1 The diagrams show two methods of collecting gases.

Which row gives the properties of a gas which can be collected by both methods?

	property 1	property 2
A	insoluble in water	denser than air
В	insoluble in water	less dense than air
C	soluble in water	denser than air
D	soluble in water	less dense than air

2 A liquid boils at a temperature of 100°C.

Which other property of the liquid proves that it is pure water?

- A It does not leave a residue when boiled.
- B It freezes at 0°C.
- C It is neither acidic nor alkaline.
- D It turns white anhydrous copper(II) sulfate blue.

3 The apparatus shown below can be used in the order 1, 2 and 3 to separate a mixture of sodium chloride and calcium carbonate.

Which one of the following would be X and Y in the diagram?

	residue X	solid Y
Α	calcium carbonate	sodium chloride
В	calcium carbonate	calcium chloride
С	sodium chloride	sodium carbonate
D	sodium chloride	calcium carbonate

- 4 Which of the following cations does not give a precipitate with either aqueous ammonia or sodium hydroxide solution?
 - A Ca²⁺
 - B Zn²⁺
 - C Fe²⁺
 - D NH₄⁺

5 A white crystalline solid, X, is heated with aqueous sodium hydroxide and aluminium.

A piece of red litmus paper, held near the mouth of the test-tube, turns blue while the mixture is heated for several minutes.

Which salt cannot be X?

- A ammonium chloride
- B ammonium nitrate
- C iron(III) chloride
- D iron(III) nitrate
- 6 The diagram represents an atom of element X.

Which of the following represents the symbol of this element?

- A 7/4X
- B 7₃X
- C 3/7X
- D $\frac{4}{7}X$

7 The structure of five particles are given in the following table.

atom	number of neutrons	number of electrons	number of protons
Р	16	15	15
Q	18	16	16
R	17	15	15
S	17	18	17
-	18	18	16

Which pair of particles are isotopes?

- A Pand R
- B Q and T
- C R and S
- D S and T

8 The diagram shows the molecule of propene.

How many electrons are involved in bonding in this molecule?

- **A** 8
- **B** 9
- C 16
- D 18

9 The diagram below shows the arrangement of outer shell electrons in atoms X and Y.

What is the formula of the compound between X and Y?

- A XY₂
- B XY₃
- C X₂Y
- D X₃Y
- 10 20 cm³ of ethene, C₂H₄, was reacted with oxygen.

The equation for the reaction is shown.

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$$

All volumes are measured at r.t.p.

What is the volume of gas produced at the end of the reaction?

- A 40 cm³
- **B** 60 cm³
- C 70 cm³
- **D** 80 cm³

- 11 Which of the following statements about endothermic reactions are correct?
 - 1 Energy is released to the surroundings.
 - 2 Energy is absorbed from the surroundings.
 - 3 The temperature of the surroundings rises.
 - 4 The temperature of the surroundings falls.
 - A 1 and 3
 - **B** 2 and 3
 - C 1 and 4
 - D 2 and 4
- 12 The reaction between aqueous sodium hydroxide and hydrochloric acid is known as neutralisation.

Which graph shows the change in temperature when aqueous sodium hydroxide is added to hydrochloric acid until the alkali is present in excess?

- 13 Which of the following represents oxidation?
 - **A** $Cl_2(g) \rightarrow 2Cl^-(aq)$
 - B $CuO(s) \rightarrow Cu(s)$
 - C Fe^{2+} (aq) $\rightarrow Fe^{3+}$ (aq)
 - $D N_2(g) \to NH_3(g)$
- 14 Oxides of elements may be classified as acidic, basic, amphoteric and neutral.

Which of the following oxides shows the correct classification?

