Candidate Name:	Class:	Index No.:

FUHUA SECONDARY SCHOOL

Secondary Four Express
PRELIMINARY EXAMINATION 2024

4E

Fuhua Secondary School Fuhua Secondary School

CHEMISTRY 6092/01

Paper 1 Multiple Choice

Additional Material: Optical Mark Recognition (OMR)

DATE

28 August 2024

TIME

0800 - 0900

DURATION

1 hour

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

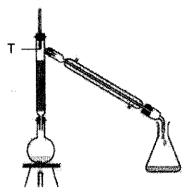
Write your name, class, index number on the OMR and this question booklet.

There are forty questions on this paper. Answer all questions. For each question, there are four possible answers A, B, C and D.

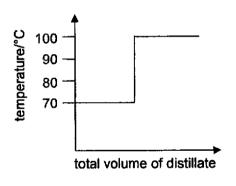
Choose the one you consider correct and record your choice in soft pencil on the separate OMR.

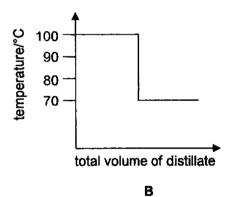
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

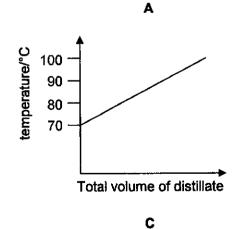
Any rough working should be done on this paper.

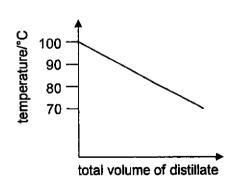

A copy of the Periodic Table is printed on page 15.

The use of an approved scientific calculator is expected, where appropriate.

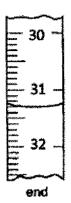

FOR EXAM	NER'S USE	PARENT'S SIGNATURE
	40	


This document consists of 15 printed pages, including this page.


- 1 Nitrogen dioxide gas is almost twice as dense as nitrogen gas. A gas jar of nitrogen dioxide was placed on top of a gas jar of nitrogen gas with the open ends together. After half an hour, which of these statements would be true?
 - A Both gases would not have mixed.
 - B The bottom gas jar contained nitrogen gas only.
 - C The top gas jar contained nitrogen dioxide gas only.
 - D Some of each gas would have moved into the other gas jar.
- 2 The diagram shows the apparatus used to separate hexane (boiling point 70°C) and water.



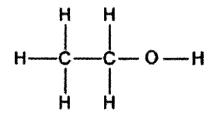
Which graph would be obtained if the temperature at point T was plotted against the total volume of distillate collected?



D

3 A student titrated 25.0 cm³ of sodium hydroxide with hydrochloric acid. The diagram shows the volume of hydrochloric acid in the burette at the start and the end of the titration.

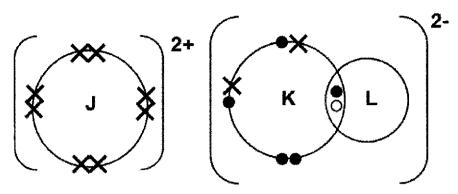
1 - 2 - 3 - start


What volume of hydrochloric acid was added from the burette?

- A 29.00 cm³
- **B** 29.60 cm³
- C 31.30 cm³
- **D** 32.70 cm³
- 4 The formulae of the ions of some elements are shown below:

P3- S2- C1- Li+ Mg2+

Which of the following statements about these ions is correct?


- A They all have more electrons than protons.
- B They all have the same number of electron shells.
- C They all have the same number of neutrons in their nuclei.
- **D** They all have the same electronic structures as noble gases.
- 5 Ethanol has the structure shown.

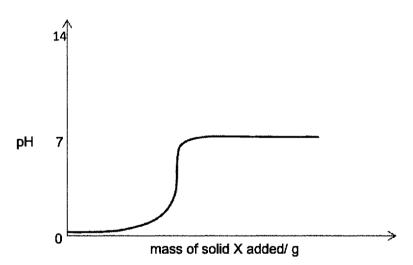
How many of the electrons in a molecule of ethanol are **not** involved in bonding?

