NAME

SERANGOON JUNIOR COLLEGE

General Certificate of Education Advanced Level Higher 2

\square
\square
INDEX NO. \square

PHYSICS

9749/01

Preliminary Examination
 Paper 1 Multiple Choice

$21^{\text {st }}$ Sep 2017
1 hour
Additional Materials: OMS.

READ THIS INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
There are thirty questions in this section. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the OMS.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is expected, where appropriate.

For Examiners' Use	
MCQ	$/ 30$

DATA AND FORMULAE

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{p} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

DATA AND FORMULAE

Formulae

uniformly accelerated motion
work done on/by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s \\
W & =p \Delta V \\
p & =\rho g h \\
\phi & =-\frac{G M}{r} \\
T / K & =T / 0 C+273.15 \\
p & =\frac{1}{a} \frac{N m}{V}\left(c^{2}\right) \\
E & =\frac{a}{2} k T \\
x & =x_{0} \sin \omega t \\
v & =v_{0} \cos \omega t \\
& = \pm \omega \sqrt{X_{0}^{2}-x^{2}} \\
I & =A n q v \\
R & =R_{1}+R_{2}+\ldots \\
\frac{1}{R} & =\frac{1}{R_{1}}+\frac{1}{\mathbb{R}_{2}}+\cdots
\end{aligned}
$$

resistors in series
resistors in parallel
electric potential
alternating current/ voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant
$V=\frac{Q}{4 \pi \varepsilon_{0} r}$
$x=x_{0} \sin \omega t$
$B=\frac{\mu_{0} I}{2 \pi d}$
$B=\frac{\mu_{0} N I}{2 r}$
$B=\mu_{0} n I$
$x=x_{0} \exp (-\lambda t)$
$\lambda=\frac{\ln 2}{t_{\frac{1}{2}}^{2}}$

Answer all questions.

1 Four students conducted an experiment to determine the value of g, acceleration of free fall. The values obtained by the students are as shown in the table.

Student	$g_{1} / \mathrm{m} \mathrm{s}^{-2}$	$g_{2} / \mathrm{m} \mathrm{s}^{-2}$	$g_{3} / \mathrm{m} \mathrm{s}^{-2}$	$g_{4} / \mathrm{m} \mathrm{s}^{-2}$
P	9.40	9.80	9.55	9.65
Q	9.80	9.60	9.90	10.06
R	10.10	9.90	10.15	9.85
S	9.45	9.48	9.52	9.55

If the correct value of g is $9.82 \mathrm{~m} \mathrm{~s}^{-2}$, which of the students has/have the largest systematic and random errors in their experiments ?

	Largest systematic error	Largest random error
A	Q	P
B	P	Q
C	Q	S
D	S	Q

2 Lorry P and Lorry Q are initially at a distance x metres apart and are travelling in the opposite directions as shown below.

The graph shows the variation with time t of the speeds v of Lorry P and Lorry Q respectively.

At $t=8.0 \mathrm{~s}$, the two lorries are 40 m apart. What is x ?
A 60 m
B 120 m
C $\quad 220 \mathrm{~m}$
D 260 m

3 The graph shows how the speed v of an object varies with time t.

Which graph represents the variation the displacement s travelled by the object with time t ?

A

C

B

D

4 A jet of water of density $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ leaves the nozzle of a hose of radius $2.0 \times 10^{-2} \mathrm{~m}$. The water is directed perpendicularly to the wall at a speed of $0.50 \mathrm{~m} \mathrm{~s}^{-1}$. Assume that the water does not rebound.

What is the force exerted on the wall by the water?
A $\quad 0.314 \mathrm{~N}$
B $\quad 0.628 \mathrm{~N}$
C $\quad 1.27 \mathrm{~N}$
D $\quad 15.7 \mathrm{~N}$

5 An astronaut falls vertically from a space vehicle and hops on the moon. The following statements are about the forces acting while the astronaut is in contact with the surface of the moon.

Which statement is correct?
A The force that the astronaut exerts on the moon is always equal to the weight of the astronaut.
B The force that the astronaut exerts on the moon is always less than the weight of the astronaut.
C The weight of the astronaut is always equal in magnitude and opposite in direction to the force that the moon exerts on the astronaut.
D The force that the astronaut exerts on the moon is always equal in magnitude and opposite in direction to the force the moon exerts on the astronaut.

6 The diagram shows a metal cube suspended from a spring balance before and during immersion in water.

A reduction in the balance reading occurs as a consequence of the immersion.

Which statement is correct?
A The balance reading will be further reduced if the cube is lowered further into the water.
B The balance reading during immersion corresponds to the upthrust of the water on the cube.
C The forces acting on the vertical sides of the cube contribute to the change in the balance reading.
D The balance reading during immersion will be increased if the water is replaced by oil.
$7 \quad$ A student pushes a box from rest along a rough floor with constant friction of 2.0 N .
The graph shows the variation of the force exerted by the student on the box with displacement.

The final speed of the box after travelling 6 m is $5.0 \mathrm{~m} \mathrm{~s}^{-1}$.
What is the mass of the box?
A
4.68 kg
B $\quad 5.64 \mathrm{~kg}$
C $\quad 23.4 \mathrm{~kg}$
D $\quad 28.2 \mathrm{~kg}$

8 The graph how the potential energy U of an object varies with displacement x .

Which of the following graphs represents the variation of force acting on the object with displacement x ?

9 The Singapore Flyer wheel is supported at two points on the bottom by motorised mounts which cause it to rotate anticlockwise with constant angular velocity.

Which of the labelled arrows shows the direction of the force exerted by the motorised mount on the wheel just as it starts to turn?

10 Two planets of mass m_{1} and m_{2} perform circular motion about their common centre of mass O with the same angular velocity. If the mean separation between the centres of the masses is d, what is the distance from the centre of mass m_{1} to the centre of mass of the system, r?

A

B
$\frac{m_{2}}{m_{1}} d$

C

$$
\frac{m_{1}}{m_{1}+m_{2}} d
$$

D

$$
\frac{m_{2}}{m_{1}+m_{2}} d
$$

11 The escape speed of an oxygen molecule at the Earth's surface is $1.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$.
What is the escape speed at a height of $0.2 R$ above the Earth's surface, where R is the radius of the Earth?

A $\quad 0.5 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 1.0 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 1.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 1.2 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
122.0 kg of solid X and 1.0 kg of solid Y are separately heated by two heaters of the same power. The power output of the heaters is the same throughout the whole experiment. The following graphs show the variation of the temperatures of X and Y with time.

What is the ratio of the specific heat capacity of solid X to solid Y ?
A
1:3
B
1:6
C
2:3
D $\quad 3: 2$

13 The volume of Bulb X is twice that of Bulb Y. They are filled with the same ideal gas and are connected by a narrow tube, as shown. A steady state is established with Bulb X held at 300 K and Bulb Y at 600 K . If there are n moles of gas in Bulb X , how many moles of gas are there in Bulb Y ?

A $\quad 1 / 4 n$
B $1 / 2 n$
C n
D $\quad 2 n$

14 A certain simple pendulum swings with a period of 1.0 s . The bob of such a pendulum is given a small displacement and released at $t=0$. Which diagram correctly shows the bob's kinetic energy E_{K} and its potential energy E_{P} varies with time?

15 Two objects P and Q are given the same initial displacement and then released. The variation of their displacements with time t are as shown in the given graphs. The two objects are then driven by sinusoidal driving forces of the same constant amplitude and of variable frequency f. Which of the following graphs correctly shows how the amplitudes A of P and Q varies with f ?

A

C

B

D

16 An unpolarised wave passes through polariser O such that the emerging wave is planepolarized with an intensity of $2.0 \mathrm{~W} \mathrm{~m}^{-2}$. A second polariser P is placed further such that the plane-polarised wave is incident normally on it. Polariser P is rotated clockwise by an angle of 60°.

What is the intensity of the wave after passing through polariser P ?
A $0.25 \mathrm{~W} \mathrm{~m}^{-2}$
B
$0.5 \mathrm{~W} \mathrm{~m}^{-2}$
C $\quad 1.0 \mathrm{~W} \mathrm{~m}^{-2}$
D $\quad 2.0 \mathrm{~W} \mathrm{~m}^{-2}$

17 A diffraction grating is used to measure the wavelength of monochromatic light as shown below.

The spacing of the slits in the grating is $1.00 \times 10^{-6} \mathrm{~m}$. The angle between the first order diffraction maximas is 70.0°.

What is the wavelength of the light?
A 287 nm
B 470 nm
C $\quad 574 \mathrm{~nm}$
D 940 nm

18 A stationary wave is formed in an open tube as represented in the diagram.

How many antinodes are formed by a stationary wave of twice the frequency?
A
B
C 5
D 6

19 The diagram shows four point charges arranged in the corners of a square. What are the values of the electric field strength E and the electric potential V at a point X in the middle of the square?

A
E
B
C
not zero
zero
D
zero

$$
\begin{gathered}
\underline{V} \\
\text { zero } \\
\text { not zero } \\
\text { not zero } \\
\text { zero }
\end{gathered}
$$

20 An electron has a de Broglie wavelength of $5.6 \times 10^{-11} \mathrm{~m}$. It enters an electric field with strength of $2.3 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$ as shown.

How long will it take for the electron to stop after it enters the electric field?
A $\quad 5.0 \times 10^{-28} \mathrm{~s}$
B $\quad 2.0 \times 10^{-15} \mathrm{~s}$
C $3.2 \times 10^{-9} \mathrm{~s}$
D $\quad 4.2 \times 10^{-2} \mathrm{~s}$

21 The I-V characteristics of two electrical components P and Q are shown below.

Which statement is correct?
A P is a resistor and Q is a filament lamp.
B The resistance of Q increases as the current in it increases.
C At 1.9 A the resistance of Q is approximately half that of P.
D At 0.5 A the power dissipated in Q is double that in P .
22 An ideal cell and four identical bulbs are connected as shown.

Bulb 3 is removed. Which of the following describes the changes in the brightness of bulbs 1 , 2 and 4 ?

	Bulb 1	Bulb 2	Bulb 4
A	dimmer	brighter	brighter
B	dimmer	brighter	dimmer
C	brighter	dimmer	brighter
D	dimmer	dimmer	dimmer

23 Each resistor has a similar resistance of 10Ω. What is the equivalent resistance of the circuit shown in the figure below between points \mathbf{P} and \mathbf{S} ?

A 10Ω
B $\quad 20 \Omega$
C 30Ω
D $\quad 40 \Omega$

24 Two long, parallel, straight wires X and Y carry equal currents into the plane of the page as shown. The diagram shows arrows representing the magnetic field strength B at the position of each wire and the magnetic force F on each wire.

B_{X} (field strength at Y due to X)
The current in wire Y is doubled. Which diagram best represents the magnetic field strengths and forces?

A

B

C

D

In the diagram above, $X Y Z$ is a small right-angled triangular metal frame moving with a constant velocity across a rectangular region PQRS with a uniform magnetic field pointing into the paper. Which of the following graphs best shows the variation of the current I induced in the frame with time t ?
A

C

B

D

26 The primary coil of a transformer is connected to an alternating voltage supply. The secondary coil is connected across a variable resistor.

Which change will cause a decrease in the p.d. across the secondary coil?
A Increasing the number of turns of the primary coil
B Increasing the current in the primary coil
C Increasing the cross-sectional area of the secondary coil
D Increasing the resistance of the variable resistor

27 Some of the energy levels of the hydrogen atom are represented in simplified form by the given diagram which has a linear scale. The emission of blue light is associated with the transition of an electron from E_{4} to E_{2}. Which of the following transitions could be associated with the absorption of the red light?

A $\quad E_{2}$ to E_{3}
B $\quad E_{1}$ to E_{4}
C. E_{3} to E_{2}

D E_{4} to E_{1}

28 The momentum of a proton is measured with an uncertainty of 1.0%. Given that it has kinetic energy of 1.00 MeV , which of the following is the minimum uncertainty in its position?
A $\quad 1.1 \times 10^{-11} \mathrm{~m}$
B $\quad 2.9 \times 10^{-12} \mathrm{~m}$
C $\quad 1.1 \times 10^{-12} \mathrm{~m}$
D $\quad 7.0 \times 10^{-13} \mathrm{~m}$

29 In an experiment on α-particle scattering, α-particles are directed onto a gold foil, and detectors are placed at positions P, Q and R as shown in the diagram below.

What is the distribution of α-particles as recorded at P, Q and R respectively?

	Position P	Position Q	Position R
A	none	none	all
B	none	some	most
C	most	some	fewer than at position Q
\mathbf{D}	fewer than at position Q	some	most

30 Which statement about alpha, beta and gamma radiation is correct?
A Alpha radiation has the greatest ionising power.
B Beta radiation has the greatest ionising power.
C Gamma radiation has the greatest ionising power.
D Alpha, beta and gamma radiation have nearly equal ionising powers.

END OF PAPER

NAME

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

\square

CG

\square INDEX NO. \square

Preliminary Examination
 Paper 2 Structured Questions

$11^{\text {th }}$ September 2017
2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THIS INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen on both sides of the paper.
You may use HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
The use of an approved scientific calculator is expected, where appropriate.
Answer all questions.
At the end of the examination, fasten all your work securely together.
The number of marks is given in bracket [] at the end of each question or part question.

For Examiners' Use	
Q1	$/ 8$
Q2	$/ 9$
Q3	$/ 15$
Q4	$/ 9$
Q5	$/ 20$
Q6	$/ 19$
Total marks	80

DATA AND FORMULAE

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{p} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

DATA AND FORMULAE

Formulae

uniformly accelerated motion
work done on/by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current/ voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& W=p \Delta V \\
& p=\rho g h \\
& \phi=-\frac{G M}{r} \\
& T / K=T / 0 C+273.15 \\
& p=\frac{1}{a} \frac{N_{m}}{V}\left(c^{2}\right) \\
& E=\frac{a}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
&= \pm \omega \sqrt{X_{0}^{2}-x^{2}} \\
& I=A n q v \\
& R=R_{1}+R_{2}+\ldots \\
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{\varepsilon_{2}}+\cdots \\
& V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{0} I}{2 \pi d} \\
& B=\frac{\mu_{0} N I}{2 r} \\
& B=\mu_{0} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{l n 2}{t_{1}} \\
& \frac{l n}{2}
\end{aligned}
$$

1 In order to determine the value of the gravitational acceleration g, a student throws a ball at a speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$ horizontally from a building.
(a) The student collects the following data for the ball when it reaches the ground.

Quantity	Value	Absolute Uncertainty
Vertical displacement	122.500 m	0.002 m
Horizontal displacement	75.000 m	0.002 m

(i) Show that the time taken to reach the ground is 5.0 s .
(ii) The uncertainty of the time taken is 0.4 s .

Determine the value of g, with its associated uncertainty.

$$
g=
$$

\qquad \pm \qquad $\mathrm{m} \mathrm{s}^{-2}[3]$
(b) In the absence of air resistance, the variation of the vertical speed v of the ball with time t is shown in Fig. 1.1.

Fig. 1.1
(i) In reality, there is air resistance. Sketch the graph of variation of vertical speed with time on Fig. 1.1, and label this graph Z.
(ii) Explain the shape of the graph Z .
\qquad
\qquad
\qquad
\qquad

2 Truck X of mass 22000 kg and moving at a speed of $3.0 \mathrm{~m} \mathrm{~s}^{-1}$, catches up and collides with Truck Y moving at $1.0 \mathrm{~m} \mathrm{~s}^{-1}$ moving in the same direction as shown in Fig. 2.1.

Fig. 2.1
Fig. 2.2 shows how the speeds of the trucks vary with time t before, during and after the collision.

Fig. 2.2
(a) Using Fig. 2.2, show that the mass of Truck Y is 66000 kg .
(b) Showing your working clearly, explain whether this collision is elastic.
(c) (i) State the time at which the trucks are closest to each other.

$$
t=\text {. }
$$

(ii) 1. Calculate the total kinetic energy of the two trucks at the time stated in (i).
2. Hence, calculate the maximum elastic potential energy stored in the spring buffer during the collision.
maximum elastic potential energy stored $=$
(d) (i) Calculate the magnitude of the impulse exerted by Truck X on Truck Y .
magnitude of impulse $=$ \qquad Ns [2]
(ii) If the duration of the collision is reduced, with the initial and final speeds of both trucks unchanged, state and explain how this affects your answer in (i).
\qquad
\qquad
\qquad

3 (a) State what is meant by coherent sources.
\qquad
\qquad
\qquad
\qquad
(b) A stereo system in a large hall has two identical speakers, S_{1} and S_{2}, placed 1.2 m apart as shown in Fig. 3.1. The amplitude of the output of each speaker is proportional to the potential difference across its terminals, which is adjusted by means of a balance control.

Fig. 3.1 (not to scale)
Initially, the speakers are emitting signals of frequency 1000 Hz which are in phase. The balance control is set such that the potential difference across the terminals of both speakers are the same.

Line AC is 15 m away from the speakers. An observer hears a loud sound of intensity $I_{\text {max }}$ at A. As he moves along the line AC, 15 m away from the speakers, he observes that the intensity of the sound first falls to zero at point B, a distance y from A. The speed of sound in air is $330 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Determine the distance y.
(ii) By calculating the path difference of the two sound waves arriving at B, determine the next higher frequency of the speaker such that point B would also be a point of zero intensity.
frequency $=$
Hz [3]
(iii) With the speakers emitting the original signal frequency of 1000 Hz , the balance control is now adjusted such that the potential difference across the terminals of S_{1} is reduced while the potential difference across the terminals of S_{2} is unchanged.

Suggest and explain any changes to the sound heard at B.
\qquad
\qquad
\qquad
\qquad
(c) Monochromatic light is passed through a rectangular slit of width b of 0.20 mm . The light is observed on a screen placed 0.75 m from the slit, as shown in Fig. 3.2.

Fig. 3.2
Light passing through the slit is diffracted through an angle θ.
The variation of the intensity I of the light with the angle θ of diffraction is shown in Fig. 3.3. The maximum value of intensity is I_{0}.

The angular separations between successive minima are the same.