:	acidic	basic	neutral
A	carbon dioxide	copper(II) oxide	carbon monoxide
В	copper(II) oxide	carbon dioxide	nitrogen monoxide
С	carbon monoxide	copper(II) oxide	carbon dioxide
D	nitrogen monoxide	copper(II) oxide	carbon dioxide

- 15 Which of the following substances will produce a precipitate when mixed together?
 - A barium nitrate and potassium chloride
 - B calcium chloride and sodium sulfate
 - C sodium carbonate and ammonium chloride
 - D silver sulfate and nitric acid
- 16 What property of an element decreases as we move across a Period in the Periodic Table?
 - A number of electron shells
 - B metallic character
 - C proton number
 - D number of valence electrons

17	Wha Table	t property of a Group VII element decreases as we move down Group VII in the Period e?
	Α	boiling point
	В	melting point
	С	reactivity
	D	colour intensity
18	An e	element P has the following properties.
	•	n de la companya de
	Wha	at could P be?
	A	copper
	В	iron
	C	magnesium
	D	zinc
19		idium, Rb, is an element in the same group of the Periodic Table as lithium, sodium and essium.
	Whi	ch statement about rubidium is likely to be correct?
	A	It forms a sulfate, Rb ₂ SO ₄ .
	В	It forms an insoluble hydroxide.
	С	It can be extracted from its ore by reduction with carbon.
	D	It reacts slowly with water at 20°C.

20 Carbon monoxide, sulfur dioxide and carbon dioxide are gases which affect the atmosphere and the environment.

In what ways do these gases affect the environment?

	carbon monoxide	sulfur dioxide	carbon dioxide
A	acid rain	global warming	acid rain
В	global warming	depletion of the ozone layer	acid rain
С	poisonous to humans	global warming	depletion of the ozone layer
D	poisonous to humans	acid rain	global warming

END OF PAPER 1

Colours of Some Common Metal Hydroxides

calcium hydroxide	white				
copper(II) hydroxide	light blue				
iron(II) hydroxide	green				
iron(III) hydroxide	red-brown				
lead(II) hydroxide	white				
zinc hydroxide	white				

The Periodic Table of Elements

П	Т	· Alleria			******			7				Ţ			T	-Т				T	-14-11-2			T	- Alberta	- 11-4-4	मर्चा के स	٦		
	0	۲۵ :		4	2	2	15 G	2	6	₹	argon An	2	8 5	2	knypton	\$	ጀ	×e	COLLECT	131	8	٤	us de la constant de	1						
	5				Œ	LL.	BLOYER	22	<u>-</u>	ö	chorine 25.5	a a	8	ត	bromme	3	R		iodine	127	8	¥	autatine a	ı						
	5				0 0	0	Cacygon	9	6	ທ	S C C	4 6	\$ 6	Ø,	selenium	62/	22	<u>.</u>	telkurtum	128	\$	ፎ	polonium	-	116	2	wemon'um			
	>		į					z	itrogen	14	\$	Ö.	cosphorus 2.4	5 8	3.	S.	arsenic	75	જ	S S	ntimony	122	8	ã	oissmoth.	88				
	≥			-				4			alloon oc	4							_	_				4	14	Ĭ.	TOVINU.			
	_							4				4			8					_							2	4		
	=				ιΩ	0 0	icuoq	-	5	₹	akuminkun	7	5	3	gallium	70	48	£	Indium	115	81	=	thellum	204						
													3,	S	zinc	92	48	ਲ	Cardimitum	112	8	£	mercury	201	112	ວົ	copernicium	j		
													₹ (ਹੋ	addoo	8	47	\$	ailver.	90	79	₹	pod	197	111	Ş	Mumagemen			
g												-	8	Ž	nickel	50	46	Pd	pelladium	\$	78	ፚ	pletinum	195	110	ద	armstachtum m	ı		
Group												-	72	රි	Hadoo	20	45	듄	modem	<u>ន</u>	#		ridium	192	2	Z	neitherium d	į		
		-	T	,								-	8	e e	LO.	20	4	2	nuthenium	101	78	ő	minuso	190	20	£	hassium	į		
	-			ı							1	8	£	nanganese	ß	43	ည	echnetium		22	8	Thenium	186	107	65	Entro	i			
			Key	Key			Ted E			358				,	7	ڻ			42		-	-	}	-		\$	106	Sg	seaborgium	1
					Key	proton (atomic) number	atomic symbo	name .	relative atomic mass				-	ន	>	_		41		_=		┢					8	를		
-					proton (ote		relative					8	F	Utankum \	8	8	Z	tirconium	29	72	Ì	halmium	178	\$	ž	5	_		
					L				l				7	တ္တ	scandkum	45	38		-	-	ļ —				89 - 103	ectimoids	Œ	ėmos		
					4	80	Daryllium	os	12	2	magnasium	57	2				38				1	- CC		137		·	malben	1		
					3		E E		-	2	acdium II	3	ē.	×	mnissatoc	30	37	8	nubdium	82	55	చ	Carestum	133	87	ů	francium	 I		

