ (shown)}$$

4 The plane π_i contains the line
$$l_i : \mathbf{r} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$$
, where $\lambda \in \Box$, and is parallel to the line $l_2 : \mathbf{r} = \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 0\\ 1 \end{pmatrix}$, where $\mu \in \Box$.
(i) Find the vector equation of π, in scalar product form. [2]
(ii) Find the position vector of the foot of the perpendicular from the point $A(1, 0, 1)$ to the plane π₁. [3]
(iii) Find the position vector of the point A' , which is the reflection of A about π₁.[2]
(iv) Given that the angle between $l_3 : \mathbf{r} = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$, where $\alpha \in \Box$, and the plane $\pi_2 : ax + 2y - z = 3$, where $a \in \Box$, is $\frac{\pi}{4}$, find the value of a . [2]
(v) Find the line of intersection between the planes π₁ and π₂. [1]
(vi) π₃ has equation $bx + y + z = c$, where $b, c \in \Box$. Given that π_1, π_2 and π_3 have no points in common, describe the geometrical relationship between the three planes. What can be said about the values of b and c ? [3]
Solution:
(i) $\pi_2 = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} \times \begin{pmatrix} 2\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 1\\ -2 \end{pmatrix}$
 $r_1 \begin{pmatrix} 1\\ 1\\ -2 \end{pmatrix} = -3$
(ii) Method 1:

$$l_{AN} : \underline{r} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \alpha \in \square$$

$$\overline{ON} = \begin{pmatrix} 1+\alpha \\ \alpha \\ 1-2\alpha \end{pmatrix}, \text{ for some } \alpha \in \square$$

Since *N* is the intersection point of line *AN* and plane,

$$\begin{pmatrix} 1+\alpha \\ \alpha \\ 1-2\alpha \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \\ -2 \end{pmatrix} = -3$$

$$1+\alpha + \alpha - 2 + 4\alpha = -3$$

$$\alpha = -\frac{1}{3}$$

$$\overline{ON} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{5}{3} \end{pmatrix}$$

Method 2:

$$\overline{AN} = \begin{pmatrix} \overline{AB} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \\ \sqrt{6} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{3} \\ \frac{1}{-\frac{1}{3}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$$
, where $\overline{OB} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

$$\overline{ON} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$\overline{ON} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$\overline{ON} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

(iii)

$$\overline{ON} = \frac{\overline{OA} + \overline{OA'}}{2}$$

$$\overrightarrow{OA'} = 2\overrightarrow{ON} - \overrightarrow{OA} = \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$$
(iv)

$$\pi_{2} : r, \begin{pmatrix} a \\ 2 \\ -1 \end{pmatrix} = 3$$

$$\sin \theta = \frac{\left| \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right| \left| \begin{pmatrix} a \\ 2 \\ -1 \end{pmatrix} \right|$$
Since $\theta = \frac{\pi}{4}$.

$$\frac{\sqrt{2}}{2} = \frac{|a-2|}{(\sqrt{2})\sqrt{(a'^{2}+5)}}$$

$$\sqrt{(a'^{2}+5)} = |a-2|$$

$$(a^{2}+5) = |a-2|$$

$$(a^{2}+5) = a^{2}-4a+4$$

$$a = -\frac{1}{4}$$
(v)
Using GC:
Equation of line of intersection:

$$r = \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}, \beta \in \mathbb{I}$$
(vi)
Geometrical interpretation:
Either: the three planes are the sides of a triangular prism
OR: π_{4} is parallel to the line of intersection of π_{1} and π_{2} , but does not contain it.

$$\pi_{3} : r, \begin{pmatrix} b \\ 1 \\ 0 \end{pmatrix} = c, \quad \begin{pmatrix} b \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} = 0 \Rightarrow b = -\frac{5}{4}$$

$$\begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} b \\ 1 \\ 1 \end{pmatrix} \neq c \Rightarrow c \neq 6$$
5 Resilience Primary School has 500 students who are either Chinese, Indian or Malay, as