- A 4
- **B** 6
- **C** 8
- **D** 10

J, K and L are three different elements in the Periodic Table. The 'dot and cross' diagram (showing only the valence electrons) of the compound formed between J, K and L is shown:

Which of the following statements is/are correct?

- 1 Element L is hydrogen.
- 2 Element J belongs to Group 2 of the Periodic Table.
- 3 Elements J, K and L are bonded together by ionic bonds only.
- A 1 only
- **B** 1 and 2
- C 2 and 3
- D 3 only
- 7 Elements X and Y form an ionic compound of formula X₃Y. What could the atomic numbers of X and Y be?


	Х	Υ
Α	3	1
В	8	4
B	11	7
D	13	9

- 8 Magnesium oxide has a similar structure to that of sodium chloride. Which of the following statements is true?
 - A Magnesium oxide has a lower melting point than sodium chloride.
 - B Magnesium oxide and sodium chloride can conduct electricity in the molten state only.
 - C In a lattice structure, each magnesium ion is surrounded by six oxide ions while each oxide ion is surrounded by six magnesium ions.
 - **D** When magnesium reacts with oxygen, every mole of magnesium atoms loses a mole of electrons. Likewise, every mole of oxygen molecules loses a mole of electrons.
- 9 Which of the following reactions shows the amphoteric property of zinc oxide?
 - A $2ZnO + C \rightarrow 2Zn + CO_2$
 - $B \quad ZnO + Mg \rightarrow MgO + Zn$
 - C ZnO + 2HCl → ZnCl₂ + 2H₂O
 - D ZnO + 2NaOH → Na₂ZnO₂ + H₂O

- 10 The following statements about dilute sulfuric acid are all correct.
 - 1 It reacts with copper(II) oxide, forming a blue solution.
 - 2 It turns anhydrous copper(II) sulfate from white to blue.
 - 3 A white precipitate is formed when aqueous barium nitrate is added.
 - 4 Addition of methyl orange shows that the solution has a pH value of less than 4.0.

Which two statements confirm the acidic nature of the solution?

- A 1 and 2
- **B** 1 and 4
- C 2 and 3
- D 3 and 4
- 11 A titration method can be used to prepare aqueous potassium sulfate from potassium carbonate and dilute sulfuric acid. Which of the following conclusions from this information is correct?
 - A Potassium carbonate is an acidic salt.
 - B Potassium carbonate is insoluble in water.
 - C Potassium carbonate neutralises dilute sulfuric acid.
 - Potassium carbonate reacts more vigorously than sodium carbonate with dilute sulfuric acid.
- 12 Solid X is gradually added to aqueous solution Y. The changes in pH are shown in the graph below.

What could X and Y be?

	X	Υ
A	potassium carbonate	ethanoic acid
В	potassium oxide	ethanoic acid
C	sodium oxide	hydrochloric acid
D	zinc oxide	hydrochloric acid

An aqueous solution, Z, contains one cation and two anions. Some tests were carried out on the solution to determine the possible identities of the ions present. The observations of the tests carried out are recorded as follows:

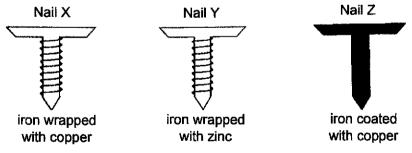
Test 1	White precipitate forms when aqueous barium nitrate is added to solution Z.
Test 2	When solution Z is heated with aqueous sodium hydroxide and aluminium, a gas that turns moist red litmus blue is evolved.
Test 3	No visible change is observed when dilute hydrochloric acid is added to solution Z.

Which ions are likely to be present in solution Z?