57	La	u Certinei	139	noirds 89	Ac	ectition		
<u> </u>	රී			ļ				
69	å	-	-	91	Q	protectinium	34	
88	Ž	neodymiam	4	26	_	uranium	238	
61	E	promethium	1	83	2	mapfunitum	ı	
62	ES	samerium	150	춍	2	plutorium	ı	
83	ũ	europium	152	38	Am	americium	ı	
æ	g	gadolinium	157	96	ర్	ourtum	ı	
8	P	Marbicum	159	26	ձ	berkefum	ı	
96	۵	dysprosium	<u>සි</u>	86	5	californium	1	
29	운	holmium	165	86	ញ	einsteinium	ı	
88	ψ	erbirm	167	8	£	fermium	ı	
8	E	thullum	169	₽	Σ	mendelevium	ı	
2	¢	Attentalem	173	102	ŝ	nobellum	ı	
71	3	kitetium	175	103	ځ	IRWTenctur	ı	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Section A

Answer all the questions in the spaces provided.

			, money and department of the property of the	
1	Nan	ne the s	substances below:	
	(a)	a gree	en – yellow gas which reacts with sodium to produce a white crystalline solid,	
		********		[1]
	(b)	an ele	ment X which forms an amphoteric oxide with a chemical formula XO.	
				[1]
			[Total:	2 m]
2	Th	e pi e cl	hart illustrates the composition by volume of dry, unpolluted air.	
			gas A gas C	
	(a) Wh:	Fig. 2.1 at are the names of gases B and C?	
	,	, (i)	gas B	[1]
		(ii)	gas C	[1]
	(b	•	o gases that cause air pollution are nitrogen dioxide and carbon monoxide.	
	•	•	e the source of these pollutants.	
		(i)	name of pollutant – carbon monoxide	
			source of pollutant	
		(ii)	name of pollutant – nitrogen dioxide	

[2]

source of pollutant

The apparatus shown below is used to separate a miscible mixture of two colourless, volatile and flammable liquids X (boiling point of 55 °C) and Y (boiling point of 68 °C). Substance Y was coloured with a blue dye.

The mixture was heated in a hot water bath.

Fig. 3.1

(a)	which of the above two substances will be collected as distillate first?	
	Explain your answer.	
		[1]
(b)	When the first substance is completely collected, state the colour of the distillacollected.	ate
		[1]
(c)	Suggest a reason for placing the water inlet at the bottom of the condenser.	
		••••
		[1]
	[Total: 3	m]

4

The diagrams below (A, B, C, D, E and F) represent the particles in several substances. C В A D E He He Which diagram (A, B, C, D, E or F) best represents the following description? (a) [1] a solid element (i) [1] (ii) a liquid ionic compound [1] (iii) a gaseous molecule Comparing substances A and B, only one substance can conduct electricity. (b) Identify which substance is the electrical conductor and explain the difference in electrical conductivity. [2] Potassium oxide shares the same type of bonding as substances A and B. (c) Draw a 'dot and cross' diagram to show the arrangement of electrons in potassium oxide. Only the outer shells of electrons need to be shown.