1	Cl	ninese	Indian	Malay
Boys		114	8	93
Girls		122	77	86
out the number of 50 students. (i) Explain	r of hours studen how stratified sa	ts spend on elec umpling can be o	•	
Solution:		stematic sumpt	ing may not be a	
(i)				
	Chinese	Indian	Malay	
Boys	$\frac{114}{500} \times 50 \approx 11$	$\frac{8}{500} \times 50 \approx 1$	$\frac{93}{500} \times 50 \approx 9$	
Girls	122	77 50 0	86	
	$\frac{122}{500} \times 50 \approx 12$	500	$\frac{1}{500} \times 50 \approx 9$	vo or cirlo oc char
Split the studen the table above example). Usin (ii) $k = \frac{500}{50} = 10$ Since $k = 10 >$ may not be rep	nts into the strata e. Arrange the str ng simple randor 8 = number of In presented.	as for Chinese, I udents within ea n sampling, obt	$\frac{1}{500} \times 50 \approx 9$ Indian, Malay bo ach strata in alpha ain the required r	ys or girls as show abetical order (for number in each stra ossibility the Indian
Split the studen the table above example). Usin (ii) $k = \frac{500}{50} = 10$ Since $k = 10 >$ may not be rep Systematic san each strata.	nts into the strata e. Arrange the str ng simple randor 8 = number of In presented.	as for Chinese, I udents within ea n sampling, obt ndian boys avail	$\frac{1}{500} \times 50 \approx 9$ Indian, Malay boyach strata in alpha ain the required reportions of stude	abetical order (for number in each stra ossibility the Indian ents being taken fro
Split the studen the table above example). Usin (ii) $k = \frac{500}{50} = 10$ Since $k = 10 >$ may not be rep Systematic sam each strata. In another surv and the remain	nts into the strata e. Arrange the strata ng simple randor 8 = number of In presented. npling does not e vey conducted by ing are girls. The	as for Chinese, I udents within ea n sampling, obt ndian boys avail ensure equal pro y the National E e probability tha	$\frac{1}{500} \times 50 \approx 9$ Indian, Malay bo ach strata in alpha ain the required r lable, there is a poportions of stude type Centre, it was	abetical order (for number in each stra ossibility the Indian ents being taken fro found that p % are sen boy wears spec

	s question you shou s of the appropriate	•	distributions that you u	use, together with th		
	nass, in grams, of ard deviations as sh		ts are normally distrib elow.	outed with means an		
		Mean (g)	Standard deviati	ion (g)		
	Broccoli	μ	σ			
	Carrot	180	15			
(i) (ii)	exceed 250g is 0.7 broccoli exceeds 2	88 and the probabi 36g is 0.625, find t	ass of a randomly chose lity that the mass of a r he values of μ and σ a randomly chosen bro	andomly chosen . [
(11)	grams of a random	•	a randomity chosen bro	[[
(iii)			sing a suitable approxi 0 broccoli with a mass			
(iv)		-	r the mass of a vegetab nber of broccoli and ca	•		
		lom variable, the 1	nass of a broccoli and	the mass of a carr		
<i>X</i> ~ 2	$N(\mu, \sigma^2), Y \sim N(1)$	$80, 15^2$)				
	$X \le 250 = 0.788$					
`	$\leq \frac{250 - \mu}{\sigma} \bigg) = 0.788$					
U	$\frac{250-\mu}{\sigma} = 0.79950$					
$\mu + 0$	$.79950\sigma = 250$	(1)				
`	> 236) = 0.625					
$P \Big(Z$	$\leq \frac{236 - \mu}{\sigma} \bigg) = 0.375$					
$\frac{236}{\sigma}$	$\frac{-\mu}{-\mu} = -0.31864$					
$\mu - 0$	$.31864\sigma = 236$	(2)				