- A Al3+, Cl-, SO42-
- B A/3+, NO₃-, SO₄2-
- C Pb2+, NO₃, SO₄2-
- **D** Pb²⁺, C*l*⁻, NO₃
- 14 G is a white powder that turns yellow upon heating and gives off a colourless gas which is slightly soluble in water to produce a solution with pH less than 7. The residue reacts with dilute nitric acid and the aqueous solution formed white precipitate that is soluble in excess aqueous ammonia. Which of the following could be the identity of G?
 - A aluminium carbonate
 - B aluminium oxide
 - C zinc carbonate
 - D zinc oxide
- One mole of a sample of hydrated sodium sulfide contains 162 g of water of crystallisation. What is the correct formula of this compound?
 - A Na₂S.3H₂O
 - B Na₂S.5H₂O
 - C Na₂S.7H₂O
 - D Na₂S.9H₂O
- 16 When solid sodium hydrogencarbonate is heated strongly, the following reaction occurs.

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

What is the loss in mass when 33.6 g of solid sodium hydrogencarbonate is heated?


- A 10.8 g
- **B** 12.4 g
- C 21.2 g
- **D** 24.6 g
- 1.36 g of aqueous solution XCl₂ reacts with 20.0 cm³ of 0.500 mol/dm³ aqueous sodium hydroxide to form X(OH)₂. Determine the relative atomic mass of X.
 - **A** 65
 - **B** 136
 - C 201
 - D 272

- Mixing 100 cm³ of 0.100 mol/dm³ aqueous lead(II) nitrate with 50 cm³ of 0.100 mol/dm³ dilute sulfuric acid resulted in the formation of a white precipitate. The precipitate is filtered off, dried, and weighed. What is the maximum possible mass of precipitate collected?
 - $A = \frac{50 \times 0.100 \times 303}{1000} g$
 - $\frac{100 \times 0.100 \times 303}{1000} g$
 - $C = \frac{150 \times 0.100 \times 303}{1000} g$
 - $D = \frac{150 \times 0.200 \times 303}{1000} g$
- 19 The table shows the solubility of some salts of metal M in cold water.

salt	solubilty in cold water
carbonate	insoluble
chloride	insoluble
sulfate	insoluble

What is metal M?

- A barium
- **B** calcium
- C lead
- D zinc
- 20 An experiment was carried out to investigate the process of rusting in iron nails.

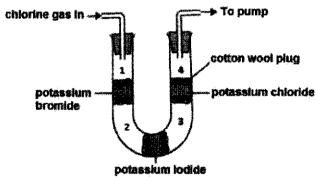
Which of the following statements is correct?

- A None of the nails rusted.
- **B** X rusted the fastest.
- C Y rusted the fastest.
- D Z rusted the fastest.

- 21 In which of the following reactions does the oxidation state of nitrogen show the greatest increase?
 - A ammonia to nitrogen gas
 - B ammonia to ammonium ion
 - C nitrogen dioxide to nitric acid
 - D nitrogen monoxide to nitrogen dioxide
- The Krebs Cycle is part of the pathway for the breakdown of glucose and all metabolites in the human body. The following equation depicts a reaction in the Krebs Cycle.

Which of the following statements is true?

- A !socitrate is reduced by NAD* to form oxalosuccinate.
- **B** NAD* serves as a reducing agent in the above reaction.
- C NADH serves as an oxidising agent in the above reaction.
- **D** The conversion of isocitrate to oxalosuccinate is an oxidation reaction.
- 23 What can the destruction of the ozone layer lead to?
 - A The number of cases of skin cancer will increase.
 - B The number of flooded costal regions will increase.
 - C The number of hurricanes and typhoons will increase.
 - D The temperature of the oceans will decrease.
- 24 Element X is one of the components found in car fuels. It forms an oxide Y when burnt in car engines and gets further oxidised into Z when it is released in the atmosphere. Which of the following statements is true about the substances X, Y and Z?
 - A Element X could be sulfur.
 - B Substances X, Y and Z exist naturally as gases.
 - C Substances Y and Z increase the pH of river water.
 - Substance Z binds irreversibly to haemoglobin in blood cells resulting in respiratory difficulties in humans.
- 25 Waste gases from a coal-burning power station are passed through powdered calcium carbonate to reduce pollution to the atmosphere.