[2]

[Total: 7 m]

5

		c sheets with nitric acid.
(a)	(i)	In order to mimic acid rain, he dissolved 12.6 g of nitric acid in water and made the volume up to 250 cm ³ .
		Calculate the concentration, in g/dm³, of this solution.
		·
		concentration = g/dm ³ [1]
	(ii)	Calculate the concentration, in mol/dm³, of this solution.
		[Relative atomic masses: A _r : H, 1; N, 14; O, 16]
		20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
<i>a</i> >	_	concentration = mol/dm ³ [1]
(p)		scribe the measurements that the student needs to make in order to determine the erage speed of reaction between zinc and nitric acid.
	••••	
		[2]
		[Total : 4 m]
		į i vai i i ii j

6	Describe how you would prepare a pure, dry sample of magnesium sulfate using dilute sulfuric acid as one reagent.
	······································
	[4]

7 Fig. 7.1 describes some of the substances that result from the chemical reactions of metal R.

(a) Identify R, S, T, U and V.

- 8 Lithium is a Group I metal. Lithium is the essential element in the making of rechargeable batteries which are present in almost all personal electronics and electric vehicles. Its production has greatly increased since the end of World War II, the largest producer being South America.
 - (a) In the table below, circle the words that would best describe the physical properties of lithium.

melting point	density	electrical conductivity	
high / low	high / low	conductor / non-conductor	

[1]

(b) Lithium, magnesium and copper metals were added to a beaker of cold water. Fig.8.1 shows the observations from the experiment.

Fig. 8.1

(i)	Identify the products formed when lithium metal reacts with cold water.	
		[1]
(ii)	With reference to the diagram, arrange the three metals in increasing reactivity.	
	least reactive most reactive	
	,	[1]
(iii)	Suggest a method for the extraction of lithium metal from lithium ore.	
		[1]

(c)	Lithium is usually recycled from lithium batteries. Lithium batteries usually contain many other useful metals like iron, aluminium and copper.				
	An old method of recycling lithium from lithium batteries is to first crush the lithium				

An old method of recycling lithium from lithium batteries is to first crush the lithium batteries into smaller pieces. An excess of concentrated sulfuric acid is then added to the crushed batteries. The lithium sulfate is then separated from the mixture.

1000 kg of crushed batteries were recycled based on the method described above. Through this method, 1.32 kg of lithium sulfate was formed.

(i) Calculate the relative formula mass of lithium sulfate.

[Relative atomic masses: Ar: H, 1; Li, 7; O, 16; S, 32]

	relative formula mass =	[1]
(ii)	Calculate the mass of lithium present in the crushed batteries.	

	mass = kg [2]
(d)	Currently, lithium recycling from batteries is not common and nearly 95 % of all lithium are mined. If lithium is continuously mined, the finite quantities of lithium ore will be depleted.
	Suggest another issue that may arise when lithium metal is not recycled but mined instead.

[Total: 8 m]

9	lodine is an important element for medical and agricultural application. Most of the iodine compounds can be found in ocean water as sodium iodide but it is difficult to extract due to the extremely low concentration. Iodine production from ocean water occurs in two main steps.
	Step 1 Ocean water is heated to increase the concentration of sodium iodide.
	Step 2 – Chlorine gas is passed through the concentrated solution of sodium iodide to produce solid iodine crystals. The solid iodine crystals are then separated from the rest of the mixture.

		, , , , , , , , , , , , , , , , , , , ,	
(a)	(i)	The equation below shows the chemical equation for the reaction in Step 2.	
		Complete the equation by filling in the missing state symbols.	
		$Cl_2() + 2Nal() \rightarrow l_2() + 2NaCl()$	[1]
	(ii)	Suggest with reasons if chlorine gas in Step 2 can be used to extract fluorine from sodium fluoride.	
			[1]
	(iii)	State a method to separate the solid iodine crystals from the rest of the mixture	۱.
			[1]
(b)	(i)	Draw a 'dot and cross' diagram to show the arrangement of electrons in a chlor	ine

molecule. Only the outer shells of electrons need to be shown.

(ii)	Explain, in terms of bonding, why Group VII elements have low boiling poin	nts.
		.
		al:7 m]

[2]

Section B

Answer any **two** questions in this section.

Write your answers in the spaces provided.