θ
Fig. 3.3
(i) The value of θ_{2}, the location of the second order minima, is 0.338°. Determine the wavelength of the monochromatic light.
\qquad
(ii) Determine the angle between two beams of light incident on the slit, each of the same wavelength as in (i), such that their diffraction patterns are just resolved. Explain your working.
angle =
(iii) Sketch, on the axes of Fig. 3.3, how the intensity of the light varies with θ if the slit width is halved. Label any relevant intercepts on your sketch.
(a) Define the tes/a.
\qquad
\qquad
\qquad
\qquad
(b) lons, all of the same element, are travelling in a vacuum with a speed of $9.6 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$. The ions are incident normally on a uniform magnetic field B of flux density 320 mT . The ions follow semicircular paths A and B before reaching a sensor, as shown in Fig. 4.1.

Fig. 4.1
The diameters of paths A and B are 6.2 cm and 12.4 cm respectively. The ions in path B each have charge $+1.6 \times 10^{-19} \mathrm{C}$.
(i) Explain why the path of the ions in the magnetic field is an arc of a circle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the mass of the ions in path B .
mass $=$
kg [2]
(iii) Explain the reason for the difference in radii of the paths A and B of the ions.
\qquad
\qquad
\qquad

5 (a) (i) Define binding energy.
\qquad
\qquad
\qquad
(ii) Sketch a graph in Fig. 5.1 to show the variation of the binding energy per nucleon with nucleon number. Label the value of nucleon number and binding energy per nucleon for the isotope that has the highest binding energy per nucleon.
binding energy per nucleon / MeV

$\underbrace{}_{\text {Fig. } 5.1}$| nucleon |
| :--- |
| number |

(iii) With reference to your graph drawn in Fig. 5.1, explain how fission can be a potential source of energy.
\qquad
\qquad
\qquad
\qquad
(iv) A typical nuclear fission reaction that involves uranium-235 is represented by the equation

$$
{ }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow \mathrm{Kr}+{ }_{56}^{141} \mathrm{Ba}+3 \mathrm{n}
$$

Data for the binding energy per nucleon for the different nuclei are given in the table below:

Nuclei	Binding energy per nucleon / MeV
${ }_{92}^{235} \mathrm{U}$	7.59
Kr	8.51
${ }_{56}^{141} \mathrm{Ba}$	8.33

1. Deduce the number of protons and neutrons in the Kr nucleus.
number of protons $=$ \qquad
number of neutrons $=$
2. Calculate the energy released in the above reaction.
energy released =
(b) A stationary ${ }_{88}^{228} \mathrm{Ra}$ nucleus undergoes beta minus decay to form an actinium isotope. The actinium isotope and beta particle move as shown in Fig. 5.2.

Fig. 5.2
Explain why a neutrino must also be released in this process.
\qquad
\qquad
\qquad
(c) Scientists have worked out the age of the Moon by dating rocks brought back by the Apollo missions. They use the decay of potassium ${ }_{19}^{40} \mathrm{~K}$ to argon ${ }_{18}^{40} \mathrm{Ar}$, which is stable. The decay constant of potassium-40 is 5.3×10^{-10} per year.
(i) Explain what is meant by the decay constant of potassium-40 being 5.3×10^{-10} per year.
\qquad
\qquad
\qquad
(ii) Sketch a labelled graph on Fig. 5.3 to show how the activity of ${ }_{19}^{40} \mathrm{~K}$ changes with time if the initial activity is A_{o}. Mark on your graph the value of the half-life of ${ }_{19}^{40} \mathrm{~K}$.

Fig. 5.3
(iii) In one rock sample the scientists found $0.84 \mu \mathrm{~g}$ of argon- 40 and $0.10 \mu \mathrm{~g}$ of potassium-40.

1. Calculate the activity of the potassium- 40 in the rock sample.
activity = Bq [2]
2. Calculate the age of the rock sample in years.
3. State any assumption that you have made for the calculation in 2.
\qquad
\qquad
(iv) Explain why the determination of the decay constant by measuring the mass and activity of a sample is not suitable for nuclides that have relatively large decay constants.
\qquad
\qquad
\qquad

6 A capacitor is an electrical device which can store charges and energy. A simple parallel plate capacitor consists of two parallel conducting plates separated by an insulator, as shown in Fig. 6.1.

Fig. 6.1

When charged, the two plates carry opposite charges of the same magnitude. The relationship between the amount of charge stored Q, the potential difference V between the plates and the capacitance C is given by the equation

$$
Q=C V
$$

(a) Deduce the base units of C .
(b) The capacitor is now charged. Fig. 6.2 shows the values of potential difference V and the corresponding amount of charge Q.

$\mathbf{V / V}$	$\mathbf{Q / \mu C}$
0.0	0.0
0.4	1.9
1.3	6.1
3.0	14.3
3.3	15.5
4.2	19.7
5.1	23.5

Fig. 6.2

On Fig. 6.3,
(i) plot the missing data points from Fig. 6.2.
(ii) sketch the best fit line to show the variation of the amount of charge Q with the potential difference V between the plates.

Fig. 6.3
(iii) State the quantity represented by the:

1. gradient of the graph,
2. area under the graph.
(iv) Hence, show that the energy E stored in a capacitor is $1 / 2 C V^{2}$.
(c) The capacitor is now discharged by connecting it across a resistor of resistance R as shown in Fig. 6.4.

Fig. 6.4

Fig. 6.5 shows the variation with time t of the potential difference V across the resistor.

Fig. 6.5
(i) Using Fig. 6.3 and Fig. 6.5, determine the initial amount of charge stored.
charge =
(ii) Hence, calculate the capacitance C.

$$
\text { capacitance }=
$$

\qquad $C V^{-1}[2]$
(iii) Calculate the energy lost when the capacitor has been discharged for 45 ms .
energy lost =
(d) The graph in Fig. 6.5 can be represented by the following equation, where V_{0} is the initial potential across the resistor R.

$$
V=V_{o} e^{-t R C}
$$

State how the value of $R C$ affects the rate of discharge of the capacitor.
\qquad
(e) Fig 6.6 shows an A.C. supply connected to resistor-capacitor (RC) circuit containing an ideal diode. Fig 6.7 shows the potential difference measured by the CRO.

Fig. 6.6

Fig. 6.7

Switch S is now closed. When the diode is in forward bias, current flows through both the resistor and the capacitor. When the diode is in reverse bias, the capacitor discharges through the resistor.
(i) Sketch on Fig. 6.7, the expected display on the CRO.
(ii) State what the RC circuit does to the wave on the CRO.
\qquad

BLANK PAGE

NAME

SERANGOON JUNIOR COLLEGE

General Certificate of Education Advanced Level Higher 2

\square
CG \square
INDEX NO.
\square

Preliminary Examination
 Paper 3 Longer Structured Questions

$15^{\text {th }}$ September 2017

Candidates answer on the Question Paper. No Additional Materials are required.

READ THIS INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen on both sides of the paper.
You may use HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
The use of an approved scientific calculator is expected, where appropriate.
Answer all questions in Section A, and one of the two questions in Section B.

At the end of the examination, fasten all your work securely together.
The number of marks is given in bracket [] at the end of each question or part question.

For Examiners' Use	
Q1	$/ 7$
Q2	$/ 13$
Q3	$/ 20$
Q4	$/ 20$
Q5	$/ 20$
Q6	$/ 20$
Total marks	$/ 80$

DATA AND FORMULAE

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{p} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

DATA AND FORMULAE

Formulae

uniformly accelerated motion
work done on/by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current/ voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& W=p \Delta V \\
& p=\rho g h \\
& \phi=-\frac{G M}{r} \\
& T / K=T / 0 C+273.15 \\
& p=\frac{1}{a} \frac{N_{m}}{V}\left(c^{2}\right) \\
& E=\frac{a}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
&= \pm \omega \sqrt{X_{0}^{2}-x^{2}} \\
& I=A n q v \\
& R=R_{1}+R_{2}+\ldots \\
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{\varepsilon_{2}}+\cdots \\
& V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{0} I}{2 \pi d} \\
& B=\frac{\mu_{0} N I}{2 r} \\
& B=\mu_{0} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{l n 2}{t_{1}} \\
& \frac{l n}{2}
\end{aligned}
$$

Section A: Answer all questions.

1 A uniform rod of weight 20 N is freely hinged to a wall at P as shown in Fig. 1.1. It is held horizontal by an elastic cord made of material X of force constant $10 \mathrm{~N} \mathrm{~cm}^{-1}$, attached at Q at an angle of 15° to the rod.

Fig. 1.1
(a) Show that the extension of the elastic cord X is 3.86 cm .
(b) Determine the magnitude of the resultant force acting at P .
magnitude of resultant force at $\mathrm{P}=$
(c) The elastic cord X is now replaced by two other identical elastic cords of the same unstretched length as elastic cord X . These two elastic cords are connected in parallel. The rod PQ remains horizontal.
State and explain the value of the force constant of each of the new elastic cords.
\qquad
\qquad
\qquad

2 (a) State the first law of thermodynamics, indicating the directions of all energy changes.
\qquad
\qquad
\qquad
(b) A heat pump contains a fixed mass of ideal gas undergoing a cycle of changes of pressure, volume and temperature as illustrated in Fig. 2.1.

Fig. 2.1
The increase in internal energy which takes place during three of the changes are as shown in Fig. 2.2. It is also known that no heat is supplied in the changes $A \rightarrow B$ and $\mathrm{C} \rightarrow \mathrm{D}$.
(i) Complete Fig. 2.2.

Change	Increase in internal energy / J	Heat supplied to gas / J	Work done on gas / J
$\mathrm{A} \rightarrow \mathrm{B}$	720		
$\mathrm{~B} \rightarrow \mathrm{C}$	-810		
$\mathrm{C} \rightarrow \mathrm{D}$	-360		
$\mathrm{D} \rightarrow \mathrm{A}$			

Fig 2.2
(ii) Given that the temperature at C is 360 K , calculate the number of molecules, N , in the heat pump.
number of molecules $=$
(iii) Given that the total kinetic energy of the gas molecules, E_{K} is given as $E_{K}=3 / 2 \mathrm{NkT}$, using your answers in (i) and (ii), determine the temperature at D.
temperature $=$
(iv) Given that the gas is Helium-4, calculate the root-mean-square speed of the Helium molecules at C .

3 (a) A satellite is in a geostationary circular orbit of radius r about the Earth of mass M, and appears to remain above the same point on the Earth. The mass of the Earth may be assumed to be concentrated at its centre.
(i) State two features of a geostationary satellite of the Earth.

1. \qquad
\qquad
2. \qquad
(ii) Show that the period T of the orbit of the satellite is given by the expression

$$
T^{2}=\frac{4 \pi^{2} x^{3}}{G M}
$$

where G is the gravitational constant. Explain your working.
(iii) The mass M of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$.

Determine the radius of the geostationary orbit.
radius =
(b) The variation of the resultant gravitational potential due to the Earth and the Moon along a line XY joining the centres of the Earth and Moon is as shown in Fig. 3.1.
$\phi / \mathrm{J} \mathrm{kg}^{-1}$

(i) Given that the mass of the Moon is $7.3 \times 10^{22} \mathrm{~kg}$ and the distance between the centres of the Earth and Moon is 380000 km , show that the distance from the centre of the Earth along XY, where the net gravitational field strength is zero, is 342000 km.
(ii) Hence, sketch the corresponding net gravitational field strength due to the Earth and the Moon in Fig. 3.2.

Fig. 3.2
(c) Two point charges A and B are separated by a distance of 8.0 cm in a vacuum, as illustrated in Fig. 3.3.

Fig. 3.3
Point P is at a distance x from A along $A B$. The variation of the resultant potential due to charges A and B is as shown in Fig. 3.4.

Fig. 3.4
(i) State and explain whether the two charges are of the same sign.
\qquad
\qquad
\qquad
(ii) Calculate the ratio of the numerical value of $\frac{\text { Charge of } A}{\text { Charge of } E}$.

$$
\text { ratio }=
$$

(iii) State and explain the direction of the electric field at the point P , where $x=2.0 \mathrm{~cm}$.
\qquad
\qquad
\qquad
\qquad
(iv) Sketch the variation of the electric field strength with x in Fig. 3.5. Label where appropriate.
$E / N C^{-1}$

Fig. 3.5
(v) When a -2.0 nC charge is moved from $x=3.0 \mathrm{~cm}$ to 6.0 cm , calculate the change in kinetic energy of the -2.0 nC charge.

4 (a) By reference to the photoelectric effect, explain
(i) what is meant by work function,
\qquad
(ii) why, even when the incident light is monochromatic, the emitted electrons have a range of kinetic energies up to a maximum value.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) In an experiment to investigate the photoelectric effect, a student measures the wavelength λ of the light incident on a metal surface, and the maximum kinetic energy $E_{\max }$ of $1 / \lambda$ as shown in Fig. 4.1.

Fig. 4.1

1. Without using the value of the Planck constant, determine the work function of the metal surface.
work function =
2. Using points A and B, determine the Planck constant.

Planck constant $=$
(b) Fig. 4.2 shows how x-rays are produced inside an x-ray tube. The electrons emitted at the filament are accelerated from rest using an accelerating voltage to hit a target of heavy metal at the anode and produce x-rays as a result.

Fig 4.2

A graph of relative intensity against wavelength of the emitted radiation is as shown in Fig. 4.3.

Fig. 4.3
(i) State and explain what must be done to the accelerating voltage if the minimum wavelength of the x-rays emitted is to be doubled.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Determine the accelerating voltage used to produce the minimum wavelength as shown in Fig. 4.3.
(c) Electrons, accelerated through a potential difference, are incident on a very thin carbon film, with speed v as shown in Fig. 4.4.

Fig. 4.4
The emergent electrons are incident on a fluorescent screen. A series of concentric rings is observed on the screen.
(i) State and explain what the observed rings suggest about the nature of the electrons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The stream of electrons is now replaced by a stream of alpha particles arriving at the thin film with the same speed v. State and explain the effect, if any, on the rings observed on the screen.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) A proton and an alpha particle are each accelerated from rest through the same potential difference. Determine the ratio
de Broglie wavelength of the proton de Broglie wavelength of alpha particle

> ratio =
[3]

Section B: Answer ONE out of TWO questions.

5 (a) The headlights of a car are switched on. The distance along the copper connecting wires between the car battery and one of the headlights is 1.5 m .
(i) The current in the wire is 3.0 A , the cross-sectional area of the wire is $3.0 \times 10^{-7} \mathrm{~m}^{2}$, and the number density of electrons in copper is $8.5 \times 10^{28} \mathrm{~m}^{-3}$.
Determine the average time that an individual electron will take to drift from the battery to the headlight.
time taken =
(ii) Using your answer in (i), comment on how the light of the headlamp comes on almost immediately when switched on.
\qquad
\qquad
\qquad
(b) An electric heater consists of three similar heating elements A, B, C, connected as shown in Fig. 5.1.

Fig. 5.1

Each heating element is rated as $1.5 \mathrm{~kW}, 240 \mathrm{~V}$ and may be assumed to have constant resistance.
The circuit is connected to a 240 V supply.
(i) Calculate the resistance of one heating element.

> resistance =
\qquad
(ii) The switches $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} may be either open or closed.

1. When $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 are all closed, state the total power dissipation of the heater.
total power dissipation = \qquad kW [1]
2. When $S 1$ is closed, $S 2$ is open, and $S 3$ is open, determine the total power dissipation of the heater.
total power dissipation $=$
3. Hence, determine the total power dissipation of the heater when S1 is closed, S 2 is open, and S 3 is closed.
(c) A circuit used to measure the power transfer from a battery is shown in Fig. 5.2. The battery has an electromotive force (e.m.f.) E and an internal resistance r. The power is transferred to a variable resistor of resistance R, when the potential difference (p.d.) across it is V, and the current through it is I.

Fig. 5.2
(i) By reference to the circuit shown in Fig. 5.2, distinguish between the definitions of e.m.f. and p.d.
\qquad
\qquad
\qquad
\qquad
(ii) The variation with current $/$ of the p.d. V across R is shown in Fig. 5.3.

Fig. 5.3
Use Fig. 5.3 to determine

1. the e.m.f. E,
$E=$
2. the internal resistance r.
(iii) 1. Using data from Fig. 5.3, show that the power transferred to R for a current of 1.6 A is 4.64 W .
3. Use your answers from (ii)1 and (iii)1 to calculate the efficiency of the battery for a current of 1.6 A.
efficiency $=$
\% [2]
(iv) The variable resistor R in Fig. 5.2 is replaced by a few identical lamps connected in parallel. A student claims that as the number of lamps connected in parallel is increased, the lamps become dimmer.
Comment on the student's claim.
\qquad
\qquad
\qquad

6 (a) A composite block of mass 10 kg , made of woods of different densities ρ_{1} and ρ_{2}, floats in still water of density ρ_{w}, as shown in Fig. 6.1. Each portion of wood is of height x and of a base with cross-sectional area A.

Fig. 6.1
(i) The block is pushed down by a distance l into the water without totally submerging it, and is then released.
It can be shown that the acceleration a of the block is given by

$$
a=-\frac{\rho_{w} g}{\left(\rho_{1}+\rho_{2}\right) x} l
$$

Explain why the expression leads to the conclusion that the block bobs up and down in simple harmonic motion.
\qquad
\qquad
\qquad
\qquad
(ii) The depth h of the block is measured from below the water surface to the base of the block as shown in Fig. 6.2.

Fig. 6.2
Fig. 6.3 shows the variation with time t of the depth h of the base of the block below the surface.

Fig. 6.3

1. Determine the amplitude of the oscillation of the block.
amplitude $=$
m [1]
2. Determine the angular frequency of the oscillation.
angular frequency $=$ \qquad rad s ${ }^{-1}$ [2]
3. Hence, show that the energy of the oscillation is 0.177 J .
(b) (i) State Faraday's law of electromagnetic induction.
\qquad
\qquad
\qquad
(ii) A coil with 800 turns is placed in a uniform horizontal magnetic field of flux density $5.0 \times 10^{-2} \mathrm{~T}$. The area of the coil perpendicular to the field is $2.5 \times 10^{-2} \mathrm{~m}^{2}$, as shown in Fig. 6.4.