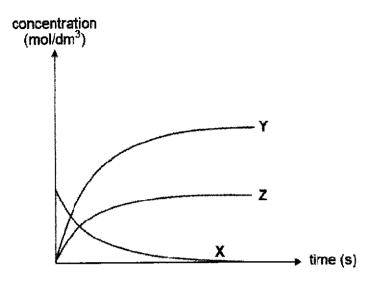

Which waste gas will not be removed by the powdered calcium carbonate?

- A carbon dioxide
- B carbon monoxide
- C nitrogen dioxide
- D sulfur dioxide

- Ammonia is manufactured on a large scale by a reversible reaction in the Haber process. Which of the following is true about the reversible reaction?
 - A A catalyst is not required for the reaction.
 - **B** A high temperature is required for the reaction.
 - **C** The reaction must have a low activation energy.
 - D The yield of ammonia will always be less than 100%.
- 27 Elements P, Q and R have the following properties:
 - · P reacts with Group 1 metals to form ionic compounds.
 - Q reacts with oxygen to form compounds with giant covalent structures and with very high melting and boiling points.
 - R reacts violently with acids to give off hydrogen gas.

What is the arrangement order of these elements across a period in the Periodic Table?

- A P, Q, R
- **B** Q, R, P
- **C** R, P, Q
- **D** R, Q, P
- 28 Gaseous chlorine was passed through the apparatus set-up shown below. The apparatus was continuously heated throughout with a Bunsen flame and the observations were recorded.



What would be the observations made at regions 1, 2, 3 and 4?

	region 1	region 2	region 3	region 4
Α	brown gas	yellow-green gas	violet gas	yellow-green gas
В	violet gas	yellow-green gas	brown gas	violet gas
C	yellow-green gas	brown gas	violet gas	violet gas
D	yellow-green gas	brown gas	brown gas	brown gas

- 29 Phosphorus and nitrogen are both from Group 15 of the Periodic Table. Which ions would be produced if phosphine, PH₃, was dissolved in water?
 - **A** PH₃⁺, H⁺
 - B PH3+, OH-
 - C PH4+, H+
 - **D** PH₄+, OH-

The following graph shows the change in reactant and product concentrations with time during a chemical reaction.

Which equation represents the reaction shown in the graph?

$$A X \rightarrow Y + Z$$

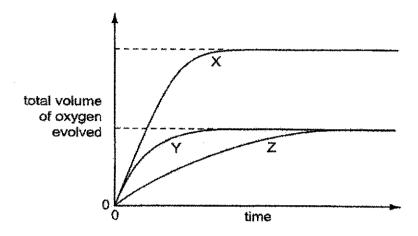
B
$$X \rightarrow 2Y + Z$$

C
$$Z \rightarrow 2X + Y$$

D
$$Z \rightarrow 2Y + X$$

31 Copper(II) sulfate reacts violently in excess magnesium powder to give magnesium sulfate and copper metal, as shown.

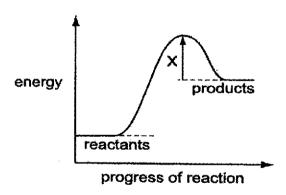
$$CuSO_4$$
 (aq) + Mg (s) \rightarrow MgSO₄ (aq) + Cu (s) $\Delta H = -164$ kJ/mol


Which of the following will be observed when 25 cm 3 of 0.05 mol/dm 3 copper(II) sulfate is reacted with 2 g of magnesium powder?

- A 164 kJ of heat is absorbed in the reaction.
- B 328 kJ of heat is released in the reaction.
- C The temperature of the solution increases.
- D The solution remains blue as there is insufficient magnesium powder.