10

lror	Iron is usually produced in a blast furnace from iron ore.					
(a)		Explain, including chemical equations, how the following processes occur in a blast furnace:				
	(i)	iron is extracted from the ore,				
		[4]				
	(ii)	impurities are removed.				
		[3]				
(b)		on is usually not used directly as a pure metal. One reason is that pure iron is prone corrosion.				
	(i)	Explain why coating iron with grease prevents iron from rusting.				
		[1]				
	(ii)	Another way to prevent rusting is to combine iron with another element to form an alloy.				
		Give an example of an alloy and provide another reason why alloys are preferred to pure metals.				
		[2]				

CCM98/MPartnerInLearning/90

[Total: 10 m]

11 A student investigated the rate of reaction when dilute hydrochloric acid reacts with excess copper(II) carbonate powder.

$$2HCl + CuCO_3 \rightarrow CuCl_2 + CO_2 + H_2O$$

He used the same volume of acid each time. He measured the time taken to collect 10 cm³ of gas at room temperature and pressure. He also measured the total volume of gas at the end of the experiment at room temperature and pressure.

Table 11.1 shows his results.

Table 11.1

experiment	concentration of HCl in mol/dm³	time taken to collect 10 cm³ of gas / s	total volume of gas / cm³
1	0.5	15	150
2	1.0	6	300
3	0.5	7	150

(a) (i) Out of the above three experiments, the student carried out two experiments using acid at room temperature and one experiment using acid at a higher temperature.

Which experiment was carried out at a higher temperature?

Explain your reasoning.

(ii) Explain, in terms of collisions between reacting particles, how a higher temperature affects the rate of reaction.

.......

[2]

(b)	(i)	With reference to the data from experiment 1, calculate the number of moles of carbon dioxide produced.					
		The volun	ne of one mole of any ga	as is 24 dm³ at room tem	perature and pressure.		
			number of	f moles =	mol [1]		
	(ii)	Hence or experimen	otherwise, calculate the nt 1.	e volume of hydrochloric	acid that was added in		
٠							
			volume of hydrochlor	ic acid =	dm³ [2]		
(c) ,	The student carried out a further experiment at room temperature using the same volume of 0.5 mol/dm³ hydrochloric acid as experiments 1, 2 and 3. However, in this experiment, he used excess copper(II) carbonate granules instead of powder.						
	Complete the table to predict what results he should expect and explain how you arrived at your answers.						
	expe	riment	concentration of HC <i>l</i> in mol/dm ³	time taken to collect 10 cm³ of gas / s	total volume of gas / cm³		
		4	0.5				
	*****	••••••	***************************************		······		
	*****		***************************************	•••••	[3]		
					[Total : 10 m]		

12

This	is a	dumi	ny que	stion.									
Chi	ua C	Chu Chu	Kang Kang	Seco	ndary	Scho	ol Ci	hua C hua C	chu K Chu K	Cang S Cang S	Second Second	ary ary	School School School School
(a)	(i)	Ch.	ua Ch ua Ch	u Kang u Kana	Seco	ndary ndarv	School	ol Chi ol Chi	ia Ch ia Ch	u Kang u Kang	g Secon g Secon	idary idary	School School School School
	(ii)	Ch Ch	ua Ch ua Ch	u Kang u Kang u Kang	Seco Seco Seco	ndary ndary ndary	Scho Scho Scho	ol Chi ol Chi ol Chi	ua Ch ua Ch ua Ch	u Kan u Kan u Kan	g Secor g Secor g Secor	ndary ndary ndary	**********
(b)	Chi	ua C	chu K. Chu K.	ang Se ana Se	conda	ary So arv So	chool chool	Chua Chua	Chu Chu	Kang Kang	Secon Secon	dary dary	School School School School
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,						
		*****										•••••	
													[4]

END OF PAPER 3

[Total : 10 m]