Fig. 6.4

1. Explain why an e.m.f. is induced in the coil.
\qquad
\qquad
\qquad
2. Determine the magnetic flux linkage of the coil.
(c) The coil in (b) is rotated around the axis shown in Fig. 6.4. The flux linkage Φ of the coil varies with time t as shown in Fig. 6.5.
Φ / Wb

Fig. 6.5
(i) Derive the equation for the induced e.m.f. E of the coil, where N is the number of turns in the coil, B is the magnetic flux density, A is the area of coil, and ω is the angular frequency of the change in magnetic flux linkage.
(ii) Sketch on Fig. 6.6 the variation with time of the e.m.f. across XY. Label the

E / V

Fig. 6.6
(d) $\quad \mathrm{A}$ resistor of resistance 5000Ω is now connected across XY .
(i) Determine the mean power dissipated in the resistor.
mean power $=$
kW [2]
(ii) Use energy conservation to explain why the oscillations of the coil are damped.
\qquad
\qquad
\qquad
\qquad

END OF PAPER

BLANK PAGE

SERANGOON JUNIOR COLLEGE

General Certificate of Education Advanced Level Higher 2

NAME \square

CG

\square
INDEX NO.
\square

Preliminary Examination

29 August 2017
Paper 4 Practical

Candidates to answer all questions in the Question Booklet.
Additional Material: Question Booklet for Question 4

READ THESE INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your answers in the spaces provided on the question paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or do not use appropriate units.

Give details of the practical shift and laboratory in the boxes provided.

Shift
Laboratory

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
$\mathbf{1}$	$/ 14$
2	$/ 9$
3	$/ 20$
4	$/ 12$
Total	$/ 55$

1 This investigation considers the angles formed by the threads in a pulley system when it is in equilibrium.
(a) In this set-up, there are two threads - a long thread $A B$ and a short thread $C D$, as shown in Fig.1.1. Two pulleys P and Q are identical.

Tie end A to the 100 g mass.
Pass the thread $A B$ through pulleys P and Q.

Tie end B to the 50 g mass.

Fig.1.1
(b) Tie thread CD as shown in Fig.1.2. Thread CD must be kept horizontal throughout the whole experiment.

Fig.1.2
(c) Measure the angles α and β.

$$
\begin{gathered}
\alpha=\ldots \ldots \ldots \ldots \ldots \ldots . . \\
\beta=\ldots \ldots \ldots \ldots \ldots \ldots . .
\end{gathered}
$$

(d) Estimate the percentage uncertainty in α.

$$
\text { percentage uncertainty in } \alpha=
$$

(e) State one significant source of error that may have affected the accuracy of the readings of angles α and β.
\qquad
\qquad
\qquad
(f) Suggest one improvement that could be made to the experiment to address the error identified in (e). You may suggest the use of other apparatus or a different procedure.
\qquad
\qquad
\qquad
(g) It is suggested that $\cos \alpha$ is directly proportional to $\cos \beta$. Move the retort stand Y to the right and adjust thread CD so that it is horizontal. Obtain one more set of values of α and β to investigate this suggestion. State and explain whether you agree with this suggestion.

Present your measurements and calculated results clearly. Plotting of graph is not required.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(h) Let the tensions in CA, CB and CD be T_{1}, T_{2}, and T_{3} respectively.

By considering the equilibrium of forces acting at point C , write two equations relating T_{1}, T_{2}, T_{3}, α and β.
(i) A student suggests that when there is an increase in the ratio of the mass hung at end A to the mass hung at end B of thread AB , the ratio of $\cos \alpha$ to $\cos \beta$ would increase. Suggest how you would verify this.
\qquad
\qquad
\qquad
\qquad

2 In this experiment, you will measure the potential difference across resistor R_{2} as the resistance of the circuit is varied.
(a) The Digital Multimeter (DMM) is used as a voltmeter.

Ensure that the black lead of the Digital Multimeter (DMM) is connected to the "COM" jack input, while the red lead is connected to the "V / Ω / mA " jack input.

Set the dial on the DMM to "20 V" mark in the "V" range.
(b) Set up the circuit as shown in Fig. 2.1. Connect one R_{1} to the circuit and close the switch.

Fig. 2.1
(c) Record the potential difference across R_{2}, V using the voltmeter.

$$
\begin{equation*}
V= \tag{1}
\end{equation*}
$$

(d) Change n, the number of resistor R_{1} connected in parallel. Obtain three further sets of values for n and the corresponding values of V.
(e) Theory suggests that V and n are related by the equation

$$
\frac{1}{V}=\frac{R_{1}}{n E R_{2}}+\frac{1}{E}
$$

where E is the e.m.f. of the power supply.
Suggest how you would determine the ratio of $\frac{R_{1}}{R_{2}}$ without measuring the resistance of the resistors directly.
\qquad
\qquad
\qquad
\qquad
\qquad
(f) In the specification of a resistor, "tolerance" refers to the percentage error in the resistance of the resistor. The tolerance of each resistor that you use in this experiment is $\pm 5 \%$, resulting in an absolute error of ΔR_{1} for the resistance R_{1}, and ΔR_{2} for the resistance of R_{2}.

Explain how the absolute error in the effective resistance of the circuit would change when a few R_{1} are connected in series instead of being connected in parallel.
\qquad
\qquad
\qquad
\qquad
\qquad

3 In this experiment, you will investigate how the period of oscillation T of a suspended halfmetre rule about a vertical axis through its centre, is related to its separation L from a horizontal metre rule.
(a) Suspend a half-metre rule XY symmetrically by two exactly equal lengths of threads. XY has a length of a, and a width of b. Fig.3.1 shows the front view and Fig. 3.2 shows the side view of the set up.

Fig.3.1

Side view
Fig. 3.2
(b) Arrange the threads at a distance d of 45 cm apart.
(c) Ensure that the threads are vertical. Adjust L to about 100 cm .
(d) Measure and record L.
(e) Estimate the absolute uncertainty in this value of L.
absolute uncertainty $=$
(f) Give the suspended half-metre rule XY an angular displacement about a vertical axis through its centre, and set it into small angular oscillation as shown in Fig.3.1. Fig.3.3 shows the top view of the oscillation.

Top view
Fig. 3.3
(g) Determine the period T of the oscillations.
$T=$
(h) Vary L and repeat (f) and (g) to obtain further sets of values for L ranging from 20.0 cm to 100.0 cm , and the corresponding values of T.
(i) It is suggested that T and L are related by the equation

$$
g=\frac{16 \pi^{2}\left(a^{2}+b^{2}\right)}{12 d^{2}} \frac{L}{T^{2}}
$$

Plot a suitable graph and hence determine the acceleration due to gravity, g.

(j) Comment on any anomalous data or results you may have obtained. Explain your answer.
\qquad
\qquad
(k) State one significant source of error in this experiment.
\qquad
\qquad
\qquad
(I) Suggest one improvement that could be made to the experiment to address the error identified in (k). You may suggest the use of other apparatus or different procedures.
\qquad
\qquad
\qquad
(m) On the graph grid on page 10, sketch a second graph to represent the results if the distance between two threads d is increased. Label this graph Z.

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

NAME \square

CG

\square

INDEX NO.

\square

Question Booklet for Question 4

Candidates to answer all questions in the Question Booklet.

READ THESE INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your answers in the spaces provided on the question paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or do not use appropriate units.

Give details of the practical shift and laboratory in the boxes provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
$\mathbf{4}$	$/ 12$
Total	$/ 12$

4 The history of solar energy is as old as humankind. In 1954, some scientists in the United States produced electricity from the sun. They invented photovoltaic cells, which capture the sun's energy and convert it into electricity. A photovoltaic cell is an electric cell made from two layers of different materials that can produce an electric current when light of certain frequencies shines on the cell. A solar panel is a collection of photovoltaic cells.

The frequency of the light falling on the solar panel can be varied by placing different colour filters in front of the light source as shown in Fig.4.1.

Fig.4.1
Design an experiment to investigate how the power generated by a solar panel depends on the frequency of the light falling on it.

The equipment available includes the following:

Solar panel	Resistors
Colour filters	Switch
Lamp	Stopwatch
Spectrometer with diffraction grating	Rule
Ammeter	Micrometer screw gauge
Voltmeter	

You should draw a labelled diagram to show the arrangement of your apparatus and you should pay attention to
(a) the equipment you would use,
(b) the procedure to be followed,
(c) how the frequency of the light used is to be measured,
(d) how the power generated by the solar panel is to be measured,
(e) the control of variables,
(f) any precautions that would be taken to improve the accuracy, precision and safety of the experiment.

Diagram

\qquad

NAME

SERANGOON JUNIOR COLLEGE

General Certificate of Education Advanced Level Higher 2

\square
\square
INDEX NO. \square

Preliminary Examination
 Paper 1 Multiple Choice

$21^{\text {st }}$ Sep 2017
1 hour
Additional Materials: OMS.

READ THIS INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
There are thirty questions in this section. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the OMS.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is expected, where appropriate.

For Examiners' Use	
MCQ	$/ 30$

DATA AND FORMULAE

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{p} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

DATA AND FORMULAE

Formulae

uniformly accelerated motion
work done on/by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel
electric potential
alternating current/ voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& W=p \Delta V \\
& p=\rho g h \\
& \phi=-\frac{G M}{r} \\
& T / K=T /{ }^{\circ} C+273.15 \\
& p=\frac{1}{a} \frac{N m}{V}\left(c^{2}\right) \\
& E=\frac{s}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
&= \pm \omega \sqrt{X_{0}^{2}-x^{2}} \\
& I=A n q v \\
& R=R_{1}+R_{2}+\ldots \\
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \\
& V=\frac{Q}{4 \pi s_{0} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{0} I}{2 \pi d} \\
& B=\frac{\mu_{0} N I}{2 r} \\
& B=\mu_{0} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{\ln 2}{s_{1}} \\
& \frac{1}{2} \\
& V
\end{aligned}
$$

Answer all questions.

1 Four students conducted an experiment to determine the value of g, acceleration of free fall. The values obtained by the students are as shown in the table.

Student	$g_{1} / \mathrm{m} \mathrm{s}^{-2}$	$g_{2} / \mathrm{m} \mathrm{s}^{-2}$	$g_{3} / \mathrm{m} \mathrm{s}^{-2}$	$g_{4} / \mathrm{m} \mathrm{s}^{-2}$
P	9.40	9.80	9.55	9.65
Q	9.80	9.60	9.90	10.06
R	10.10	9.90	10.15	9.85
S	9.45	9.48	9.52	9.55

If the correct value of g is $9.82 \mathrm{~m} \mathrm{~s}^{-2}$, which of the students has/have the largest systematic and random errors in their experiments?

	Largest systematic error	Largest random error
A	Q	P
B	P	Q
C	Q	S
D	S	Q

Ans: D

Student	Mean	Range
P	9.60	0.4
Q	9.84	0.46 (biggest range)
R	10.0	0.3
S	9.50 (biggest diff to correct value of $9.82 \mathrm{~m} \mathrm{~s}^{-2}$)	0.1

2 Lorry P and Lorry Q are initially at a distance x metres apart and are travelling in the opposite directions as shown below.

The graph shows the variation with time t of the speeds v of Lorry P and Lorry Q respectively.

At $t=8.0 \mathrm{~s}$, the two lorries are 40 m apart. What is x ?
A $\quad 60 \mathrm{~m}$
B 120 m
C $\quad 220 \mathrm{~m}$
D $\quad 260 \mathrm{~m}$

Answer: D

Distance travelled by Lorry P + Distance travelled by Lorry Q + 40 = x
$\frac{1}{2}(10+20)(8.0)+\frac{1}{2}(5+20)(8.0)+40=x$
$x=260 \mathrm{~m}$

3 The graph shows how the speed v of an object varies with time t.

Which graph represents the variation the displacement s travelled by the object with time t ?

Answer: C
The area under v-t graph represents the change in displacement.

4 A jet of water of density $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ leaves the nozzle of a hose of radius $2.0 \times 10^{-2} \mathrm{~m}$. The water is directed perpendicularly to the wall at a speed of $0.50 \mathrm{~m} \mathrm{~s}^{-1}$. Assume that the water does not rebound.

What is the force exerted on the wall by the water?
A
0.314 N
B
0.628 N
C $\quad 1.27 \mathrm{~N}$
D $\quad 15.7 \mathrm{~N}$

Answer: A
Force by wall on water $=\left\langle F_{\text {net }}\right\rangle=$ mass per unit time $\times \Delta v$

$$
\begin{aligned}
& =\frac{m}{\Delta t} \Delta v=\frac{\rho(\text { Vol })}{\Delta t} \Delta v \quad \text { since } m=\rho(\text { Vol }) \\
& =\frac{\rho \times \pi r^{2} L}{t} \Delta v \\
& =\rho \times \pi r^{2} v \Delta v \\
& =\rho \pi r^{2} v(0-v) \\
& =-\rho \pi r^{2} v^{2} \\
& =-1000 \pi\left(2.0 \times 10^{-2}\right)^{2}(0.50)^{2} \\
& =-0.314 \mathrm{~N}
\end{aligned}
$$

By Newton's $3^{\text {rd }}$ Law, Force by water on wall $=$ Force by wall on water $=0.314 \mathrm{~N}$
5 An astronaut falls vertically from a space vehicle and hops on the moon. The following statements are about the forces acting while the astronaut is in contact with the surface of the moon.

Which statement is correct?
A The force that the astronaut exerts on the moon is always equal to the weight of the astronaut.
B The force that the astronaut exerts on the moon is always less than the weight of the astronaut.
C The weight of the astronaut is always equal in magnitude and opposite in direction to the force that the moon exerts on the astronaut.
D The force that the astronaut exerts on the moon is always equal in magnitude and opposite in direction to the force the moon exerts on the astronaut.

Answer: D
 Newton's third law

6 The diagram shows a metal cube suspended from a spring balance before and during immersion in water.

A reduction in the balance reading occurs as a consequence of the immersion.

Which statement is correct?
A The balance reading will be further reduced if the cube is lowered further into the water.
B The balance reading during immersion corresponds to the upthrust of the water on the cube.
C The forces acting on the vertical sides of the cube contribute to the change in the balance reading.
D The balance reading during immersion will be increased if the water is replaced by oil.

Answer: D

Balance reading $=W-U$
Density of oil is less than the density of water, therefore the upthrust experienced by the cube when it is immersed in oil is less than when it is immersed in water. Therefore the balance reading increases when water is replaced by oil.

7 A student pushes a box from rest along a rough floor with constant friction of 2.0 N .
The graph shows the variation of the force exerted by the student on the box with displacement.

The final speed of the box after travelling 6 m is $5.0 \mathrm{~m} \mathrm{~s}^{-1}$.
What is the mass of the box?
A
B $\quad 5.64 \mathrm{~kg}$
C $\quad 23.4 \mathrm{~kg}$
D $\quad 28.2 \mathrm{~kg}$

Answer: A
Using Work-energy theorem,
Net work done = Gain in KE
Work done by $F_{\text {net }}=K E_{f}-0$
$\frac{1}{2}(3+6)(13)-2.0(6)=\frac{1}{2} m(5.0)^{2}-0$
$m=4.68 \mathrm{~kg}$

8 The graph how the potential energy U of an object varies with displacement x .

Which of the following graphs represents the variation of force acting on the object with displacement x ?
A

Answer: C
Using $F=-d U / d x$, the graph of $F-x$ will be the negative of potential gradient.

9 The Singapore Flyer wheel is supported at two points on the bottom by motorised mounts which cause it to rotate anticlockwise with constant angular velocity.

Which of the labelled arrows shows the direction of the force exerted by the motorised mount on the wheel just as it starts to turn?
Ans: B
There is normal contact force providing centripetal force for circular motion (indicated by C), plus tangential force (for wheel to start to move from rest) in anticlockwise direction (indicated by A). Thus, resultant force is indicated by B.

10 Two planets of mass m_{1} and m_{2} perform circular motion about their common centre of mass O with the same angular velocity. If the mean separation between the centres of the masses is d, what is the distance from the centre of mass m_{1} to the centre of mass of the system, r?

A

$$
\frac{m_{1}}{m_{2}} d
$$

B

$$
\frac{m_{2}}{m_{1}} d
$$

C

$$
\frac{m_{1}}{m_{1}+m_{2}} d
$$

D

$$
\frac{m_{2}}{m_{1}+m_{2}} d
$$

	Ans: D
Both masses should move in circular motion with the same angular velocity.	
For $m_{1}, \frac{\sigma_{m_{2}, m_{\mathrm{N}}}^{d^{2}}-m_{1} r \cdot \alpha^{2}----(1)}{}$	
For $m_{2}, \frac{\sigma m_{2} m_{2}}{a^{2}}=m_{2}(d-r) \omega^{2}----(2)$	
Solving (1) and (2), $r=\frac{m_{4}}{m_{4}+m_{2}} d$	

11 The escape speed of an oxygen molecule at the Earth's surface is $1.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$. What is the escape speed at a height of $0.2 R$ above the Earth's surface, where R is the radius of the Earth?

A $0.5 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
B $1.0 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
C $1.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
D $1.2 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
Ans: B
By conservation of energy,
Total initial energy = Total final energy
$K E_{i}+P E_{i}=0+0$
$1 / 2 m v_{i}{ }^{2}+(-G M m / R)=0$
$\frac{1}{2} m v_{i R}^{2}+\left(-\frac{G M m}{R}\right)=0+0$
$v_{i R}=\sqrt{\frac{2 G M}{R}}$
$\frac{v_{i 0.2 R}}{v_{i R}}=\frac{\sqrt{\frac{2 G M}{(1+0.2) R}}}{\sqrt{\frac{2 G M}{R}}}$
$v_{i 0.2 R}=\sqrt{\frac{1}{1.2}}\left(1.1 \times 10^{4}\right)=1.0 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
122.0 kg of solid X and 1.0 kg of solid Y are separately heated by two heaters of the same power. The power output of the heaters is the same throughout the whole experiment. The following graphs show the variation of the temperatures of X and Y with time.
$\theta /{ }^{\circ} \mathrm{C}$

What is the ratio of the specific heat capacity of solid X to solid Y ?
A $1: 3$
B 1:6
C $2: 3$
D $\quad 3: 2$

Ans: B
Since power is the same,
$m_{x} c_{x} \Delta \theta_{x} / t_{x}=m_{y} c_{y} \Delta \theta_{y} / t_{y}$
$2 c_{x}(30) / 5=1 c_{y}(20) / 10$
Therefore, $c_{x} / c_{y}=1: 6$

13 The volume of Bulb X is twice that of Bulb Y . They are filled with the same ideal gas and are connected by a narrow tube, as shown. A steady state is established with Bulb X held at 300 K and Bulb Y at 600 K . If there are n moles of gas in Bulb X , how many moles of gas are there in Bulb Y ?