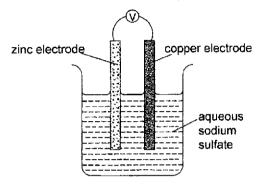
Hydrogen peroxide solution is catalytically decomposed by manganese(IV) oxide to yield water and oxygen gas. To study the effect of the concentration of the solutions on the rate of reaction, the total volume of oxygen evolved was recorded against time.

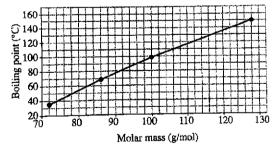
Three experiments were performed using a fixed mass of catalyst but with:


- (i) 50 cm³ of 2.0 mol/dm³ hydrogen peroxide.
- (ii) 100 cm³ of 1.0 mol/dm³ hydrogen peroxide.
- (iii) 100 cm³ of 2.0 mol/dm³ hydrogen peroxide.

On the graph above, which of the curves X, Y and Z relate to the solutions (i), (ii) and (iii)?

	(i)	(ii)	(iii)
A	X	Υ	Z
B	X	Z	Υ
C	Y	Z	Х
D	Z	Υ	Х


33 The energy profile diagram shows the energy changes that occur as a reaction takes place.


From the diagram, which statement about this reaction is correct?

- **A** The reaction could be $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$.
- B The reaction has a negative ΔH value.
- C X shows the activation energy for the reaction.
- **D** X shows the activation energy for the reverse reaction.

- During the electrolysis of a molten manganese salt, 27.5 g of manganese is deposited at the cathode by 2 moles of electrons. What is the formula of the manganese ion that has been discharged?
 - A Mn2+
 - B Mn³⁺
 - C Mn4+
 - D Mn5+
- 35 What happens when a current is drawn from the simple cell shown below?

- A Copper electrode dissolves to form copper(II) ions.
- B Electrons flow from the copper to zinc electrode.
- C Hydrogen gas is liberated at the zinc electrode.
- D Zinc electrode dissolves to form zinc ions.
- 36 Which of the following statements about biofuel is true?
 - A Biofuel can be separated by simple distillation.
 - B Biofuel is an alternative fuel source to petroleum.
 - **C** Biofuel is formed from the remains of dead animals.
 - **D** Biofuel is the main feedstock for the petrochemical industry.
- 37 The following graph shows the relationship between the boiling points of some alkanes and their molar masses.

Which of the following is a likely explanation for the graph?

- A Covalent bonds of alkane molecules become stronger as the molar mass increases.
- B Higher the molar mass of the alkane, the stronger its carbon-carbon covalent bonds.
- C Intermolecular forces of attraction get stronger as the alkane molecules get bigger.
- D Structure of the alkane changes from simple molecular to giant molecular as the size of the molecules increases.

38 The reaction between a carboxylic acid, C_xH_yCO₂H and an alcohol, C_nH_{2n+1}OH, produces an ester.

How many hydrogen atoms does one molecule of the ester contain?

- A y+2n
- B y+2n+1
- C y+2n+2
- **D** y+2n+3
- 39 Nylon is sometimes used for electrical insulation. However, if there is a risk of high temperatures, then a polymer such as Nomex, with a higher melting point is used. The repeat unit of Nomex is shown below.

Which of the following is a possible monomer of Nomex?

A

$$\begin{array}{c|c} H-N & C-O-H \\ \hline \end{array}$$

C

D

$$H-N$$
 $N-H$
 H

40 Poly(methyl methacrylate), PMMA, is a polymer used to make hard contact lenses. Part of the polymer structure is shown below.

What is the structure of the monomer from which PMMA is made from?