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

1	********			_			T			7				Γ			_				Т				٦
0	N	£		10	2	20 20	18	¥	argon C	3 %	\$	knypton	æ	72	Š	XBITICAL	131	8	各	radon	1				
Z.				o,	u.	fluorine 19	17	_ö	chlorine	ر د د	à	bromine	80	53	 	iodine	127	8	₹	astatine	-	************	(1111-111		1
>				æ	0	0xygen 16	19	တ	auffur CC	3 2	ď	seferitum	7.9	25	E E	tellurium	128	\$	ይ	polonium	1	2	<u>ک</u>	Wermorlum -	4
>				_	z	nitrogen 14	15	<u>a</u>	smoddsodd	22	¥	arsenic	75	51	හි	BRITHOUN	122	8	洒	bismuth	208	-		-	
2				ဖ	ပ	carbon 12	14	Ö	silicon	3 %	1	germanium	E	8	ଊ		119	8	£	D I	707	114	Œ	Terrovium	
				2	m		13	₹	aluminium 27	77	G	i i i i i i i i i i i i i i i i i i i	2	49	Ę	Indium	115	<u>æ</u>	Ë	thallum 65.	757				
										30	3.5	i	8	48	ප	cadmium	112	8	₽	mercury	201	112	ర్	copernicium	
										ac	ð	Sopper	æ	47	Ą	eilver	108	73	₹	pos.	197	=	ξĝ	mentgenium -	
										30	ž	- 1	8	84	2	palladium	106	28	۵	platinum	195	110	å	darmetadhum 	
		. Annahir Kirin		•						22	3 S	848 848	23	46	듄	rhodium	103	Ш.	=	iridum	192	109	ž	moitnerium	
		I	hydrogen 1							ac	3 4			l	₽	nuthenlum	ر ة	92	ő	osmium	190	108	£	hessium	į
							-			25	3 €	mandanese	.K	43		-					186	107	듑	bohrium	
				number	<u>8</u>	mass				70	\$ Č	chromium	22	42	№	molybdenum	96	7.4	*	tungsten	184	106	S	seaborgium	_
			Key	1 (atomic)	omic sym	name ive atomic				200	3>	venadium	51	41	2	niobium	8	2	٦ ص	tantakum	181	105	සි	dubnium	
				protor	### ### ### ### ### ### ### ### ### ##	melan				66	1 F	Menium	8	40	Z	zirconium	91	72	Ì	Mafinium	178			Rutherfordium	_
									November 1	2	¥ 6.	Scandium Stranger	4	39	>	yttrlum	8	57 - 71	lanthanoids			89 - 103	acimonds		
=				4	Be	beryfilum 9	12	Z	magnestum	4 5	3 2			<u> </u>	·				-		-	88	&	madium	1
				6	=	ilitrium /	12	Š	milpos	3 5	2 ≥	chessium	88	37	8	nbidim	8	55	පී	Caesium	(33	87	i.	francium	l
	N	N N N N N N N N N N N N N N N N N N N	- T	1 H Hydrogen 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				II	II	II	II	II	II	I	I	II	II	II	II	III No book No book	I	I	1	1	I

La Ce Pr Nd Pm Sm Eu Gd Tb Dy	-		······································		0	62	8	\$ (S i	99	2 9	8 1	69	2 ;	۲.
cerfulm prisesodymbun (neodymbun prometh)um samantum samantum europtum gadolimbun (aranium) factum protectiolum factum protectiolum factum protectionum factum protectionum factum protectionum factum protectionum factum protectionum factum protectionum facture p	-				E	ES	园	ලි	2	á	욷	ù	٤	ζ	3
140 141 144 - 150 152 157 159 90 91 92 93 94 95 96 97 Th Pa U Np Pu Am Cm Bk thortun protection unanium respiration protection current berkellium			_=	•	promethium	samarium	europium	gadolimium	terbium	dysprosium	holmium	mnktra	thuinm	yttarbium	Litetium
90 91 92 93 94 95 96 97 Th Pa U Np Pu Am Cm Bk thortum protection unanium respiration pictorium potentium americium curium berkeilium c					1	150	152	157	159	163	165	167	169	173	175
Th Pa U Np Pu Am Cm Bk thortun protection unantum responsive putonium protection unantum pertentium protection american curium berkellum o	finoids				83	8	36	96	26	86	6	100	5	102	<u>ន</u>
thorium protectinium uranium neptunium plutonium americium curtum berkellum c					2	2	Æ	등	番	Ö	m	Ē	₹	2	تـ
	act				neptunium	plutorium	americium	Curium	berkellum	californium	einsteinium	fermium	mendelevium	nobelium	lawrenciun
231 238		ह्य -			l	1	1	ı	ı	ı	ı	1	ı	1	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Secondary 4E5N Science (Chemistry) Preliminary Examination 2020