A $1 / 4 n$
B $\quad 1 / 2 n$
C n
D $\quad 2 n$

Ans: A

$\mathrm{PV}=\mathrm{nRT}$
Since gases are connected, $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{Y}}$
Therefore, $\frac{V X}{V Y}=\frac{W_{2} T X}{N Y T Y}$

$$
\begin{gathered}
\text { \# }=\frac{n(300)}{n_{Y}(600)} \\
n_{Y}=1 / 4 n
\end{gathered}
$$

14 A certain simple pendulum swings with a period of 1.0 s . The bob of such a pendulum is given a small displacement and released at $t=0$. Which diagram correctly shows the bob's kinetic energy E_{K} and its potential energy E_{P} varies with time?

Ans: B
Eqns of the 2 graphs are given by :

$$
\begin{aligned}
E_{K} & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} m \omega^{2} x_{0}^{2} \cos ^{2} \omega t \\
E_{P} & =\frac{1}{2} m \omega^{2} x^{2} \\
& =\frac{1}{2} m \omega^{2} x_{0}^{2} \sin ^{2} \omega t
\end{aligned}
$$

15 Two objects P and Q are given the same initial displacement and then released. The variation of their displacements with time t are as shown in the given graphs. The two objects are then driven by sinusoidal driving forces of the same constant amplitude and of variable frequency f. Which of the following graphs correctly shows how the amplitudes A of P and Q varies with f ?

A

C

B
A

D

Ans: C

Amplitude-frequency graph should increase to a peak at the natural frequency and decrease thereafter. P and Q appears to have similar natural frequencies. P is lightly damped while Q has greater degree of damping. Therefore, amplitudes of P and Q will peak at similar frequencies with peak for Q lower and occurring at a slightly lower frequency.

16 An unpolarised wave passes through polariser O such that the emerging wave is planepolarized with an intensity of $2.0 \mathrm{~W} \mathrm{~m}^{-2}$. A second polariser P is placed further such that the plane-polarised wave is incident normally on it. Polariser P is rotated clockwise by an angle of 60°.

What is the intensity of the wave after passing through polariser P ?
A $\quad 0.25 \mathrm{~W} \mathrm{~m}^{-2}$
B $\quad 0.5 \mathrm{Wm}^{-2}$
C $\quad 1.0 \mathrm{~W} \mathrm{~m}^{-2}$
D $\quad 2.0 \mathrm{~W} \mathrm{~m}^{-2}$

Ans: B
Using Malus' Law, $\mathrm{I}_{\mathrm{p}}=\mathrm{I}_{0} \cos ^{2} \theta$

$$
=2.0\left(\cos ^{2} 60^{\circ}\right)=0.5 \mathrm{~W} \mathrm{~m}^{-2}
$$

17 A diffraction grating is used to measure the wavelength of monochromatic light as shown below.

The spacing of the slits in the grating is $1.00 \times 10^{-6} \mathrm{~m}$. The angle between the first order diffraction maximas is 70.0°.

What is the wavelength of the light?
A 287 nm
B 470 nm
C $\quad 574 \mathrm{~nm}$
D 940 nm

Answer: C
Using, $\mathrm{d} \sin \theta=\mathrm{n} \lambda$
$\lambda=(d \sin \theta) / n$
For the question, $n=1, \theta=70 / 2=35^{\circ}, d=10^{-6} \mathrm{~m}$,
$\lambda=\left(10^{-6}\right)\left(\sin 35^{\circ}\right) /(1)$
$=574 \mathrm{~nm}$

18 A stationary wave is formed in an open tube as represented in the diagram.

How many antinodes are formed by a stationary wave of twice the frequency?
A 2
B 4
C 5
D $\quad 6$

Ans: C
By drawing the stationary waves that has twice the frequency of f_{1}, it can be counted that there are 5 antinodes.

$$
2 f_{1}
$$

19 The diagram shows four point charges arranged in the corners of a square. What are the values of the electric field strength E and the electric potential V at a point X in the middle of the square?

20 An electron has a de Broglie wavelength of $5.6 \times 10^{-11} \mathrm{~m}$. It enters an electric field with strength of $2.3 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$ as shown.

How long will it take for the electron to stop after it enters the electric field?
A $5.0 \times 10^{-28} \mathrm{~s}$
B $2.0 \times 10^{-15} \mathrm{~s}$
C $3.2 \times 10^{-9} \mathrm{~s}$
D $4.2 \times 10^{-2} \mathrm{~s}$

Ans: C
$\lambda=\mathrm{h} / \mathrm{p}=\mathrm{h} / \mathrm{mv}$
Therefore, $\mathrm{v}=\mathrm{h} / \mathrm{m} \lambda$
$\mathrm{F}=\mathrm{qE}=\mathrm{ma}$
$\mathrm{a}=\mathrm{qE} / \mathrm{m}$
Using $v=u+$ at where $v=0$, and $u=h / m \lambda$ and $a=-q E / m$
$0=\mathrm{h} / \mathrm{m} \lambda-(\mathrm{qE} / \mathrm{m}) \mathrm{t}$
Therefore, $\mathrm{t}=\mathrm{h} / \lambda \mathrm{qE}=6.63 \times 10^{-34} /\left(5.6 \times 10^{-11} \times 1.6 \times 10^{-19} \times 2.3 \times 10^{4}\right)$

$$
=3.2 \times 10^{-9} \mathrm{~s}
$$

21 The $I-V$ characteristics of two electrical components P and Q are shown below.

Which statement is correct?
A P is a resistor and Q is a filament lamp.
B The resistance of Q increases as the current in it increases.
C At 1.9 A the resistance of Q is approximately half that of P.
D At 0.5 A the power dissipated in Q is double that in P .
Ans: D
A. Q is a thermistor.
B. Resistance of Q decreases as current in it decreases.
C. At 1.9 A, the resistance
D. $\mathrm{P}=\mathrm{IV}$. When the curren

22 An ideal cell and four identical bulbs are connected as shown.

Bulb 3 is removed. Which of the following describes the changes in the brightness of bulbs 1 , 2 and 4?

	Bulb 1	Bulb 2	Bulb 4
A	dimmer	brighter	brighter
B	dimmer	brighter	dimmer
C	brighter	dimmer	brighter
D	dimmer	dimmer	dimmer

Ans: B

With bulb 3 in parallel to bulb 2, the potential difference across bulb 2 is a smaller fraction of the cell's e.m.f as compared to that of bulbs 1 and 4 .
With bulb 3 removed, the potential difference across bulb 2 increases while those of bulb 1 and bulb 4 decrease correspondingly. With fixed resistance, power dissipated increases as potential increases, hence bulbs 1 and 4 became dimmer and bulb 2 became brighter.

Alternatively,
Before bulb 3 was removed,
$R_{\text {total }}=R+\left(\frac{1}{R}+\frac{1}{R}\right)+R=2.5 R$
$I_{\text {total }}=\frac{\mathrm{V}}{2.5 R}=0.4 \frac{\mathrm{~V}}{R}=I_{\text {bubb } 1}=I_{\text {bubb } 4}$
$I_{\text {bulb2 } 2}=I_{\text {bubb } 3}=0.2 \frac{\mathrm{~V}}{\mathrm{R}}$
After bulb 3 was removed,
$R_{\text {total }}=R+R+R=3 R$
$I_{\text {total }}=\frac{V}{3 R}=0.33 \frac{V}{R}=I_{\text {bubb } 1}=I_{\text {bubb2 }}=I_{\text {bulb } 4}$
$\therefore I_{\text {bubl } 1}$ and $I_{\text {bulb } 4}$ decreased, $I_{\text {bubb } 2}$ increased
since brightness \propto power dissipated $=I^{2} R$

23 Each resistor has a similar resistance of 10Ω. What is the equivalent resistance of the circuit shown in the figure below between points \mathbf{P} and \mathbf{S} ?

A 10Ω
B 20Ω
C 30Ω
D $\quad 40 \Omega$

Ans: C

$R_{\text {eff }}=10+[1 / 20+1 / 20]^{-1}+10=30 \Omega$

24 Two long, parallel, straight wires X and Y carry equal currents into the plane of the page as shown. The diagram shows arrows representing the magnetic field strength B at the position of each wire and the magnetic force F on each wire.

B_{X} (field strength at Y due to X)
The current in wire Y is doubled. Which diagram best represents the magnetic field strengths and forces?

A

B

c $\overbrace{2 B_{Y}}^{\longrightarrow} 2 F$

D

Ans: D
When current in wire Y doubled, field strength at X due to $\mathrm{Y}=2 B_{\mathrm{Y}}$,
the magnetic force on X due to $Y=2 B_{Y}(\Lambda)(L)=2 F$,

(obeying Newton's $3^{\text {rd }} \mathrm{L}$

25

In the diagram above, $X Y Z$ is a small right-angled triangular metal frame moving with a constant velocity across a rectangular region PQRS with a uniform magnetic field pointing into the paper. Which of the following graphs best shows the variation of the current I induced in the frame with time t ?
A

C

B

D

Ans: C
As triangle enters into magnetic field, area increases at an increasing rate, thus induced emf increases and induced current increases until the whole triangle is inside the magnetic field. As triangle exits from the magnetic field, area decreases at an increasing rate, and induced current increases to maximum until the triangle leaves the magnetic field.

26 The primary coil of a transformer is connected to an alternating voltage supply. The secondary coil is connected across a variable resistor.

Which change will cause a decrease in the p.d. across the secondary coil?
A increasing the number of turns of the primary coil
B increasing the current in the primary coil
C increasing the cross-sectional area of the secondary coil
D increasing the resistance of the variable resistor
Ans: A
$\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}=\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}$

27 Some of the energy levels of the hydrogen atom are represented in simplified form by the given diagram which has a linear scale. The emission of blue light is associated with the transition of an electron from E_{4} to E_{2}. Which of the following transitions could be associated with the absorption of the red light?

A $\quad E_{2}$ to E_{3}
B $\quad E_{1}$ to E_{4}
C $\quad E_{3}$ to E_{2}
D $\quad \mathrm{E}_{4}$ to E_{1}

Ans: A
Absorption transition is in the direction of increasing energy.
$\Delta \mathrm{E}=\mathrm{hf}$
Since $\mathrm{f}_{\text {red }}<\mathrm{f}_{\text {blue }}$, therefore $\Delta \mathrm{E}_{\text {red }}<\Delta \mathrm{E}_{\text {blue }}$

28 The momentum of a proton is measured with an uncertainty of 1.0%. Given that it has kinetic energy of 1.00 MeV , which of the following is the minimum uncertainty in its position?
A
$1.1 \times 10^{-11} \mathrm{~m}$
B $2.9 \times 10^{-12} \mathrm{~m}$
C $1.1 \times 10^{-12} \mathrm{~m}$
D $7.0 \times 10^{-13} \mathrm{~m}$

Ans: B
$E=p^{2} / 2 m$,
$p=\sqrt{ }(2 \mathrm{mE})$
$=\sqrt{ }\left(2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-13}\right)$
$=2.312 \times 10^{-20} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Therefore uncertainty in $p=0.01 \times 2.312 \times 10^{-20}$

$$
=2.312 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
$$

$\Delta x \Delta p>h$
$\Delta x>6.63 \times 10^{-34} / 2.312 \times 10^{-22}$
$=2.87 \times 10^{-12} \mathrm{~m}$

29 In an experiment on α-particle scattering, α-particles are directed onto a gold foil, and detectors are placed at positions P, Q and R as shown in the diagram below.

What is the distribution of α-particles as recorded at P, Q and R respectively?

	Position P	Position Q	Position R
A	none	none	all
B	none	some	most
C	most	some	fewer than at position Q
D	fewer than at position Q	some	most

Answer: D

Majority of the α-particles managed to pass through the gold foil without being deflected since the atom consists of mostly empty space.

30 Which statement about alpha, beta and gamma radiation is correct?
A Alpha radiation has the greatest ionising power.
B Beta radiation has the greatest ionising power.
C Gamma radiation has the greatest ionising power.
D Alpha, beta and gamma radiation have nearly equal ionising powers.

Answer: A

Ionisation power

Alpha radiation > beta radiation > gamma radiation

NAME

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

\square

CG

\square INDEX NO. \square

Preliminary Examination
 Paper 2 Structured Questions

$11^{\text {th }}$ September 2017
2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THIS INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen on both sides of the paper.
You may use HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
The use of an approved scientific calculator is expected, where appropriate.
Answer all questions.
At the end of the examination, fasten all your work securely together.
The number of marks is given in bracket [] at the end of each question or part question.

For Examiners' Use	
Q1	$/ 8$
Q2	$/ 9$
Q3	$/ 15$
Q4	$/ 9$
Q5	$/ 20$
Q6	$/ 19$
Total marks	80

DATA AND FORMULAE

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{p} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

DATA AND FORMULAE

Formulae

uniformly accelerated motion
work done on/by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& \omega=p \Delta V \\
& p=\rho g h \\
& \phi=-\frac{G M}{r} \\
& T / K=T /{ }^{\circ} \mathrm{C}+273.15 \\
& p=\frac{1}{\mathrm{a}} \frac{\mathrm{Nm}}{V}\left(\mathrm{c}^{2}\right) \\
& E=\frac{3}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
& = \pm \omega \sqrt{x_{0}^{2}-x^{2}} \\
& I=A n q v \\
& R=R_{1}+R_{2}+\ldots \\
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{\mathbb{R}_{2}}+\cdots \\
& \omega=p \Delta V \\
& \rho=\rho g h \\
& = \pm \omega \sqrt{x_{0}^{2}-x^{2}} \\
& =A n q v \\
& =R_{1}+R_{2}+\ldots \\
& \frac{1}{R} \quad=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\
& V=\frac{Q}{4 \pi \varepsilon_{Q} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{0} I}{2 \pi d} \\
& B=\frac{\mu_{0} M I}{2 r} \\
& B=\mu_{0} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{\ln 2}{t_{\frac{1}{2}}}
\end{aligned}
$$

electric potential
alternating current/ voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

1 In order to determine the value of the gravitational acceleration g, a student throws a ball at a speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$ horizontally from a building.
(a) The student collects the following data for the ball when it reaches the ground.

Quantity	Value	Absolute Uncertainty
Vertical displacement	122.500 m	0.002 m
Horizontal displacement	75.000 m	0.002 m

(i) Show that the time taken to reach the ground is 5.0 s .

Consider the horizontal direction,
$s_{x}=u_{x} t$
$t=\frac{75.0}{15}$
[M1]
$=5.0 \mathrm{~s}$
(ii) The uncertainty of the time taken is 0.4 s .

Determine the value of g, with its associated uncertainty.
Consider the vertical direction,
$s_{y}=u_{y} t+\frac{1}{2} g t^{2}=\frac{1}{2} g t^{2}$
$g=\frac{2 s_{y}}{t^{2}}=\frac{2(122.5)}{5.0^{2}}=9.80 \mathrm{~m} \mathrm{~s}^{-2}$
$\frac{\Delta g}{g}=\frac{\Delta s_{y}}{s_{y}}+2 \frac{\Delta t}{t}=\frac{0.002}{122.5}+2\left(\frac{0.4}{5.0}\right) \quad[\mathrm{M} 1]$
$\Delta g=2 \mathrm{~m} \mathrm{~s}^{-1}$ (1 s.f.)
$g \pm \Delta g=(10 \pm 2) \mathrm{m} \mathrm{s}^{-2}$
$g=$ \qquad \pm $\mathrm{m} \mathrm{s}^{-2}[3]$
(b) In the absence of air resistance, the variation of the vertical speed v of the ball with time t is shown in Fig. 1.1.

Fig. 1.1
(i) In reality, there is air resistance. Sketch the graph of variation of vertical speed with time on Fig. 1.1, and label this graph Z.
(ii) Explain the shape of the graph Z .

As the ball falls downwards, its speed increases and therefore upward air resistance acting on it also increases. [B1]
The net force acting on the ball decreases, therefore the acceleration decreases, resulting in the gradient of graph Z being gentler than that of the original graph. [B1]

2 Truck X of mass 22000 kg and moving at a speed of $3.0 \mathrm{~m} \mathrm{~s}^{-1}$, catches up and collides with Truck Y moving at $1.0 \mathrm{~m} \mathrm{~s}^{-1}$ moving in the same direction as shown in Fig. 2.1.

Fig. 2.1
Fig. 2.2 shows how the speeds of the trucks vary with time t before, during and after the collision.

Fig. 2.2
(a) Using Fig. 2.2, show that the mass of Truck Y is 66000 kg .

Using Principle of Conservation of Linear Momentum,
Total momentum before collision = Total momentum after collision
or
$m_{x} u_{x}+m_{Y} u_{y}=m_{x v x}+m_{y V Y}$
$22000(3.00)+m_{Y}(1.00)=0+m_{Y}(2.00) \quad[M 1]$
$\mathrm{m}_{\mathrm{Y}}=66000 \mathrm{~kg}$
(b) Showing your working clearly, explain whether this collision is elastic.

Total kinetic energy before collision $=1 / 2 \times 22000 \times 3^{2}+1 / 2 \times 66000 \times 1^{2}$

$$
\begin{aligned}
& =99000+33000 \\
& =132000 \mathrm{~J}
\end{aligned}
$$

Total kinetic energy after collision $=0+1 / 2 \times 66000 \times 2^{2}=132000 \mathrm{~J}$
[M1 for both total KE before and after]
Since total kinetic energy of the system is conserved, collision is elastic. [A1]
OR
Relative speed of approach $=u_{x}-u_{y}=3-1=2 \mathrm{~m} \mathrm{~s}^{-1}$
Relative speed of separation $=v_{y}-v_{x}=2-0=2 \mathrm{~m} \mathrm{~s}^{-1}$
(c) (i) State the time at which the trucks are closest to each other.

At 1.500 s , when the relative speed is $0 \mathrm{~m} \mathrm{~s}^{-1}$.
(ii) 1. Calculate the total kinetic energy of the two trucks at the time stated in (c)(i).

```
At 1.500 s ,
Total KE \(=\frac{1}{2} m_{X} v_{X}{ }^{2}+\frac{1}{2} m_{Y} v_{Y}{ }^{2}\)
\(=\frac{1}{2}(22000)(1.5)^{2}+\frac{1}{2}(66000)(1.5)^{2} \quad\) No ecf from (c)(i)
\(=99000 \mathrm{~J} \quad[\mathrm{~A} 1]\)
```

total kinetic energy =
2. Hence, calculate the maximum elastic potential energy stored in the spring buffer during the collision.