A

H

CO2CH3

В

C

D

The Periodic Table of Elements

00 00 00 00 00 00 00 00 00 00 00 00 00	18	2 운	holium 4	10	Š	ned.	18	Ā	5 5	88	ጁ	Pyplon 84	52	×e	131	98	쥰	madon	118	රි	nceseupčo	***************************************	
and the state of t	17			6	L.	fluorine + D	2	ວ	35.5	38	۵	80 B	જ	} {	127	88	₹	arstetime	117	s	termestrine		
MINISTER VOICE WANTERED WATERWAY	16			8	0	Carigon	5 6	Ø	32 32	¥	Še	79	52	<u>a</u>	128	8	_O	polonium	116	۲	livermonum		
Matter and the season of the s	15			*	z	ndrogen 4.4		۵	okosphana 31	33	As	arsonic 75	51	හි	antimony 122	83	ö	bismuth 209	115	Mc	mascovium	T	
A CAMERATAN AND AND AND AND AND AND AND AND AND A	4			မွ	ပ	campon +	7.7	ത്	79 78 78	32	ගී	gementan 73	20	હ્ય	₹ (82	G.	207	114	ũ	flerovium	h	
Abrophidas - conscionarios	43			s	m	Paren 4.4	-0	₹	atkenienium 27	34	ශී	1 2	49	ے	indian 115	9	Ë	204	113	£	millionium	Section of property of the section o	
kilati karin dida A renditakan katika									2	8	Z	# £6	84	පි	andmium 112	80	Ţ	201	112	ర	copermicium	parameter and the second	
									A	29	ರ	SA Per	47	Ag	108 108	79	Α'n	90kd	111	Rg	тоелярняния	Parameter -	
Group		VANVARIANA ANTONIO PARAMENTA A								9	28	Z	10 tel	46	Ъ	106	78	ă	platferum 195	110	S	darmstachum	
5			water areas con						Ø	27	ප	59 59	45	돈	103	77	<u></u>	#idium	109	¥	melinerium		
nder AA Villaden schedungs phispopistes AAN		+ I	hydrogen 1						α	8	ம	£ 8	44	2	101	76	ဝိ	190	108	£	hassium	A venezavovovovovovovovovovovovovovovovovovovo	
***************************************				,			····•		1	25	ş	mengenese 55	43	ပ	(e-chnetkers	7.5	Re	186	107	怒	polyrkum	·	
				humber	I DQI	mass	2		9	24	ර	chromium 52	42	≥	тоўубепия 96	7.4	≥	Lagaten 48.	99,	Sg	seaborga.m	AND	
			Key	(atomic) r	atomic sym	neme ive athmir			ည	23	>	veradken 51	41	2	100km	73	œ	Bandaham 181	55	රි	dubnium		
-				proton	퓲	relat			4	22	F	######################################	40	Ż	zhoonium 91	22	Ξ	hashium 178	\$	ž	rutherfordrum		
and a second sec	-		·			·······	· 		က	7	သိ	scandium 45	38	>-	285 295	57-71	Remarkanoids		89-103	actinoids		***************************************	
Wilson According to Charles and Charles an	2			4	B	Decylleren C	12	§₩	megneskum 24	ଷ	ප	calchem 40	38	ঠ	strontum 88	99	g	137	88	R _a	Engage 1	**************************************	
	-			(m)	;			2	sodkm 23	⊕	Y	potassium 39	37	2	abidium 85	22	රි	133	87	ت	Framchars.	- Commence of the Commence of	

			ص	60		- Circle	•••
7		Autert	1	10		Emmen	1
70	Ω X	yttentaum	173	102	ŝ	nobellum	
69	E	thurston	169	101	×	menteleyken	ı
88	Ш	ertainm	167	100	Ē	Semilari	*
25	운	Polmium	165	88	ш	einsteinkun	,
99	۵	dysprosium of the contract of	163	88	Ö	californium	ı
93	2	terroun	159	97	ᄷ	berkelum	1
40	ဇ္	gadolinium	157	96	5	Curitan	1
63	园	umidame	152	88	Am	Brownickum	1
8	ES	Samartan	150	\$	2	pktonium	***
9	P	promethism	1	83	ŝ	nepturelum	-
8	ž	necoymens	144	92	>	LE GETRUTT	238
52	à	mashoopsand	141	91	Q.	protectinism	234
			-		£		1
26	ල	Montheatum	139	80	Å	activitati	
	lanthanoids				actinoids		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L=6.02\times10^{23}$ mol⁻¹.