Mark Scheme

Paper 1 (20 marks)

1	В	11	D
2	В	12	С
3	Α	13	С
4	D	12 13 14	Α
5	С	15	В
6	В	15 16	В
7	Α	17	С
8	D	18	В
9	В	18 19 20	Α
10	Α	20	D

A-5, B-7, C-4, D-4

Paper 3

Section A (45 marks)

	n A (45 marks)	
1(a)	chlorine	1
(b)	lead or zinc (reject lead(II), lead(II) oxide, zinc oxide)	1
		Total: 2
2(a)(i)	oxygen (reject chemical formula)	1
<u>(ii)</u>	nitrogen	1
(b)(i)	incomplete combustion of fuels	1
(ii)	lightning activity/internal combustion engine/overheated engines	1
		Total: 4
3(a)	X	
	Lower boiling point	1
(b)	colourless	1
(c)	ensure that the condenser is fully filled with water/effective cooling of the condenser	1
		Total: 3
4(a)(i)	C	1
(ii)	В	1
<u>(iii)</u>	<u>F</u>	1
(b)	B conducts electricity.	
	lons in A are held in fixed positions, no mobile ions. (reject mobile electrons)	1.
	lons in B are mobile and move throughout the liquid.	1
(c)		2
	1 m for each ion	
5(a)(i)	250cm ³ = 0.25dm ³ 12.6 / 0.25 = 50.4 g/dm ³	Total: 7

	<u> </u>								
(ii)	allow for e	cf from (a)(i)							
(,									
		= 1 + 14 +3(16)							
	= 63								
	50.4g/dm ³	/ 63							
	= 0.8mol/g				1				
(b)	time taken	for			1				
` ,	total volum	ne of gas to be pro	duced / total mas	<u>s</u> to be loss	1				
					Total: 4				
	4 44	ium (magnasi	um corbonate/ma	gnesium oxide to sulfuric	ANALISM AND STATE OF TAXABLE OF TAXABLE AND STATE OF TAXABLE AND STATE OF TAXABLE AND STATE O				
6	1. Add ma	ignesium/magnesii il no more can diss	um carbonate/ma; solve/until excess	/until no more bubbles are					
		r Mg/MgCO₃ but n							
	3. Filter ur	ndissolved solids	,						
	4. Heat filt	rate and leave to o	crystallise						
	5. Filter, V	Vash crystals with	cold water and dr	y between filter paper.					
		- 42 mtn 2 m 2 :	nto 2m 1nt1r	n					
	5 pts – 4 r	n, 4,3 pts – 3m, 2	p(s-z(n), p(-n))		Total: 4				
7 (a)	R Iro	n or Fe		80000000000000000000000000000000000000	1				
r (a)		drogen or H ₂	·		1				
<u> </u>	T Iron(II) sulfate or FeSO ₄								
	U barium sulfate or BaSO ₄								
	V Iron (II) hydroxide Fe(OH) ₂₊								
(b)	Any ONE				1				
		SO ₄ → FeSO ₄ + H							
		Ba(NO ₃) ₂ → BaS 2NaOH → Fe(Ol							
-		+ 20H (aq) → Fe(
		+ SO ₄ ² (aq) → BaS							
			and probability		Total: 6				
8(a)		_		electrical	1				
		melting point	density	conductivity					
		high	high	conductor					
		, iigii							
		(/ <u>low</u>)	(/ <u>low</u>)	/ non-conductor					
	İ								
	All 3 for 1	m							
					1				
(b)(i)	lithium hy	droxide and hydro	gen		<u> </u>				
(ii)	copper, m	nagnesium, lithium			1				
(iii)	electrolys	10	······································						