Using Principle of Conservation of Energy from 0.100 s to 0.150 s , Gain in EPE
= Loss in KE
$=\frac{1}{2}(22000)(3.0)^{2}+\frac{1}{2}(66000)(1.0)^{2}-99000$
$=33000 \mathrm{~J} \quad[\mathrm{~A} 1]$
OR
Using Principle of Conservation of Energy from 0.150 s to 0.200 s ,
Loss in EPE
= Gain in KE
$=\frac{1}{2}(66000)(2.0)^{2}-99000$
$=33000 \mathrm{~J} \quad[\mathrm{~A} 1]$
maximum elastic potential energy stored $=$
(d) (i) Calculate the magnitude of the impulse exerted by Truck X on Truck Y.

```
Impulse
= change in momentum of Y
= 66000 x (2-1) [M1]
= 66000 N s [A1]
```

\qquad
(ii) If the duration of the collision is reduced, with initial and final speed of both trucks remain unchanged, state and explain how this affects your answer in (i).
The change in momentum of Truck Y remains the same since there is no change in the initial and final speeds of both trucks.
By Impulse-momentum Theorem, the impulse remains unchanged. [B1]

3 (a) State what is meant by coherent sources.

Coherent sources are sources that emit waves with constant phase difference. [B1] This means that the waves have the same frequency/wavelength/speed (any 2). [B1]
(b) A stereo system in a large hall has two identical speakers, S_{1} and S_{2}, placed 1.2 m apart as shown in Fig. 3.1. The amplitude of the output of each speaker is proportional to the potential difference across its terminals, which is adjusted by means of a balance control.

Fig. 3.1 (not to scale)
Initially, the speakers are emitting signals of frequency 1000 Hz which are in phase. The balance control is set such that the potential difference across the terminals of both speakers are the same.

Line AC is 15 m away from the speakers. An observer hears a loud sound of intensity $I_{\max }$ at A . As he moves along the line AC, 15 m away from the speakers, he observes that the intensity of the sound first falls to zero at point B, a distance y from A. The speed of sound in air is $330 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Determine the distance y.

$$
\begin{aligned}
& y=0.5 x \text { where } x=\frac{\lambda D}{a}[\mathrm{M} 1] \text { and } \lambda=\frac{v}{f} \text { since B is at minimum intensity. } \\
& y=\frac{\left(\frac{330}{1000}\right)(15)}{(1.2 \times 2)} \\
& y=2.1 \mathrm{~m}[\text { A1 }]
\end{aligned}
$$

(ii) By calculating the path difference of the two sound waves arriving at B , determine the next higher frequency of the speaker such that point B would also be a point of zero intensity.

Since B is a point of minimum intensity, the path difference of S_{1} and S_{2} at point B,
$S_{1} B-S_{2} B=\frac{\lambda}{2}=\frac{0.33}{2}=0.165 \mathrm{~m}[\mathrm{M} 1]$
For other wavelengths λ, point B will be at zero intensity if the path difference is $\left(n+\frac{1}{2}\right) \lambda$.
Therefore,
$\left(n+\frac{1}{2}\right) \lambda=0.165 m$ where $\mathrm{n}=1[\mathrm{M} 1]$
$\lambda=0.11 \mathrm{~m}$
Using $f=\frac{v}{\lambda}$,
$f=\frac{330}{\lambda}$
$f=3000 \mathrm{~Hz}$ [A1]
Alternatively,
For different wavelengths λ, point B will be at zero intensity if the path difference is $\left(n+\frac{1}{2}\right) \lambda$.

As frequency increases, wavelength decreases.
Hence, since path difference is unchanged [M1],

$$
\begin{aligned}
& \left(0+\frac{1}{2}\right) \lambda_{0}=\left(1+\frac{1}{2}\right) \lambda_{1}[\mathrm{M} 1] \\
& \lambda_{0}=3 \lambda_{1}
\end{aligned}
$$

Since $f=\frac{v}{\lambda}$,
$f_{1}=3 f_{0}=3000 \mathrm{~Hz}$ [A1]
(iii) With the speakers emitting the original signal frequency of 1000 Hz , the balance control is now adjusted such that the potential difference across the terminals of S_{1} is reduced while the potential difference across the terminals of S_{2} is unchanged. Suggest and explain any changes to the sound heard at B.
A sound is now heard at B (or the intensity of the sound at B is larger). [B1]
This is because there is now a difference between the amplitudes of the sounds at B, resulting in incomplete destructive interference. [B1]
(c) Monochromatic light is passed through a rectangular slit of width b of 0.20 mm . The light is observed on a screen placed 0.75 m from the slit, as shown in Fig. 3.2.

Fig. 3.2
Light passing through the slit is diffracted through an angle θ.
The variation of the intensity I of the light with the angle θ of diffraction is shown in Fig. 3.3. The maximum value of intensity is I_{0}.
The angular separations between successive minima are the same.

(i) The value of θ_{2}, the location of the second order minima, is 0.338°.

Determine the wavelength of the monochromatic light.

```
\(\sin \theta=\frac{\lambda}{b}\)
\(\lambda=b \sin \theta_{1}[\mathrm{M} 1]\)
\(=\left(0.2 \times 10^{-3}\right) \sin \left(0.338^{\circ} / 2\right)\)
    \(=590 \mathrm{~nm}\) [A1]
```

(iii) Determine the angle between two beams of light incident on the slit, each of the same wavelength as in (i), such that their diffraction patterns are just resolved. Explain your working.
[B1]: 0.169°
[B1]: For patterns to be just resolved, central maximum of one beam must lie on the first minimum of the other.
angle $=$
(iii) Sketch, on the axes of Fig. 3.3, how the intensity of the light varies with θ if the slit width is halved. Label any relevant intercepts on your sketch.
[B1]: Maximum intensity $=0.25 I_{0}$
[B1]: First order minimum occurs at 0.338°.

4 (a) Define the tesla.
If a straight conductor carrying a current of 1 ampere [B1] is placed at right angles to a uniform magnetic field of flux density 1 tesla [B1], then the force per unit length on the conductor is 1 newton per metre. [B 1]
(b) lons, all of the same element, are travelling in a vacuum with a speed of $9.6 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$. The ions are incident normally on a uniform magnetic field B of flux density 320 mT . The ions follow semicircular paths A and B before reaching a sensor, as shown in Fig. 4.1.

Fig. 4.1
The diameters of paths A and B are 6.2 cm and 12.4 cm respectively. The ions in path B each have charge $+1.6 \times 10^{-19} \mathrm{C}$.
(i) Explain why the path of the ions in the magnetic field is an arc of a circle.

The magnetic force provides the centripetal force for the ions. [B1] It is always perpendicular to the velocity of the particle (using the Fleming's Left Hand Rule), thus it changes only the direction but not the magnitude of the velocity. [B1] Since the particle's speed remains constant, the magnitude of the magnetic force will also remain the same, with the direction of the force towards a fixed centre of rotation/with the radius remaining the same, resulting in its path being the arc of a circle. [B1]
(ii) Calculate the mass of the ions in path B.

```
\(B q v=m v^{2} / r[B 1]\)
\(m=B q r / v\)
    \(=\left(320 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2}\right) /\left(9.6 \times 10^{4}\right)\)
    \(=3.31 \times 10^{-26} \mathrm{~kg}[\mathrm{~B} 1]\)
```

mass =
(iii) Explain reasons for the difference in radii of the paths A and B of the ions.

The radius of the paths depends on the mass-charge ratio of the ions, since the velocity of the ions, and the magnetic field strength is the same.
Hence, path A has a smaller radius because of the ions having the same charge but smaller mass compared to those in path B [B1].
OR
Hence, path A has a smaller radius because of the ions having the same mass but larger charge compared to those in path B [B1].
(a) (i) Define binding energy.

Binding energy is the amount of energy required to completely separate a nucleus into its constituent nucleons such that the nucleons are infinitely far apart.
\qquad
(ii) Sketch a graph in Fig. 5.1 to show the variation of the binding energy per nucleon with nucleon number. Label the value of nucleon number and binding energy per nucleon for the isotope that has the highest binding energy per nucleon.
binding energy per nucleon / MeV

Fig. 5.1 nucleon

(iii) With reference to your graph drawn in Fig. 5.1, explain how fission can be a potential source of energy.

In nuclear fission, a heavy nucleus splits to give two daughter nuclei of greater binding energy per nucleon. [B1]

Binding energy is the product of the binding energy per nucleon and the number of nucleons. Since the binding energy of the products is greater than the binding energy of the reactants, energy is released. [B1]
(iv) A typical nuclear fission reaction that involves uranium-235 is represented by the equation

$$
{ }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow \mathrm{Kr}+{ }_{56}^{141} \mathrm{Ba}+3 \mathrm{n}
$$

Data for the binding energy per nucleon for the different nuclei are given in the table below:

Nuclei	Binding energy per nucleon / MeV
235 92	7.59
Kr	8.51
${ }_{4}^{141} \mathrm{Ba}$	8.33

1. Deduce the number of protons and neutrons in the Kr nucleus.

No. of nucleons $=235+1-141-3=92$
No. of protons $=92-56=36$ [A1]
No. of neutrons $=92-36=56[A 1]$
number of protons $=$ \qquad
number of neutrons =
2. Calculate the energy released in the above reaction.

$$
\begin{align*}
\text { Energy released } & =B E_{\text {products }}-\mathrm{BE}_{\text {reactants }} \\
& =92(8.51)+141(8.33)-235(7.59) \\
& =173.8 \mathrm{MeV} \\
& \left.=173.8 \times 1.6 \times 10^{-13} \mathrm{~J} 1\right] \\
& =2.78 \times 10^{-11} \mathrm{~J} \tag{A1}
\end{align*}
$$

energy released =
(b) A stationary ${ }_{88}^{228} \mathrm{Ra}$ nucleus undergoes beta minus decay to form an actinium isotope. The actinium isotope and beta particle move as shown in Fig. 5.2.

Fig. 5.2
Explain why a neutrino must also be released in this process.

Initial momentum of the Ra nucleus is zero. According to the Principle of Conservation of Linear Momentum, a neutrino with a vertical momentum that is in opposite direction to that of the beta particle must be released in order that the final momentum of the system is zero.
(c) Scientists have worked out the age of the Moon by dating rocks brought back by the Apollo missions. They use the decay of potassium ${ }_{19}^{40} \mathrm{~K}$ to argon ${ }_{18}^{40} \mathrm{Ar}$, which is stable. The decay constant of potassium- 40 is 5.3×10^{-10} per year.
(i) Explain what is meant by the decay constant of potassium-40 being 5.3×10^{-10} per year.

The probability that a particular potassium- 40 nucleus will decay within a year is 5.3×10^{-10}.
(ii) Sketch a labelled graph on Fig. 5.3 to show how the activity of ${ }_{19}^{40} \mathrm{~K}$ changes with time if the initial activity is A_{o}. Mark on your graph the value of the half-life of ${ }_{19}^{40} \mathrm{~K}$.

Fig. 5.3

$$
\begin{aligned}
& \text { Shape }[\mathrm{B} 1] \\
& t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}=\frac{\ln 2}{5.3 \times 10^{-10}}=1.31 \times 10^{9} \text { years }[\mathrm{B} 1]
\end{aligned}
$$

(iii) In one rock sample the scientists found $0.84 \mu \mathrm{~g}$ of argon- 40 and $0.10 \mu \mathrm{~g}$ of potassium-40.

1. Calculate the activity of the potassium- 40 in the rock sample.

$$
\begin{align*}
& A=\lambda N \\
& =\frac{5.3 \times 10^{-10}}{365 \times 24 \times 60 \times 60}\left[\frac{0.1 \times 10^{-6}}{40} \times 6.02 \times 10^{23}\right] \tag{M1}\\
& =0.0253 \mathrm{~Bq} \tag{A1}
\end{align*}
$$

activity $=$
2. Calculate the age of the rock sample in years.

$$
N=N_{0} e^{-\lambda t}
$$

Since molar mass is the same for both K-40 and Ar-40,
$M=M_{0} e^{-\lambda t}$

$$
0.1=(0.1+0.84) e^{-\left(5.3 \times 10^{-10}\right) t} \quad[\mathrm{M} 1]
$$

$$
t=4.23 \times 10^{9} \text { years } \quad[\mathrm{A} 1]
$$

age of rock sample =
3. State any assumption that you have made for the calculation in 2.

All the argon-40 is formed from the decay of potassium-40. [B1]
(iv) Explain why the determination of the decay constant by measuring the mass and activity of a sample is not suitable for nuclides that have relatively large decay constants.
(The activity in radioactive decay is not a constant value, but decreases with time as the number of radioactive nuclide remaining decreases.) If the decay constant is large, then the half-life is short $\left(T_{1 / 2}=\ln 2 / \lambda\right)$. Thus over a relatively short time of measurement, the activity and mass would not remain fairly stable. [B1]

6 A capacitor is an electrical device which can store charges and energy. A simple parallel plate capacitor consists of two parallel conducting plates separated by an insulator, as shown in Fig. 6.1.

Fig. 6.1

When charged, the two plates carry opposite charges of the same magnitude. The relationship between the amount of charge stored Q, the potential difference V between the plates and the capacitance C is given by the equation

$$
Q=C V
$$

(a) Deduce the base units of C .

$$
\begin{aligned}
& {[\mathrm{Q}]=[\mathrm{CV}]} \\
& \left.\begin{array}{rl}
{[\mathrm{C}]=[\mathrm{Q}] /[\mathrm{V}]=[\mathrm{Q}] /[\mathrm{W} / \mathrm{Q}]} & =\left[\mathrm{Q}^{2}\right] /[\mathrm{W}] \\
& =\mathrm{A}^{2} \mathrm{~s}^{2} / \mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}[\mathrm{M} 1] \\
& =\mathrm{A}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{4}
\end{array}\right]
\end{aligned}
$$

(b) The capacitor is now charged. Fig. 6.2 shows the values of potential difference V and the corresponding amount of charge Q.

V/ V	Q/ $\mu \mathbf{C}$
0.0	0.0
0.4	1.9
1.3	6.1
3.0	14.3
3.3	15.5
4.2	19.7
5.1	23.5

Fig. 6.2
On Fig. 6.3,
(i) plot the missing data points from Fig. 6.2.
(ii) sketch the best fit line to show the variation of the amount of charge Q with the potential difference V between the plates.

Fig. 6.3
(iii) State the quantity represented by the:

1. gradient of the graph,
1/C or reciprocal of capacitance C
2. area under the graph.

Electrical energy stored in capacitor
(iv) Hence, show that the energy E stored in a capacitor is $1 / 2 \mathrm{CV}^{2}$.

$$
\begin{aligned}
\text { Area } & =1 / 2 Q \vee[1] \\
& =1 / 2 C V^{2}
\end{aligned}
$$

(c) The capacitor is now discharged by connecting it across a resistor of resistance R as shown in Fig. 6.4.

Fig. 6.4
Fig. 6.5 shows the variation with time t of the potential difference V across the resistor.

Fig. 6.5
(i) Using Fig. 6.3 and Fig. 6.5, determine the initial amount of charge stored.

From Fig 6.5, at $\mathrm{t}=0, \mathrm{~V}=6.00 \mathrm{~V}[\mathrm{M} 1]$
From Fig 6.3, read off best fit line. At $6.00 \mathrm{~V}, \mathrm{Q}=28.00 \mu \mathrm{C}$ [A1]
$-1 m$ overall for wrong d.p.
charge = $\mu \mathrm{C}$ [2]
(ii) Hence, calculate the capacitance C.

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{CV} \\
\mathrm{C} & =\mathrm{Q} / \mathrm{V} \\
& =28.00 \times 10^{-6} / 6.00 \quad[\mathrm{M} 1] \\
& =4.67 \times 10^{-6} \mathrm{CV}^{-1} \quad[\mathrm{~A} 1]
\end{aligned}
$$

capacitance $=$ \qquad C V^{-1} [2]
(iii) Calculate the energy lost when the capacitor has been discharged for 45 ms .

```
At 45 ms, V = 1.95 V [M1]
Energy lost = 1/2 C (Vi' - - Vt }\mp@subsup{}{}{2}
    [M1]
    = 1/2 (4.67 x 10-6) (6.00
    = 7.52 x 10-5 J [A1]
```

$-1 m$ overall for wrong d.p.

> energy lost =
(d) The graph in Fig. 6.5 can be represented by the following equation, where V_{o} is the initial potential across the resistor R.

$$
V=V_{0} e^{-t R C}
$$

State how the value of $R C$ affects the rate of discharge of the capacitor.
A greater value of $R C$ slows down the rate of discharge.
(e) Fig 6.6 shows an A.C. supply connected to resistor-capacitor (RC) circuit containing an ideal diode. Fig 6.7 shows the potential difference measured by the CRO.

Fig. 6.6

Fig. 6.7
Switch S is now closed. When the diode is in forward bias, current flows through both the resistor and the capacitor. When the diode is in reverse bias, the capacitor discharges through the resistor.
(i) Sketch on Fig. 6.7, the expected display on the CRO.
(ii) State what the RC circuit does to the wave on the CRO.

Smoothen the ripples (of a half wave rectified signal).

NAME

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

\square

CG

\square

INDEX NO.

\square

Preliminary Examination
 Paper 3 Longer Structured Questions

$15^{\text {th }}$ September 2017

Candidates answer on the Question Paper. No Additional Materials are required.

READ THIS INSTRUCTIONS FIRST

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen on both sides of the paper.
You may use HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
The use of an approved scientific calculator is expected, where appropriate.
Answer all questions in Section A, and one of the two questions in Section B.

At the end of the examination, fasten all your work securely together.
The number of marks is given in bracket [] at the end of each question or part question.