	Llain	~ CC.									
	Using GC: $\mu \approx 239.99 \approx 240$ (3 s.f.) and $\sigma \approx 12.521 \approx 12.5$ (3 s.f.)										
	μ 259.59 210 (0 000) and 0 12.021 12.0 (0 000)										
	(ii)										
	$X - Y \sim N(59.99, 381.78)$										
	$P(X-Y \le 5) = P(-5 \le X - Y \le 5)$										
	= 0.00200 (3 s.f.)										
	(iii)										
	Let <i>W</i> be the random variable, the number of broccoli with mass not exceeding 250g						5				
	$W \sim B(120, 0.788)$										
	Since $n = 120 > 50$, $np = 94.56 > 5$, $nq = 25.44 > 5$										
	<i>W</i> ~	N(94	.56, 20.04	7) appro	DX.						
		,		,							
	$P(W < 90) = P(W \le 89)$ = P(W < 89.5) (using Continuity Correction)										
	= 0.129 (3 s.f.)										
	(iv) It will not follow normal distribution as the mass of a randomly chosen vegetable from a basket containing an equal number of broccoli and carrot follows a bimodal										
	distribution.						Juli				
8	The table gives the values of eight observations of bivariate data, <i>x</i> and <i>y</i> .										
		x	1	2	3	4	5	6	7	8	
		У	5	1	18	23	28	31	33	34	
	(i) Draw a scatter diagram for these values labelling the avec clearly. Determine the					the					
	(i) Draw a scatter diagram for these values, labelling the axes clearly. Determine the outlier by labelling it as P in your scatter diagram. [2]						[2]				
						2					
	(ii) By omitting <i>P</i> , explain if $y = ax^2 + b$ or $y = a \ln x + b$ is the better model for the										
	data. [2]						[2]				
	(iii) Using the more appropriate model found in part (ii), calculate the equation of the						the				
	least-squares regression line. [1]						[1]				
	(iv) Interpret, in the context of the question, the least squares estimates of a and b . [2]						[2]				
	(v) Use the regression line found in part (iii) to predict the value of y when $x = 4.5$. Comment on the reliability of your answer. [2]						4.5. [2]				
	Solu										<u></u>
	(i)										

(iv) The population variance is found to be 9 and the assumption used in part (ii) holds
true. A test at the 5% level of significance whether the mean number of rainy days
per year has changed was conducted. Find the range of values of
$$\overline{x}$$
 such that the
null hypothesis is not rejected. [3]
Solution:
(i)
 $\overline{x} = \frac{2017.7}{12} + 8 = 176.14 = 176 (3 \text{ s.f.})$
Method 1
 $s^2 = \frac{1}{n-1} \left(\sum x^2 - n(\overline{x})^2 \right)$
 $= \frac{1}{11} \left(372500 - 12 (176.14)^2 \right)$
 $= 17.855 = 17.9 (3 \text{ s.f.})$
Method 2
 $\sum x = 2017.7 + 8(12) = 2113.7$
 $s^2 = \frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$
 $= 17.214 \approx 17.2 (3 \text{ sf})$
(ii)
Let X be the random variable, the number of rainy days per year in Singapore
H₀: $\mu = 178$
H₁: $\mu \neq 178$
Assume H₀ is true. $\alpha = 0.05$. Assume X follows normal distribution.
Since $n = 12 < 50$, population variance unknown,
 $T \sim t(11)$ approx.
2 tail t-test used.
Method 1:
Using GC, p -value = 0.156 (3 s.f.) > 0.05 if $s^2 = 17.855$ used
[Alt: p -value = 0.149 (3 s.f.) > 0.05 if $s^2 = 17.214$ used]

Do not reject H₀
Method 2:
Test-statistic value:
$$t = \frac{176.14 - 178}{\sqrt{\frac{17.855}{12}}} \approx -1.52$$
 (3 s.f.) if $s^2 = 17.855$ used
[Alt: $t = \frac{176.14 - 178}{\sqrt{\frac{17.214}{12}}} \approx -1.55$ (3 s.f.) if $s^2 = 17.214$ used]
Critical region: $t \le -2.20$ (3 s.f.) or $t \ge 2.20$ (3 s.f.)
Since test-statistic does not lie in the critical region, H₀ is not rejected.
There is insufficient evidence at 5% level of significance to conclude that the mean
number of rainy days per year has changed.
(iii)
Either
 p -value is the smallest level of significance for which the null hypothesis of the mean
number of rainy days per year is 178 will be rejected.
Or
 p -value is twice the probability of obtaining a test statistic less than or equal to -1.52 ,
assuming the null hypothesis of the mean number of rainy days per year is 178 is true.
(iv)
H₀: $\mu = 178$
H₁: $\mu \ne 178$
Assume H₀ is true. Since X is normal,
 $\overline{X} - N\left(178, \frac{9}{12}\right)$
2 tail z-test used.
Since H₀ is not rejected at the 5% level of significance,
 $-1.9600 < \frac{\overline{x} - 178}{\left(\sqrt{\frac{2}{4}}\right)} < 1.9600$
 $-1.9600\sqrt{\left(\frac{3}{4}\right) < \overline{x} - 178 < 1.9600\sqrt{\left(\frac{3}{4}\right)}$
 $176 < \overline{x} < 180$ (3 s.f.)
10
(a) Find the number of ways in which the letters of the word MILLENNIUM can be
arranged if
(i) there are no restrictions, [1]