Candidate Name:	Class:	Index No.:

FUHUA SECONDARY SCHOOL

Secondary Four Express
PRELIMINARY EXAMINATION 2024

4E

Fuhua Secondary School Fuhua Secondary School

CHEMISTRY 6092/2

Paper 2

DATE

16 August 2024

TIME

1045 - 1230

DURATION

1 hour 45 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

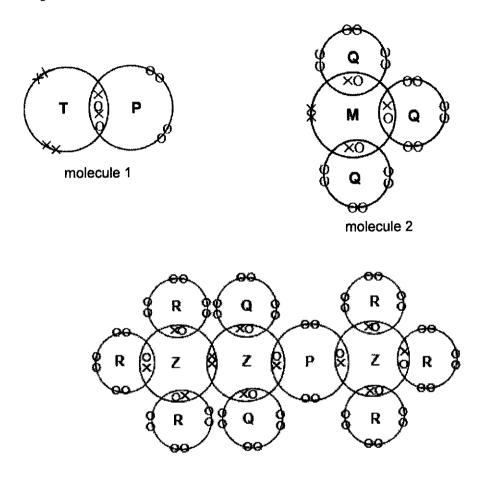
Section B

Answer one question.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

The use of an approved scientific calculator is expected, where appropriate.


	PARENT'S SIGNATURE
ı	

FOR	R EXAMINER'S USE	
Section A	Section B	Total
/70	/10	/8

Section A Answer all questions.

1 Fig. 1.1 shows 'dot-and-cross' diagrams for molecule 1, 2 and 3 that contain elements from Period 2 and 3 of the Periodic Table. The elements are represented by the letters **M**, **Q**, **R**, **T** and **Z**.

Each diagram shows outer electrons only.

molecule 3

Fig. 1.1

(a)	Which elements are in Group 17?	
		[1]
(b)	What is the formula of the compound formed between Z and T ?	
		[1]

(c)	(i)	Draw a 'dot-and-cross' diagram to show the bonding of the compound formed
		between element P and R.

(ii) Draw a 'dot-and-cross' diagram to show the bonding of the compound formed between magnesium and element **M**.

[2]

(d) The following are some statements about the substances in Fig. 1.1.

Put a tick (\checkmark) in **one** box in each row to show which statements are true and which are false.

	true	false
Molecule 3 has lower boiling point then molecule 2.		
Molecule 3 is a saturated organic compound.		
Only element Z reacts with oxygen to form acidic oxide.		
Elements P and T are in Group 16.	······································	

[2]

[Total: 8]

Three experiments were carried out to measure the rate of reaction between excess barium carbonate powder and a strong monobasic acid. The reaction produces a gas which escapes from the reaction flask. The ionic equation for the reaction is

$$BaCO_3(s) + 2H^+(aq) \rightarrow Ba^{2+}(aq) + H_2O(l) + CO_2(g)$$

The rate of reaction was followed by measuring the change in mass of the reaction flask at regular time intervals.

The results of the three experiments are shown in the Fig. 2.1.

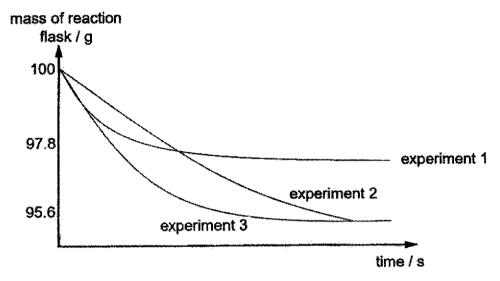
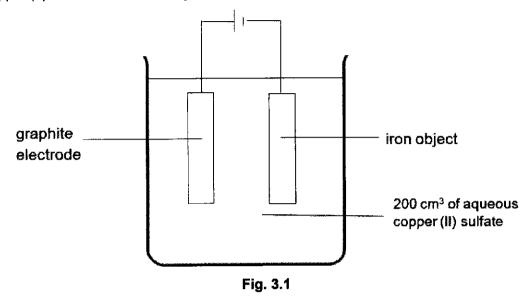