For Examiners' Use	
Q1	$/ 7$
Q2	$/ 13$
Q3	$/ 20$
Q4	$/ 20$
Q5	$/ 20$
Q6	$/ 20$
Total marks	$/ 80$

DATA AND FORMULAE

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass constant
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& =\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{p} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

DATA AND FORMULAE

Formulae

uniformly accelerated motion
work done on/by a gas
hydrostatic pressure
gravitational potential
temperature
pressure of an ideal gas
mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m.
velocity of particle in s.h.m.
electric current
resistors in series
resistors in parallel

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& \omega=p \Delta V \\
& p=\rho g h \\
& \phi=-\frac{G M}{r} \\
& T / K=T /{ }^{\circ} \mathrm{C}+273.15 \\
& p=\frac{1}{\mathrm{a}} \frac{\mathrm{Nm}}{V}\left(\mathrm{c}^{2}\right) \\
& E=\frac{3}{2} k T \\
& x=x_{0} \sin \omega t \\
& v=v_{0} \cos \omega t \\
& = \pm \omega \sqrt{x_{0}^{2}-x^{2}} \\
& I=A n q v \\
& R=R_{1}+R_{2}+\ldots \\
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{\mathbb{R}_{2}}+\cdots \\
& \omega=p \Delta V \\
& \rho=\rho g h \\
& = \pm \omega \sqrt{x_{0}^{2}-x^{2}} \\
& =A n q v \\
& =R_{1}+R_{2}+\ldots \\
& \frac{1}{R} \quad=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\
& V=\frac{Q}{4 \pi \varepsilon_{Q} r} \\
& x=x_{0} \sin \omega t \\
& B=\frac{\mu_{0} I}{2 \pi d} \\
& B=\frac{\mu_{0} M I}{2 r} \\
& B=\mu_{0} n I \\
& x=x_{0} \exp (-\lambda t) \\
& \lambda=\frac{\ln 2}{t_{\frac{1}{2}}}
\end{aligned}
$$

electric potential
alternating current/ voltage
magnetic flux density due to a long straight wire
magnetic flux density due to a flat circular coil
magnetic flux density due to a long solenoid
radioactive decay
decay constant

Section A: Answer all questions

1 A uniform rod of weight 20 N is freely hinged to a wall at P as shown in Fig. 1.1. It is held horizontal by an elastic cord made of material X of force constant $10 \mathrm{~N} \mathrm{~cm}^{-1}$, attached at Q at an angle of 15° to the rod.

Fig. 1.1
(a) Show that the extension of the elastic cord X is 3.86 cm .

Let L be the length of the rod and x be the extension of elastic cord.
Using Principle of Moments, taking moments about point X
Sum of clockwise moment = Sum of anticlockwise moment
Or

$$
\begin{array}{ll}
W(0.5 L)=\left(T \sin 15^{\circ}\right) L & {[\mathrm{~B} 1]} \\
20(0.5 L)=\left(10 x \sin 15^{\circ}\right) L & {[\mathrm{~B} 1]} \\
x=3.86 \mathrm{~cm}
\end{array}
$$

(b) Determine the magnitude of the resultant force acting at P .

> Consider vertical forces Taking upwards positive $T \sin 15^{\circ}+R_{2}+(-W)=0$ $38.6 \sin 15^{\circ}+R_{2}+(-20)=0 \quad[\mathrm{M} 1]$ $R_{2}=10.0 \mathrm{~N}$ Consider horizontal forces Taking rightward positive $R_{1}+\left(-T \cos 15^{\circ}\right)=0$ $R_{1}+\left(-38.6 \cos 15^{\circ}\right)=0$ $R_{1}=37.2 \mathrm{~N}$ $R=\sqrt{R_{1}^{2}+R_{2}^{2}}=\sqrt{10.0^{2}+37.2^{2}}=38.5 \mathrm{~N} \quad[\mathrm{~A} 1]$
(c) The elastic cord X is now replaced by two other identical elastic cords of the same unstretched length as elastic cord X . These two elastic cords are connected in parallel. The rod PQ remains horizontal.
State and explain the value of the force constant of each of the new elastic cords.
Each elastic cord experiences half of the tension as that in elastic cord X . Since the extension of each cord is the same as that of elastic cord to keep rod PQ horizontal [M1], therefore the force constant of each of the new cord is $5 \mathrm{~N} \mathrm{~cm}^{-1}$. [A1]
OR
Since the elastic cords are connected in parallel, their effective force constant is same as that of elastic cord X , and the effective force constant is the sum of the force constants of the two cords [M1]. The force constant of each of the new cord is $5 \mathrm{~N} \mathrm{~cm}^{-1}$. [A1]

2 (a) State the first law of thermodynamics, indicating the directions of all energy changes.
........ Increase in internal energy of a system is the sum of the heat supplied to (or absorbed by) the system, and work done on the system.
$\ldots \ldots$. [1 mark for $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}, 1$ mark for indicating correct direction, ie increase.... . in internal energy, supplied to and work done on]
(b) A heat pump contains a fixed mass of ideal gas undergoing a cycle of changes of pressure, volume and temperature as illustrated in Fig. 2.1.

Fig. 2.1
The increase in internal energy which takes place during three of the changes are as shown in Fig. 2.2. It is also known that no heat is supplied in the changes $A \rightarrow B$ and $\mathrm{C} \rightarrow \mathrm{D}$.
(i) Complete Fig. 2.2.

Change	Increase in internal energy / J	Heat supplied to gas / J	Work d on gas	
$A \rightarrow B$	720	0	720	
$B \rightarrow C$	-810	-810	0	
$C \rightarrow D$	-360	0	-360	
$\mathrm{D} \rightarrow \mathrm{A}$	450	450	0	
	Fig 2.2	0.5 marks for each correct answer except for Q for $A \rightarrow B$ and $C \rightarrow D$, combined 0.5 marks		[4]

(ii) Given that the temperature at C is 360 K , calculate the number of molecules, N , in the heat pump.

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{NkT} \\
& \left(12 \times 10^{5}\right)\left(0.45 \times 10^{-3}\right)=\mathrm{N}\left(1.38 \times 10^{-23}\right)(360)[\mathrm{M} 1] \\
& \mathrm{N}=1.09 \times 10^{23}[\mathrm{~A} 1]
\end{aligned}
$$

number of molecules =
(iii) Given that the total kinetic energy of the gas molecules, E_{K} is given as $E_{K}=3 / 2 \mathrm{NkT}$, using your answers in (i) and (ii), determine the temperature at D.

```
Since this is an ideal gas, }\Delta\textrm{U}=\Delta\mp@subsup{\textrm{E}}{\textrm{K}}{}\mathrm{ .
Considering the process C to D,
\DeltaU=-360, \DeltaE E = 3/2Nk\DeltaT,
Therefore, -360 = 3/2Nk\DeltaT [M1]
        =3/2 (1.09 x 10 23) (1.38 x 10-23) \DeltaT
    \DeltaT = -160K [M1]
Therefore, temp at D = 360+(-160)
        =200 K [A1].
OR
EK}\mathrm{ at C = 3/2 NkT = 3/2 (1.09 x 1023 )(1.38 x 10-23) (360) = 810 J [M1]
Ek at D = 810-360=450 J [M1]
Using EK = 3/2 NkT
450=3/2 (1.09 x 1023) (1.38 \times 10-23) TD
TD = 200 K [A1]
```

(iv) Given that the gas is Helium-4, calculate the root-mean-square speed of the Helium molecules at C .

```
1/2 m<c2> = 3/2kT
V<c}\mp@subsup{c}{}{2}\rangle=\sqrt{}{3}\textrm{kT}/\textrm{m
    = \sqrt{}{3}(1.38\times1\mp@subsup{0}{}{-23})(360)/(4\times1.66\times1\mp@subsup{0}{}{-27})[M1]
    = 1,500 m s-1 [A1]
OR
\(p V=1 / 3 \quad \mathrm{Nm}<\mathrm{c}^{2}>\)
V<c}\mp@subsup{c}{}{2}>=\sqrt{}{\prime}(3pV)/(Nm
    =\sqrt{}{}3(12\times1\mp@subsup{0}{}{5})(0.45\times1\mp@subsup{0}{}{-3})/(1.09\times1\mp@subsup{0}{}{23}))(4\times1.66\times1\mp@subsup{0}{}{-27})[M1]
    = 1,500 m s-1 [A1]
```

OR
E_{k} at $C=3 / 2 \mathrm{NkT}=3 / 2\left(1.09 \times 10^{23}\right)\left(1.38 \times 10^{-23}\right)(360)=810 \mathrm{~J}$
$\frac{1}{2} N m<c^{2}>=810$
$c_{r m s}=\sqrt{\frac{2(810)}{1.09 \times 10^{23}\left(4 \times 1.66 \times 10^{-27}\right)}} \quad[\mathrm{M} 1]$
$=1500 \mathrm{~m} \mathrm{~s}^{-1} \quad[\mathrm{~A} 1]$
OR
$\frac{1}{2} N m<c^{2}>=\frac{3}{2} n R T$
$c_{r m s}=\sqrt{\frac{3 R T}{M_{r}}}$ where M_{r} is molar mass
$=\sqrt{\frac{3(8.31)(360)}{4 \times 10^{-3}}}$
[M1]
$=1500 \mathrm{~m} \mathrm{~s}^{-1}$
[A1]

3 (a) A satellite is in a geostationary circular orbit of radius r about the Earth of mass M, and appears to remain above the same point on the Earth. The mass of the Earth may be assumed to be concentrated at its centre.
(i) State two features of a geostationary satellite of the Earth.

(ii) Show that the period T of the orbit of the satellite is given by the expression

$$
T^{2}=\frac{4 \pi^{2} x^{3}}{G M}
$$

where G is the gravitational constant. Explain your working.

```
Gravitational force provide the centripetal force [B1]
GMm/r r}=mr\mp@subsup{\omega}{}{2}[M1
and since }\omega=2\pi/\textrm{T}[\textrm{M}1
Therefore, T' }=4\mp@subsup{\pi}{}{2}\mp@subsup{r}{}{3}/\textrm{GM
```

(iii) The mass M of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$. Determine the radius of the geostationary orbit.

$$
\begin{aligned}
& \text { Using } \mathrm{T}^{2}=4 \pi^{2} \mathrm{r}^{3} / \mathrm{GM} \\
& (24 \times 3600)^{2}=4 \pi^{2} \mathrm{r}^{3} /\left(6.67 \times 10^{-11} \times 6.0 \times 10^{24}\right)[\mathrm{M} 1] \\
& \mathrm{r}=4.2 \times 10^{7} \mathrm{~m}[\mathrm{~A} 1]
\end{aligned}
$$

radius $=$ \qquad m [2]
(b) The variation of the resultant gravitational potential due to the Earth and the Moon along a line XY joining the centres of the Earth and Moon is as shown in Fig. 3.1.

(i) Given that the mass of the Moon is $7.3 \times 10^{22} \mathrm{~kg}$ and the distance between the centres of the Earth and Moon is 380000 km , show that the distance from the centre of the Earth along XY, where the net gravitational field strength is zero, is 342000 km .
(ii) Hence, sketch the corresponding net gravitational field strength due to the Earth and the Moon in Fig. 3.2.

Fig. 3.2
$\phi / \mathrm{J} \mathrm{kg}^{-1}$

$$
\begin{aligned}
& \text { Let } x \text { be the distance in } \mathrm{km} \text {. } \\
& \text { Magnitude of Gravitational field strength due to Earth = } \\
& \text { magnitude of gravitational field strength due to Moon } \\
& \mathrm{GM}_{\mathrm{E}} / \mathrm{x}^{2}=\mathrm{GM} \mathrm{M}_{\mathrm{M}} /(380,000-\mathrm{x})^{2} \\
& 6.0 \times 10^{24} / \mathrm{x}^{2}=7.3 \times 10^{22} /(380,000-\mathrm{x})^{2}[\mathrm{M} 1] \\
& \mathrm{x}=342,000 \mathrm{~km}
\end{aligned}
$$

evinur ig.

1 mark for correct shape 1 mark for marking the x intercept correctly
(c) Two point charges A and B are separated by a distance of 8.0 cm in a vacuum, as illustrated in Fig. 3.3.

Fig. 3.3
Point P is at a distance x from A along $A B$. The variation of the resultant potential due to charge A and B is as shown in Fig. 3.4.

Fig. 3.4
(i) State and explain whether the two charges are of the same sign.

(ii) Calculate the ratio of the numerical value of $\frac{\text { Charge of } A}{\text { Charge of } B}$

At $\mathrm{x}=6.50 \mathrm{~cm}, \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}=0$
Therefore,
$\left|\mathrm{Q}_{\mathrm{A}} / 4 \pi \varepsilon_{0}(6.50)\right|=\left|\mathrm{Q}_{\mathrm{B}} / 4 \pi \varepsilon_{o}(8.00-6.50)\right|[\mathrm{M} 1]$
Therefore $\left|Q_{A} / Q_{B}\right|=4.33[A 1]$
ratio =
(iii) State and explain the direction of the electric field at the point P , where $x=2.0 \mathrm{~cm}$.

(iv) Sketch the variation of the electric field strength with x in Fig. 3.5. Label where appropriate.

1 mark for correct shape 1 mark for marking where the turning point is (accept from 4.5 to 5.3 cm)

Fig. 3.5
(v) When a -2.0 nC charge is moved from $x=3.0 \mathrm{~cm}$ to 6.0 cm , calculate the change in kinetic energy of the -2.0 nC charge.

```
Change in EPE
\(=q \Delta V\)
\(=-2.0 \times 10^{-9}(-40-(-100))\) [M1]
\(=-1.2 \times 10^{-7} \mathrm{~J}\)
```

Since change in EPE is a loss, hence change in KE is a gain of $1.2 \times 10^{-7} \mathrm{~J}$ [A1].

4 (a) By reference to the photoelectric effect, explain
(i) what is meant by work function,

Minimum (photon) energy that is required to remove an electron from the surface
(ii) why, even when the incident light is monochromatic, the emitted electrons have a range of kinetic energies up to a maximum value.

$\ldots \ldots .$| KE is maximum when electrons at the surface are ejected $[B 1]$ |
| :--- |
| KE can be lower than the maximum energy because energy is |
| required to bring electron deeper in the metal to the surface or |
| electron loses energy when it makes its way to the surface $[\mathrm{B} 1]$ |$\ldots \ldots . . .$.

\qquad
\qquad
\qquad
(iii) In an experiment to investigate the photoelectric effect, a student measures the wavelength λ of the light incident on a metal surface, and the maximum kinetic energy $E_{\max }$ of $1 / \lambda$ as shown in Fig. 4.1.

Fig. 4.1

1. Without using the value of the Planck constant, determine the work function of the metal surface.

$$
\begin{aligned}
& \mathrm{hc} / \lambda=\Phi+E_{\max } \\
& 1 / \lambda=\Phi / \mathrm{hc}+E_{\max } \mathrm{hc} \\
& \text { At x-intercept, } \Phi=-E_{\max } \\
& \text { Either extend line to intersect on x-axis [M1]] } \\
& \text { Or form eqn of straight line to solve [M1] } \\
& \left.\Phi=4.0 \times 10^{-19} \mathrm{~J} \text { (allow } \pm 0.2 \times 10^{-19} \mathrm{~J}\right)[\text { [11] }
\end{aligned}
$$

2. Using points A and B, determine the Planck constant.

Gradient of line = $1 / \mathrm{hc}$ [M1]
Correct coordinates of points to half a square and correct calculation of gradient [M1]
Correct $\mathrm{h}=6.6$ to $6.9 \times 10^{-34} \mathrm{~J} \mathrm{~s}[\mathrm{~A} 1]$

Planck constant $=$
(b) Fig. 4.2 shows how x-rays are produced inside an x-ray tube. The electrons emitted at the filament are accelerated from rest using an accelerating voltage to hit a target of heavy metal at the anode and produce x-rays as a result.

Fig 4.2

A graph of relative intensity against wavelength of the emitted radiation is as shown in Fig. 4.3.

Fig. 4.3
(i) State and explain what must be done to the accelerating voltage if the minimum wavelength of the x-rays emitted is to be doubled.

\qquad
(ii) Determine the accelerating voltage used to produce the minimum wavelength as shown in Fig. 4.3.

Solution

Max energy of x-ray photons = KE gain of electron upon acceleration = EPE loss of electron [B0]

$$
\begin{aligned}
& \mathrm{hc} / \lambda_{\min }=e V_{a}[\mathrm{M} 1] \\
& V_{a}=6.63 \times 10^{-34} \times 3.0 \times 10^{8} /\left(18.0 \times 10^{-12} \times 1.6 \times 10^{-19}\right) \\
& \\
& =69.1 \mathrm{kV}[\mathrm{~A} 1]
\end{aligned}
$$

Accelerating voltage $=$
(c) Electrons, accelerated through a potential difference, are incident on a very thin carbon film, with speed v as shown in Fig. 4.4.

Fig. 4.4
The emergent electrons are incident on a fluorescent screen. A series of concentric rings is observed on the screen.
(i) State and explain what the observed rings suggest about the nature of the electrons.