	(ii) the first and last letters are the same, and the letters E and U must be separated. [2]
	Four letters are randomly selected from the letters of the word MILLENNIUM to form a code word. Find the number of possible code words that can be formed. [2]
(b)) Mr See (together with his wife and daughter) and Mrs Saw (together with her husband and two sons) came to visit their former teacher Mdm Rain during Millennium Institute's Homecoming Day. Find the number of ways Mr See and his family, Mrs Saw and her family, and Mdm Rain can be arranged if
	(i) they are around a table with ten indistinguishable chairs, such that the children are seated together. [2]
	 (ii) the two empty chairs are removed and Mr See's daughter is seated between her parents and the See family are to be seated directly opposite Mdm Rain. [3]
	lution:
(a)	(i) No. of ways = $\frac{10!}{2!2!2!2!} = 226800$
(ii	
	M, I, L, N M, I, L, N
No	b. of ways = ${}^{4}C_{1} \times \frac{6!}{2!2!2!} \times {}^{7}C_{2} \times 2!$
	=15120
)(last part) ase 1: 2 Repeats
	b. of ways = ${}^{4}C_{2} \times \frac{4!}{2!2!} = 36$
Ca	ase 2: 1 Repeat
	b. of ways = ${}^{4}C_{1} \times {}^{5}C_{2} \times \frac{4!}{2!} = 480$
	ase 3: No Repeat b. of ways = ${}^{6}C_{4} \times 4! = 360$
(b)	tal ways = 876 t(i)
No	b. of ways $=\frac{8!}{8(2!)} \times 3!$

	= 15 120					
	(b)(ii)					
	No. of ways $=\frac{2!}{2} \times 2! \times 4!$					
	No. of ways $=\frac{1}{2} \times 2! \times 4!$					
11	= 48 In this question you should state clearly all distributions that you use, together with the					
	values of the appropriate parameters.					
	values of the appropriate parameters.					
	The number of people queuing to buy coffee at CoffeeVille in a period of 1 minute during lunch hour (12pm to 2pm) is a random variable with an average number of 2.9.					
	State, in context, a condition under which a Poisson distribution would be a suitable probability model. [1]					
	Assume that the number of people queuing to buy coffee at CoffeeVille in a period of 1 minute during the lunch hour follows the distribution $Po(2.9)$.					
	(i) State the most probable number of people queuing in 1 minute. [1]					
	(ii) Find the probability that in a period of 3 minutes, there are at most 5 people queuing to buy coffee. [2]					
	(iii) N periods of 3 minutes are taken. Given that the probability that at least 7 periods of 3 minutes have at most 5 people queuing to buy coffee is more than 0.99, find the least value of N.					
	(iv) A random sample of 120 periods of 3 minutes is taken. Using a suitable approximation, find the probability that more than 12 periods of 3 minutes have exactly 4 people queuing.					
	(v) Explain why the Poisson model would probably not be valid if applied to the operating hours of CoffeeVille from 11am to 10pm. [1]					
	Solution: Average number of people queuing to buy coffee is a constant					
	(i) Let X be the random variable, for the number of people queuing to buy coffee in 1 min.					
	$X \sim \operatorname{Po}(2.9)$					
	Using GC: Mode = 2 (ii)					
	Let Y be the random variable, for the number of people queuing to buy coffee in 3 min.					

 $Y \sim \text{Po}(8.7)$

 $P(Y \le 5) = 0.13516 \approx 0.135$ (3 s.f.)

(iii)

Let *W* be the random variable, for the number of periods of 3 min with $Y \le 5$

 $W \sim B(n, 0.13516)$

 $P(W \ge 7) > 0.99$ $1 - P(W \le 6) > 0.99$ $P(W \le 6) < 0.01$

Using GC:

N	$P(W \le 6)$
103	0.0104 > 0.01
104	0.00947 < 0.01
105	0.00864 < 0.01

Least value of N is 104

(iv)

Let *V* be the random variable, for the number of periods of 3 min with Y = 4

 $V \sim B(120, 0.039765)$

Since n = 120 > 50, np = 4.7718 < 5

 $V \sim \text{Po}(4.7718)$ approx.

 $P(V > 12) = 1 - P(V \le 12) \approx 0.00135$ (3 s.f.)

(v) Mean number of people queuing varies throughout the day.