(c)(i)	2(7) + 32 + 4(16)	1
(6)(1)	= 110 (reject if student adds units)	
(ii)	allow ecf from (c)(i) mol(Li ₂ SO ₄) = 1320 / 110 (accept even if student did not convert) = 12 mol 1Li ₂ SO ₄ : 2Li → 12mol:24mol mass(Li) =24x7 = 168g =0.168kg	1
(d)	mining for metal ore leads to <u>clearing of forest</u> and <u>damage to habitats</u> Extraction of metal ores <u>require a lot of energy</u> that cause more fossil fuels to be burnt which leads to the release of greenhouse gases Extraction of metal ores may <u>involve the use of toxic chemicals/release harmful air pollutants</u>	1
		Total: 8
9(a)(i)	CL(n) + 2NoL(nn) + L(n) + 2NoCL(nn)	
- (,(-,	$Cl_2(\mathbf{g}) + 2Nal(\mathbf{aq}) \rightarrow l_2(\mathbf{s}) + 2NaCl(\mathbf{aq})$	1
(ii)	fluorine is more reactive than chlorine, chlorine is unable to displace fluorine	1
(ii) (iii)	fluorine is more reactive than chlorine, chlorine is unable to displace	1
(ii) (iii) (b)(i)	fluorine is more reactive than chlorine, chlorine is unable to displace fluorine filtration CI CI CI 1m- banding electron the non-banding electron	1
(ii) (iii)	fluorine is more reactive than chlorine, chlorine is unable to displace fluorine filtration	1

Section B (10 marks)

10(a)(i)	coke reacts with oxygen to form carbon dioxide. carbon dioxide reacts with more coke to form carbon monoxide.	4
	carbon dioxide reacts with more coke to form carbon monoxide.	
	$C + O_2 \rightarrow CO_2$,
	$CO_2 + C \rightarrow 2CO$	
	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	
	6pts – 4 m,	
	5,4 pts – 3m,	
	3 pts – 2m,	
	2,1 pts - 1m	

(ii)	limestone decomposes to form calcium oxide calcium oxide combines with silicon dioxide to form slag $CaCO_3 \rightarrow CaO + CO_2$ $CaO + SiO_2 \rightarrow CaSiO_3$ 4 pts $-3m$ 3, 2 pts $-2m$									
	1 pts – 1m									
(b)(i)		with water/moisture	e and air/oxygen		1					
(ii)	steel/brass/bronz		ht	!d\	1					
	stronger and har	der/appearance/low	ver melting point (re	ject corrosion)	Fotal: 10					
					1 1					
11(a)(i)	Experiment 3				'					
	Experiment 3 tak has a <u>lower cond</u>	es the <u>shortest time</u> entration than expe	e to collect 10cm³ of priment 2.	f gas although it	1					
(ii)	increase in kineti	c energy of the par	ticles		2					
***J		cy of effective collis								
	increase in rate of									
	3 points – 2 m, 2,1 points – 1 m									
	2 0 45									
(b)(i)	$150 \text{ cm}^3 = 0.15 \text{ dm}^3$									
	mol(CO ₂) = 0.15 /24 = 0.00625 mol									
	= 0.00625 mol									
(ii)	allow for ecf from	ı (b)(i)								
(,	1CO ₂ :2HCl	· /=//.t								
	0.00625mol:0.01	25mol			1					
	vol(HCI) = 0.012	5/0.5								
	=0.025dm ³				1 1					
(c)	experiment	concentration of HC/ in mol/dm³	time taken to collect 10 cm ³ of gas / s	total volume of gas / cm³	3					
	4	0.5	more than 15 (1)	150 (2)						
	(3) same number of moles/amount of hydrochloric acid used, total volume of gas remain the same.									
	(4) granule <u>smal</u> effective collision	<u>ler surface area to</u> ns, slower speed of	volume ratio, lower reaction	Trequency of						
	4 – 3 m, 3,2 – 2r	m 1 → 1m								
	7-0111, 0,2-21	: 1 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Total: 10					