(ii) The stream of electrons is now replaced by a stream of alpha particles arriving at the thin film with the same speed v. State and explain the effect, if any, on the rings observed on the screen.

```
Mass is larger, hence momentum increases
\lambda=h/p so \lambda decreases [M1]
Hence radii decrease [A1] or if wavelength is no longer comparable to
the inter-atomic spacing, there will be no diffraction and hence no
concentric rings will be observed.
Or
Mass is larger, hence kinetic energy increases [M1]
\lambda=h/\sqrt{}{(2mKE), so }\lambda\mathrm{ decreases [M1]}
Hence radii decrease [A1] or if wavelength is no longer comparable to
the inter-atomic spacing, there will be no diffraction and hence no
concentric rings will be observed.
(iii) A proton and an alpha particle are each accelerated from rest through the same potential difference. Determine the ratio
de Broglie wavelength of the proton
de Broglie wavelength of the alpha particle
```

Since proton and alpha particle are accelerated from rest through the same potential difference and the charge of the alpha particle is double that of the proton, the ratio of their kinetic energy, KE is:
$\frac{x_{p}}{\mathbb{E}_{g}}=\frac{e V}{2 d V}=1 / 2[\mathrm{M} 1]$

```

Since \(E=p^{2} / 2 m\) or \(p=\sqrt{ }(2 m K E)\) and \(\lambda \alpha 1 / p\),
Therefore, \(\lambda \propto 1 \sqrt{ }(\mathrm{~m} K E)\) [M1]
Therefore ratio \(=\sqrt{\frac{\omega_{g}}{m_{p}}} \times \sqrt{\frac{E_{g}}{E_{p}}}\)
\(=\sqrt{ } 4 \times \sqrt{ } 2\)
\(=2.83\) [A1]
Or
Gain in KE \(=\frac{y^{2}}{2_{m}}\)
Loss in EPE = qV
Since gain in \(K E=\) loss in EPE
\[
\frac{z^{2}}{2 m}=q V
\]
\[
\mathrm{p}=\sqrt{2 m q V}
\]

Since \(\lambda \propto 1 / p\) and \(V\) is constant, therefore ratio \(=\#\)
\[
\begin{aligned}
& \sqrt{\frac{m_{9} q_{9 i}}{m_{y} q_{p}}} \\
& =\sqrt{4 \times 2} \\
& =2.83
\end{aligned}
\]

\section*{Section B: Answer ONE out of TWO questions.}

5 (a) The headlights of a car are switched on. The distance along the copper connecting wires between the car battery and one of the headlights is 1.5 m .
(i) The current in the wire is 3.0 A , the cross-sectional area of the wire is \(3.0 \times 10^{-7} \mathrm{~m}^{2}\), and the number density of electrons in copper is \(8.5 \times 10^{28} \mathrm{~m}^{-3}\).
Determine the average time that an individual electron will take to drift from the battery to the headlight.
\[
\begin{equation*}
v=\frac{I}{n A e}=\frac{3}{\left(8.5 \times 10^{28}\right)\left(3 \times 10^{-7}\right)\left(1.6 \times 10^{-19}\right)}=7.3529 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1} \tag{M1}
\end{equation*}
\]

Therefore time taken,
\[
t=\frac{\text { distance }}{\text { speed }}=\frac{1.5}{7.3529 \times 10^{-4}}=2040 \mathrm{~s} \quad[\mathrm{~A} 1]
\]
time taken =
(ii) Using your answer in (i), comment on how the light of the headlamp comes on almost immediately when switched on.

Although the time taken for the electron to travel from the car battery to headlamp is very long (or the drift velocity is very small), ALL the electrons in the entire complete circuit have a net movement in a single direction [B1] from lower to higher potential. Thus light comes on almost instantaneously.
(b) An electric heater consists of three similar heating elements \(A, B, C\), connected as shown in Fig. 5.1.


Fig. 5.1

Each heating element is rated as \(1.5 \mathrm{~kW}, 240 \mathrm{~V}\) and may be assumed to have constant resistance.
The circuit is connected to a 240 V supply.
(i) Calculate the resistance of one heating element.
\[
\begin{aligned}
& P=\frac{V^{2}}{R} \\
& R=\frac{V^{2}}{P}=\frac{240^{2}}{1500}=38.4 \Omega
\end{aligned}
\]
[M1 for formula, A1 for substitution and answer]
resistance =
(ii) The switches \(S_{1}, S_{2}\) and \(S_{3}\) may be either open or closed.
1. When \(S 1, S 2\) and \(S 3\) are all closed, state the total power dissipation of the heater.
B is bypassed and current flows through A and C. P.d. across A and C is 240 V . So A and C dissipates 1.5 kW each, and collectively 3.0 kW .
total power dissipation \(=\) \(\qquad\) kW [1]
2. When \(S 1\) is closed, \(S 2\) is open, and \(S 3\) is open, determine the total power dissipation of the heater.

Current flows through \(A\) and \(B\), but not C. P.d. across \(A\) and \(B\) is 120 V each. Since \(P=V^{2} / R\), power is proportional to \(V^{2}\) (for constant \(R\) ).
\(\frac{P_{120}}{P_{240}}=\frac{V_{120}^{2}}{V_{240}^{2}}\)
\(\Rightarrow P_{120}=P_{240} \frac{V_{120}^{2}}{V_{240}^{2}}=1.5 \frac{120^{2}}{240^{2}}=0.375 \mathrm{~kW} \quad[\mathrm{M} 1]\)
\(\Rightarrow P_{\text {total }}=0.375+0.375=0.750 \mathrm{~kW}\) [A1]
3. Hence, determine the total power dissipation of the heater when S 1 is closed, S 2 is open, and S 3 is closed.

Current flows through A, B and C. P.d. across A and B is 120 V each, and as found in part (2) previously the power dissipated in \(A\) and \(B\) collectively is 0.75 kW .
P.d. across C is 240 V , so power dissipated in C is 1.5 kW .

Thus, all together, the total power dissipated in A, B and C
\(=0.75+1.5\) [M1]
\(=2.25 \mathrm{~kW}\) [A1]
total power dissipation =
(c) A circuit used to measure the power transfer from a battery is shown in Fig. 5.2. The battery has an electromotive force (e.m.f.) \(E\) and an internal resistance \(r\). The power is transferred to a variable resistor of resistance \(R\), when the potential difference (p.d.) across it is \(V\), and the current through it is \(I\).


Fig. 5.2
(i) By reference to the circuit shown in Fig. 5.2, distinguish between the definitions of e.m.f. and p.d.

The electromotive force of a source is the electrical energy converted from other forms of energy per unit charge delivered round a complete circuit. [B1]

The potential difference between two points in a circuit is the amount of energy converted from electrical to other forms of energy per unit charge passing from one point to the other. [B1]
-1m if no "per unit charge"
(ii) The variation with current \(I\) of the p.d. \(V\) across \(R\) is shown in Fig. 5.3.


Fig. 5.3
Use Fig. 5.3 to determine
1. the e.m.f. \(E\),
\[
\begin{aligned}
& E=I R+I r \\
& I R=E-I r \quad \text { (where gradient is }-r \text { and } y \text {-intercept } E) \\
& V=-r I+E \quad \\
& E=5.8 \mathrm{~V} \quad[\mathrm{~B} 1] \quad(-1 m \text { overall if not in } 1 \text { d.p.) }
\end{aligned}
\]
2. the internal resistance \(r\).
```

Evidence of gradient calculation or calculation with values from graph
e.g. $4.0=-r(1.00)+5.8[\mathrm{M} 1]$
$r=1.8 \Omega \quad$ [A1]
OR
$r=-$ gradient $=|(5 . \underline{8}-2.2) /(0.00-2.00)|[M 1]$
$=1.8 \Omega$ [A1]
(-1m overall if V not in 1 d.p. or I not in 2 d.p.)

```
(iii) 1. Using data from Fig. 5.3, show that the power transferred to \(R\) for a current of 1.6 A is 4.64 W .
```

P=VI
= 2.9 x 1.6 [M1]
=4.64 W [A1]

```
2. Use your answers from (ii)1 and (iii)1 to calculate the efficiency of the battery for a current of 1.6 A.
```

power from battery = 1.6 x 5.8=9.28 W [M1]
efficiency =(4.64 / 9.28) x 100=50% [A1]

```
efficiency \(=\)
(iv) The variable resistor \(R\) in Fig. 5.2 is replaced by a few identical lamps connected in parallel. A student claims that as the number of lamps connected in parallel is increased, the lamps become dimmer. Comment on the student's claim.
With more lamps connected in parallel, the effective resistance across the lamps is lower than before. [M0]

Hence, the ratio of this effective resistance to the internal resistance falls, resulting in a smaller potential difference across the lamps. [M1]

The power dissipated by them will be lower (assuming the individual resistances of the lights remain the same). Thus, they become less bright. [A1]
So, the student's claim is valid. [A0]

6 (a) A composite block of mass 10 kg , made of woods of different densities \(\rho_{1}\) and \(\rho_{2}\), floats in still water of density \(\rho_{\mathrm{w}}\), as shown in Fig. 6.1. Each portion of wood is of height \(x\) and of a base with cross-sectional area \(A\).


Fig. 6.1
(i) The block is pushed down by a distance \(l\) into the water without totally submerging it, and is then released.
It can be shown that the acceleration a of the block is given by
\[
a=-\frac{\rho_{w} g}{\left(\rho_{1}+\rho_{2}\right) x} l
\]

Explain why the expression leads to the conclusion that the block bobs up and down in simple harmonic motion.

The negative sign shows that the acceleration (upwards) is in the opposite direction to the displacement of the block (downwards) [B1]
Since the three densities, \(x\) and \(g\) are constant, it can be seen that the acceleration is directly proportional to the displacement. [B1]
Therefore, the block moves in simple harmonic motion.
(ii) The depth \(h\) of the block is measured from below the water surface to the base of the block as shown in Fig. 6.2.

rater surface
vater


Fig. 6.2
Fig. 6.3 shows the variation with time \(t\) of the depth \(h\) of the base of the block below the surface.


Fig. 6.3
1. Determine the amplitude of the oscillation of the block.

From the graph, maximum displacement \(=23.00 \mathrm{~cm}\) minimum displacement \(=11.00 \mathrm{~cm}\)
amplitude \(=0.5(23.00-11.00)\)
\[
=6.00 \mathrm{~cm}=0.0600 \mathrm{~m}[\mathrm{~A} 1]
\]
2. Determine the angular frequency of the oscillation.

From graph,
\(\mathrm{T}=2.000 \mathrm{~s}\) [M1]
\(\omega=\frac{2 \pi}{T}=\frac{2 \pi}{2.000}=3.14 \mathrm{rads}^{-1}[\mathrm{~A} 1]\)
angular frequency \(=\) rad s \({ }^{-1}\) [2]
3. Hence, show that the energy of the oscillation is 0.177 J .
\[
\left.\begin{array}{rl}
\text { Energy of Oscillation } & =\text { Maximum KE } \\
& =\frac{1}{2} m \omega^{2} x_{0}^{2}=\frac{1}{2}(10)(3.14)^{2}(0.06)^{2}=0.177 J
\end{array}[\mathrm{~B} 1]\right]
\]
(b) (i) State Faraday's law of electromagnetic induction.

The magnitude of the induced e.m.f. in a coil [B1] is directly proportional to the rate of change of the magnetic flux linking the coil / rate of cutting of magnetic flux [B1].
(ii) A coil with 800 turns is placed in a uniform horizontal magnetic field of flux density \(5.0 \times 10^{-2} \mathrm{~T}\). The area of the coil perpendicular to the field is \(2.5 \times 10^{-2} \mathrm{~m}^{2}\), as shown in Fig. 6.4.


Fig. 6.4
1. Explain why an e.m.f. is induced in the coil.

The angle between the magnetic field and the plane of the coil (or the magnetic flux density perpendicular to the area of the coil, or the area of the coil perpendicular to the magnetic flux density) changes, OR the coil cuts the magnetic field lines. [B1]
Hence, there is a change in the magnetic flux linking the coil, causing an emf to be induced by Faraday's Law [B1].
2. Determine the magnetic flux linkage of the coil.
\[
\Phi=\text { NBA }[B 1]=800 \times 5.0 \times 10^{-2} \times 2.5 \times 10^{-2}=1.0 \mathrm{~Wb}[B 1]
\]
magnetic flux linkage \(=\)
(c) The coil in (b) is rotated around the axis shown in Fig. 6.4. The flux linkage \(\Phi\) of the coil varies with time \(t\) as shown in Fig. 6.5.
\(\Phi / \mathrm{Wb}\)


Fig. 6.5
(i) Derive the equation for the induced e.m.f. \(E\) of the coil, where \(N\) is the number of turns in the coil, \(B\) is the magnetic flux density, \(A\) is the area of coil, and \(\omega\) is the angular frequency of the change in magnetic flux linkage. [2]

> E.m.f. is given by
> \(E=-\frac{d \Phi}{d t}\)
> \(E=-\frac{d}{d t}(N B A \cos \omega t)[\mathrm{M} 1\) for expression for MFL, A1 for differentiation \(]\)
> \(E=N B A \omega \sin \omega t\)
(ii) Sketch on Fig. 6.6 the variation with time of the e.m.f. across XY. Label the maximum value of the e.m.f.


Fig. 6.6

\section*{[B1] for sine wave with same period}
[B1] for labelling max e.m.f. as 6280 V (BOD wrong scale).
(d) A resistor of resistance \(5000 \Omega\) is now connected across XY.
(i) Determine the mean power dissipated in the resistor.

Mean power \(=\frac{\left(\frac{V_{o}}{\sqrt{2}}\right)^{2}}{R}=\frac{\left(\frac{6280}{\sqrt{2}}\right)^{2}}{5000}=3.94 \mathrm{~kW}[\mathrm{~B} 1]\) for formula and substitution. [B1] for answer
mean power =
(ii) Use energy conservation to explain why the oscillations of the coil are damped.

Induced current flowing through resistor produces heating. [B1] Thermal energy results in loss of mechanical/kinetic energy of oscillations. [B1]
\(\qquad\)

\section*{END OF PAPER}

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

NAME \(\square\)

\section*{CG}
\(\square\)
INDEX NO.
\(\square\)

\section*{Preliminary Examination \\ Paper 4 Practical}

\section*{Candidates to answer all questions in the Question Booklet.}

\section*{READ THESE INSTRUCTIONS FIRST}

Write your name, civics group and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your answers in the spaces provided on the question paper. The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or do not use appropriate units.

Give details of the practical shift and laboratory in the boxes provided.
\begin{tabular}{|c|}
\hline Shift \\
\hline \\
\hline Laboratory \\
\hline \\
\hline
\end{tabular}

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ For Examiner's Use } \\
\hline \(\mathbf{1}\) & \(/ 14\) \\
\hline \(\mathbf{2}\) & \(/ 9\) \\
\hline \(\mathbf{3}\) & \(/ 20\) \\
\hline \(\mathbf{4}\) & \(/ 12\) \\
\hline Total & \(/ 55\) \\
\hline
\end{tabular}

1 This investigation considers the angles formed by the threads in a pulley system when it is in equilibrium.
(a) In this set-up, there are two threads - a long thread \(A B\) and a short thread \(C D\), as shown in Fig.1.1. Two pulleys \(P\) and \(Q\) are identical.

Tie end A to the 100 g mass.
Pass the thread \(A B\) through pulleys \(P\) and \(Q\).

Tie end \(B\) to the 50 g mass.


Fig.1.1
(b) Tie thread CD as shown in Fig.1.2. Thread CD must be kept horizontal throughout the whole experiment.


Fig.1.2
(c) Measure the angles \(\alpha\) and \(\beta\).

Value of \(\alpha\) and \(\beta\) to the correct precision with unit Unit: \({ }^{\circ}\) (zero d.p.)
\[
\alpha=.
\]
\(\qquad\)
\(\alpha<\beta\)
\(\alpha\) and \(\beta\) are less than \(90^{\circ}\)
\(\beta=\)
(d) Estimate the percentage uncertainty in \(\alpha\).
\(\Delta \alpha=2^{\circ} \quad\left(\right.\) accept \(2^{\circ}\) to \(\left.4^{\circ}\right)\)
\(\frac{\Delta \alpha}{\alpha} \times 100 \%=\frac{2}{40} \times 100 \%=5 \%\)
\([\) Accept \(\Delta \alpha=1+1\) or \(2 \times 1\). Ecf \(\alpha\) for incorrect d.p. in (c)] n \(\alpha=\)
(e) State one significant source of error that may have affected the accuracy of the readings of angles \(\alpha\) and \(\beta\).
1. Friction at the axle of pulleys / friction between thread and pulley.
2. Difficult to ensure that \(C D\) is horizontal.
3. Difficult to measure angles \(\alpha\) and \(\beta\) due to absence of plumbline / reference line.
4. Difficult to measure the angle \(\theta\) accurately because it is difficult to hold the protractor still and in position as the hands may be unsteady / because the protractor touches the threads.
identified in (e). You may suggest the use of other apparatus or a different procedure.
1. Lubricate the (axle of) the pulley.
2. Use spirit level metre / Use any horizontal reference in the lab / Use set squares to ensure CD is perpendicular to the retort stand.
3. Set up a plumbline / Clamp a ruler perpendicular to CD with another retort stand / Use set squares (and clamp the protractor using another retort stand).
4. Clamp the protractor using a retort stand instead, to measure the \(\theta\).
[Accept diagram to illustrate the idea]
(g) It is suggested that \(\cos \alpha\) is directly proportional to \(\cos \beta\). Move the retort stand Y to the right and adjust thread CD so that it is horizontal. Obtain one more set of values of \(\alpha\) and \(\beta\) to investigate this suggestion. State and explain whether you agree with this suggestion.

Present your measurements and calculated results clearly. Plotting of graph is not required.
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(\alpha /^{\circ}\) & \(\beta_{1} /^{\circ}\) & \(\beta_{2} /^{\circ}\) & \(\cos \left(\alpha /{ }^{\circ}\right)\) & \(\cos \left(\beta /{ }^{\circ}\right)\) & \(k=\frac{\cos \left(\alpha /{ }^{\circ}\right)}{\cos \left(\beta /{ }^{\circ}\right)}\) \\
\hline 40 & 70 & 72 & 0.76 & 0.33 & 2.3 \\
\hline 55 & 73 & 74 & 0.57 & 0.28 & 2.0 \\
\hline
\end{tabular}

\section*{[Accuracy of \(\cos \alpha\) and \(\cos \beta: 1\) mark.]}
[S.f. of \(\cos \alpha\) and \(\cos \beta: 1\) mark.]
[Accuracy of constant of proportionality k: 1 mark]
[S.f. of constant of proportionality \(k\) : 1 mark]
[Calculation of \% difference in values of \(\boldsymbol{k}\) (1 or 2 s.f.): 1 mark]
[Draw conclusion based on stated criterion, e.g. not obeyed because more than \(\mathbf{2 0 \%}\) difference in values of \(k\) : 1 mark]
If \(\left|\mathrm{k}_{1}-\mathrm{k}_{2}\right|\) / smaller of \(\mathrm{k} \times 100 \%<20 \%\), then the suggestion that \(\cos \alpha\) is directly proportional to \(\cos \beta\) is valid.
(h) Let the tensions in \(\mathrm{CA}, \mathrm{CB}\) and CD be \(T_{1}, T_{2}\), and \(T_{3}\) respectively.

By considering the equilibrium of forces acting at point C , write two equations relating \(T_{1}, T_{2}, T_{3}, \alpha\) and \(\beta\).
By considering vertical equilibrium, taking upwards as positive,
\(T_{2} \cos \alpha-T_{1} \cos \beta=0\)
\(T_{2} \cos \alpha=T_{1} \cos \beta\)
By considering horizontal equilibrium, taking rightwards as positive,
\(T_{3}-\left(T_{2} \sin \alpha+T_{1} \sin \beta\right)=0\)
\(T_{3}=T_{2} \sin \alpha+T_{1} \sin \beta \quad[\mathrm{~B} 1]\)
(i) A student suggests that when there is an increase in the ratio of the mass hung at end A to the mass hung at end B of thread AB , the ratio of \(\cos \alpha\) to \(\cos \beta\) would increase. Suggest how you would verify this.

\section*{Keep CD horizontal. [B1]}

Describe appropriate method to increase the ratio of mass at \(A\) to mass at \(B\) (e.g. increase the mass at end \(A\) while keeping the mass at end \(B\) the same)
Determine the ratio of \(\frac{\cos \alpha}{\cos \beta}\). If the ratio of \(\cos \alpha\) to \(\cos \beta\) increases when the mass ratio increases, then the statement is true. [B1]

2 In this experiment, you will measure the potential difference across resistor \(R_{2}\) as the resistance of the circuit is varied.
(a) The Digital Multimeter (DMM) is used as a voltmeter.

Ensure that the black lead of the Digital Multimeter (DMM) is connected to the "COM" jack input, while the red lead is connected to the "V / \(\Omega\) / mA" jack input.

Set the dial on the DMM to "20 V" mark in the "V" range.
(b) Set up the circuit as shown in Fig. 2.1. Connect one \(R_{1}\) to the circuit and close the switch.


Fig. 2.1
(c) Record the potential difference across \(R_{2}, V\) using the voltmeter.

(d) Change \(n\), the number of resistor \(R_{1}\) connected in parallel. Obtain three further sets of values for \(n\) and the corresponding values of \(V\).
\begin{tabular}{|c|c|c|}
\hline\(n\) & \(V_{1} / V\) & \(V_{2} / V\) \\
\hline 1 & 1.77 & 1.77 \\
\hline 2 & 1.94 & 1.94 \\
\hline 3 & 2.01 & 2.01 \\
\hline 4 & 2.04 & 2.04 \\
\hline
\end{tabular}

\section*{[Evidence of repeated readings: 1 mark]}

Repeated measurements for \(V_{1}\) and \(V_{2}\) for each value of \(n\).
[Headings: 1 mark]
Each column heading must contain a quantity and a unit. Ignore units in the body of the table.
[Raw data: 1 mark]
All values of \(V_{1}\) and \(V_{2}\) to the correct precision ( \(V_{1}, V_{2}\) unit: \(V, 2\) d.p).
(e) Theory suggests that \(V\) and \(n\) are related by the equation
\[
\frac{1}{V}=\frac{R_{1}}{n E R_{2}}+\frac{1}{E}
\]
where \(E\) is the e.m.f. of the power supply.
Suggest how you would determine the ratio of \(\frac{R_{1}}{R_{2}}\) without measuring the resistance of the resistors directly.

Plot a graph of \(\frac{1}{V}\) against \(\frac{1}{n}\). [B1]
The gradient of the graph represents \(\frac{R_{1}}{R_{2} E}\). Therefore \(\frac{R_{1}}{R_{2}}=\) gradient \(\times E[\mathrm{~B} 1]\) Measure E using a voltmeter. [B1]
\(\frac{1}{V}=\frac{R_{1}}{n E R_{2}}+\frac{1}{E}\)
\[
\begin{equation*}
\ldots \tag{3}
\end{equation*}
\]
\(\qquad\)
(f) In the specification of a resistor, "tolerance" refers to the percentage error in the resistance of the resistor. The tolerance of each resistor that you use in this experiment is \(\pm 5 \%\), resulting in an absolute error of \(\Delta R_{1}\) for the resistance \(R_{1}\), and \(\Delta R_{2}\) for the resistance of \(R_{2}\).

Explain how the absolute error in the effective resistance of the circuit would change when a few \(R_{1}\) are connected in series instead of being connected in parallel.

When \(R_{1}\) are connected in series, the absolute error in the effective resistance \(\Delta R_{\text {effective }}=n \Delta R_{1}+\Delta R_{2} .[\mathrm{M} 1]\)
When \(\mathrm{R}_{1}\) are connected in parallel, the absolute error in the effective resistance
\[
\Delta R_{\text {effective }}=\frac{\Delta R_{1}}{n}+\Delta R_{2} \cdot[\mathrm{M} 1]
\]

Therefore the absolute error in the effective resistance increases when the resistors are connected in series. [A1]

3 In this experiment, you will investigate how the period of oscillation \(T\) of a suspended halfmetre rule about a vertical axis through its centre, is related to its separation \(L\) from a horizontal metre rule.
(a) Suspend a half-metre rule XY symmetrically by two exactly equal lengths of threads. XY has a length of \(a\), and a width of \(b\). Fig.3.1 shows the front view and Fig. 3.2 shows the side view of the set up.


Fig.3.1


Side view
Fig. 3.2
(b) Arrange the threads at a distance \(d\) of 45 cm apart.
(c) Ensure that the threads are vertical. Adjust \(L\) to about 100 cm .
(d) Measure and record \(L\).
\(L\) measured to the correct precision with unit
\(\mathrm{cm}-1\) d.p.
\(\mathrm{m}-3\) d.p.
\(L=\)
(e) Estimate the absolute uncertainty in this value of \(L\).

Sensible value of \(L\) with correct unit
Unit: cm or m (1 s.f.)
0.2 cm or 0.002 m absolute uncertainty \(=\) \(\qquad\)
(f) Give the suspended half-metre rule XY an angular displacement about a vertical axis through its centre, and set it into small angular oscillation as shown in Fig.3.1. Fig.3.3 shows the top view of the oscillation.


Fig. 3.3
(g) Determine the period \(T\) of the oscillations.
\[
\begin{aligned}
& \mathrm{n}=20 \\
& t_{1}=25.2 \mathrm{~s} \\
& t_{2}=25.3 \mathrm{~s} \\
& T=\frac{t_{1}+t_{2}}{2 n}=\frac{25.2+25.3}{2(20)}=1.26 \mathrm{~s}
\end{aligned}
\]
\[
T=
\]

Number of oscillations \(n\) chosen such that \(n T\) is at least 10 s . Number of oscillations chosen should be stated.

Number of oscillations \(n\) chosen such that \(n T\) is at least 10 s . Number of oscillations chosen should be stated.
(h) Vary \(L\) and repeat (f) and (g) to obtain further sets of values for \(L\) ranging from 20.0 cm to 100.0 cm , and the corresponding values of \(T\).

\section*{[Evidence of repeated readings: 1 mark]}

Repeated measurements for \(t_{1}\) and \(t_{2}\) for each value of \(L\).
Number of oscillations \(n\) chosen such that \(n T\) is at least 10 s .
Number of oscillations chosen should be stated.
[Method: 2 marks]
- Award 2 marks if candidate has successfully collected 6 or more sets of data without assistance / intervention.
- Award 1 mark if candidate has successfully collected 5 sets of data without assistance / intervention.
- Award 0 mark if candidate has successfully collected 4 or fewer sets of data without assistance / intervention.
- Deduct 1 mark if candidate requires some assistance / intervention but has been able to do most of the work independently.
- Deduct 2 marks if candidate has been unable to collect data without assistance / intervention.
- Deduct 1 mark if out of range for first and last value of \(<t>\)
- Deduct 2 marks if the trend is incorrect
- Maximum deduction of 2 marks

\section*{[Headings: 1 mark]}

Layout: column headings (raw data and calculated quantities: \(L, t, T\) and \(T^{2}\).
Each column heading must contain a quantity and a unit. Ignore units in the body of the table.
Column for \(n\) (number of oscillations timed) may be used if appropriate (though no units are expected for this column).

\section*{[Raw data: 1 mark]}

All values of \(L, t_{1}\) and \(t_{2}\) to the correct precision (1 d.p.).

\section*{[Processed data - no. of d.p. / s.f: 1 mark]}

For each calculated value of \(T\) and \(T^{2}\), the number of s.f. should be the same as the number of s.f. in the raw data.
No mark if \(T^{2}\) is not present.

\section*{[Processed data - accuracy: 1 mark]}

Correctly calculated values of \(T\) and \(T^{2}\).
No mark if \(T^{2}\) is not present.

No. of oscillations \(n=20\)
\begin{tabular}{|c|c|c|c|c|}
\hline\(L / \mathrm{cm}\) & \(t_{1} / \mathrm{s}\) & \(t_{2} / \mathrm{s}\) & \(T / \mathrm{s}\) & \(T^{2} / \mathrm{s}^{2}\) \\
\hline 20.0 & 11.8 & 11.7 & 0.588 & 0.345 \\
\hline 40.0 & 16.4 & 16.2 & 0.815 & 0.664 \\
\hline 50.0 & 18.0 & 18.0 & 0.900 & 0.810 \\
\hline 60.0 & 19.7 & 19.7 & 0.985 & 0.970 \\
\hline 80.0 & 22.7 & 22.5 & 1.13 & 1.28 \\
\hline 100.0 & 25.2 & 25.3 & 1.26 & 1.59 \\
\hline
\end{tabular}
(i) It is suggested that \(T\) and \(L\) are related by the equation
\[
g=\frac{16 \pi^{2}\left(a^{2}+b^{2}\right)}{12 d^{2}} \frac{L}{T^{2}}
\]

Plot a suitable graph and hence determine the acceleration due to gravity, \(g\).
[Linearising the equation: 1 mark]
By plotting a graph of \(T^{2}\) against \(L\), a straight line graph should be obtained with gradient \(\frac{16 \pi^{2}\left(a^{2}+b^{2}\right)}{12 d^{2} g}\) and \(y\)-intercept \(=0\).
No mark if the axes are inverted.
[Graph: layout (choice of scale and labeling of axes): 1 mark]
Sensible scales must be used. Awkward scales (e.g. 3:10) are not allowed.
Scales must be chosen so that the plotted points occupy at least half the graph grid in both \(x\) and \(y\) directions.

Scales must be labeled with the quantity which is being plotted.
No mark if the axes are inverted.
[Graph: plotting of points: 1 mark]
All observations must be plotted.
Work to an accuracy of half a small square.
[Graph: trend line (ability to draw line of best fit): 1 mark]
Straight line of best fit - judge by scatter of points about the candidate's line.
There must be a fair scatter of points either side of the line.
- If the data points are close to a straight line or a curve, there should be about the same number of points on either side of the line/ curve. Furthermore, in each half of the line/curve there should be the same number of points above it as below. The best straight line or curve is drawn by visual estimation with the aid of a transparent ruler.
[Interpretation of graph - gradient : 1 mark]
Gradient - the hypotenuse of the triangle must be greater than half the length of the drawn line. Read-offs must be accurate to half a small square.
Check for \(\Delta y / \Delta x\) (i.e. do not allow \(\Delta x / \Delta y\) ).
[Drawing conclusion : 1 mark]
Value of \(g\) calculated correctly with unit.

(j) Comment on any anomalous data or results you may have obtained. Explain your answer.
There is no anomalous data as all points are fairly scattered about the best fit line. OR
There are anomalous points at ( \(Z_{,}\)) and ( \(Z_{-}\)) as they lie further away from the best fit line as compared to all the other points.
(k) State one significant source of error in this experiment.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(I) Suggest one improvement that could be made to the experiment to address the error identified in (k). You may suggest the use of other apparatus or different procedures.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|l|l|}
\hline (k) Significant source of error & \multicolumn{1}{c|}{ (I) Improvement } \\
\hline 1) \begin{tabular}{l} 
The vertical strings might shift \\
during oscillation. \\
\(\Rightarrow\) affect period \(T\)
\end{tabular} & 1) Fix the strings using adhesive tape. \\
\hline 2) \begin{tabular}{l} 
The ruler wobbles and does not \\
oscillate about the vertical axis; \\
unsteady oscillation. \\
\(\Rightarrow\) affect period \(T\)
\end{tabular} & \begin{tabular}{l} 
2) \begin{tabular}{l} 
Switch off fans to reduce draft; \\
ensure ruler is horizontal with CG of \\
ruler symmetrically between the two \\
vertical strings.
\end{tabular} \\
\hline 3) \begin{tabular}{l} 
Metre rule is not suspended \\
horizontally.
\end{tabular} \\
\(\Rightarrow\) affect \(L\) and \(T\)
\end{tabular} \\
3) \begin{tabular}{l} 
Use a spirit level meter to ensure \\
the ruler is horizontal.
\end{tabular} \\
\hline
\end{tabular}
(m)On the graph grid on page 9, sketch a second graph to represent the results if the distance between two threads \(d\) is increased. Label this graph \(Z\).

\section*{When \(d\) increases, the gradient decreases, but y-intercept remains the same. [1 mark]}

4 The history of solar energy is as old as humankind. In 1954, some scientists in the United States produced electricity from the sun. They invented photovoltaic cells, which capture the sun's energy and convert it into electricity. A photovoltaic cell is an electric cell made from two layers of different materials that can produce an electric current when light of certain frequencies shines on the cell. A solar panel is a collection of photovoltaic cells.

The frequency of the light falling on the solar panel can be varied by placing different colour filters in front of the light source as shown in Fig.4.1.


Fig.4.1
Design an experiment to investigate how the power generated by a solar panel depends on the frequency of the light falling on it.

The equipment available includes the following:

Solar panel
Colour filters
Lamp
Spectrometer with diffraction grating
Ammeter
Voltmeter

Resistors
Switch
Stopwatch
Rule
Micrometer screw gauge

You should draw a labelled diagram to show the arrangement of your apparatus and you should pay attention to
(a) the equipment you would use,
(b) the procedure to be followed,
(c) how the frequency of the light used is to be measured,
(d) how the power generated by the solar panel is to be measured,
(e) the control of variables,
(f) any precautions that would be taken to improve the accuracy, precision and safety of the experiment.

\section*{Diagram}

[Total: 12 marks]

\section*{Procedure:}
1. Set up as shown in the diagram.
2. [P1] Shine direct light through the colour filter at the solar panel. (Write this statement or draw in the diagram to illustrate this idea)
3. [C1] The lamp and filter is placed at a fixed distance measured using a ruler from the solar panel.
4. [C2] Solar panel is placed perpendicular to direction of light so that incident angle of light does not affect intensity. [C3] Ensure that the thickness of each filter is the same by measuring using micrometer screw gauge.
5. [A1] With the room lights switched off / In a dark room, switch on the power supply to the lamp.
6. [M1] The frequency \(f\) of the light through each filter is determined by using the spectrometer and diffraction grating. [P2] By taking note of the spacing \(d\) of the lines on the grating, angle \(\theta\) on the spectrometer, and the order \(n\) of the diffracted light being observed, \(f\) can be calculated using \(d \sin \theta=\frac{n c}{f}\), where \(c\) is the speed of light.
7. [P3] Connect ammeter in series with the solar panel, and a voltmeter across the solar panel (Write this statement or draw in the diagram)
8. [M2] Measure the current passing through the solar panel / using ammeter, and [M3] measure the potential difference across the solar panel \(V\) using the voltmeter.
9. [P4] Calculate the power generated by the solar panel, \(P=I V\).
10. [A3] Repeat the readings of current through the solar panel and potential difference across the lamp for the same frequency of light by switching on and then off the lamp / removing and then putting back the colour filter / switching off and on the circuit connected to the solar panel.
11. Replace the filter with another colour and repeat steps (8) to (10).
12. [A2] Switching off lamp between readings to prevent solar panel from heating to maintain constant conductivity.
13. [D1] Assume \(P=k f^{f}\), plot a graph of \(\lg P\) against \(\lg f\). [D2] If a straight line graph is obtained with gradient \(n\) and \(y\)-intercept \(\lg k\), then the hypothesis is true.

Safety precautions:
- [S1] Handle the electrical circuit with care if potential difference is high (e.g. Dry hands / wear gloves when handling the circuit) so as to prevent electrocution.
- [S2] Wear protective eyewear to avoid eye injury due to intense light / in case of breaking the filter.

\section*{Suggested Mark Scheme [PMACDS]}
[Note: For each category, always think systematically of points related to IV and DV respectively.]

\section*{Basic Procedure [max 4]}
- P1: Shine direct light through the colour filter at the solar panel.
- P2: [IV] (By taking note of the spacing \(d\) of the lines on the grating, angle \(\theta\) on the spectrometer, and the order \(n\) of the diffracted light being observed,) \(f\) can be calculated using \(d \sin \theta=\frac{n c}{f}\), where \(c\) is the speed of light.
- P3: [Processed DV] Connect ammeter in series with the solar panel, and a voltmeter across the solar panel.
- P4: [Processed DV] Calculate the power generated by the solar panel, \(P=I V\).

\section*{[Note: All formulae used for processed data should be explicitly written out.]}

\section*{Measurement [max 3]}
- M1: [IV] The frequency \(f\) of the light through each filter is determined by using the spectrometer and diffraction grating.
- M2: [DV] Measure the current passing through the solar panel / using ammeter.
- M3: [DV] Measure the potential difference across the solar panel \(V\) using the voltmeter.
[Note: All steps involved in measurement should be explicitly written out.]

\section*{Additional detail to improve Accuracy [max 2]}
- A1: [DV] With the room lights switched off / In a dark room, switch on the power supply to the lamp.
- A2: [DV] Switching off lamp between readings to prevent solar panel from heating.
- A3: [DV] Repeat the readings of current through the solar panel and potential difference across the lamp for the same frequency of light by switching on and then off the lamp / removing and then putting back the colour filter / switching off and on the circuit connected to the solar panel.
[Note: Always explain exactly how (including equipment) you would improve accuracy in measurement of IV and DV.]

\section*{Control of variables [max 2]}
- C1: The lamp and filter is placed at a fixed distance from solar panel, by measuring using a ruler / not moving the position of the lamp, filter and solar panel.
- C2: Solar panel is placed perpendicular to direction of light so that incident angle of light does not affect intensity.
- C3: Ensure that the thickness of each filter is the same by measuring using micrometer screw gauge.
[Note: Always explain exactly how (including equipment) you would keep the respective control variables constant.]

\section*{Suggested Mark Scheme [PMACDS]}

Data analysis [max 2]
- D1: Assume \(P=k f^{7}\), plot a graph of \(\lg P\) against \(\lg f\).
- D2: If a straight line graph is obtained with gradient \(n\) and \(y\)-intercept \(\lg k\), then the hypothesis is true.
[Note: Always use general equation instead of \(P=k f\).]
Safety considerations [max 2]
- S1: Handle the electrical circuit with dry hands / wear gloves, so as to prevent electrocution.
- S2: Wear protective eyewear to avoid eye injury due to intense light / in case of breaking the filter.
[Note: Focus on key safety considerations, and explain proactive actions to do with rationale.]
\(\qquad\)
\(\qquad\)```