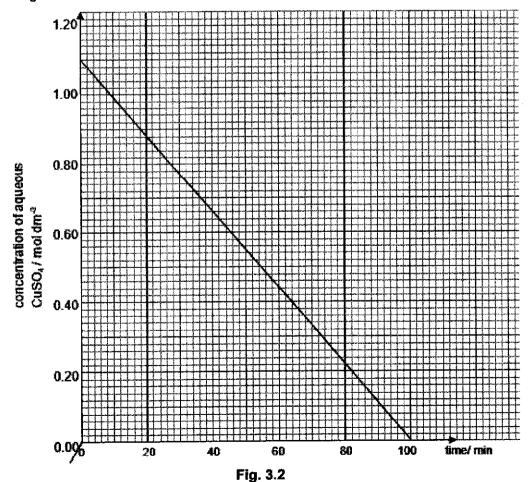
Fig. 2.1

(a) (i) Calculate the number of moles of carbon dioxide gas produced in experiment 1.

[1]


(ii) Hence, deduce and state the conditions of each experiment by completing the table below.

experiment	particle size	volume of acid / cm³	concentration of acid / moldm ⁻³
1	powder		2.0
2	lumps		1.0
3			


(b)	Explain, in terms of reacting particles, how particle size of barium carbonate affects the rate of the reaction.		
	[2]		
(c)	The acid used is either hydrochloric acid or nitric acid. Describe a test to confirm the identity of the acid used.		
	[1]		
(d)	A further experiment, experiment 4, was carried out using ethanoic acid of the same volume and concentration as experiment 1.		
	Predict and explain how the rate of reaction and change in mass of the reaction flask of experiment 4 would be different from experiment 1.		
	[3]		
	[Total: 10]		

[Total: 10]

- 3 Electrolysis is commonly used to give an object an attractive appearance or to prevent corrosion of a metal.
 - Fig. 3.1 shows a set-up prepared to electroplate an iron object using 200 cm³ of aqueous copper (II) sulfate as the electrolyte.

Electrolysis was carried out and Fig. 3.2 shows the concentration of aqueous copper (II) sulfate against time.

(a)	(i)	Explain the shape of the graph by your answer.	y using an app	ropriate half-equation to support	t
				[2	2]
	(ii)	Using data from the graph, calcul- the electrolysis was conducted for		e in mass of the iron object after	•
				[2	2]
(b)	Electric set-		_	of electricity as in the previous iron object 200 cm³ of equeous silver nitrate cell B	
		Cell A	Fig. 3.3	Cell B	
	(i)	Sketch a graph, on Fig. 3.2, to sulfate against time in cell A for the initial concentration of aqueon in Fig. 3.1. Label your graph clean	show the conc the set-up in Fi ous copper (II)	g. 3.3.	
	(ii)	Describe the observations at the	graphite and ire	on electrodes in cell B.	

(c)	Sheets of iron are coated in tin and made into tin cans. The cans are filled with pineapple pieces and water. One of the cans becomes "dented" and the tin coating is scratched.
	Suggest why the can corrodes more rapidly when it has a dent on its side compared to a pure iron can.
	TO!
	[2]
	[Total: 9]

4 (a) Table 4.1 shows information about some organic compounds.
Complete the table by filling in the missing names, formulae and by completing the description of the processes.

name of compound	structural formula	process(es) used to produce the compound
	H H O H-CC-C' H H H H 	Warming of and with concentrated sulfuric acid.
propane		Catalytic to propene.
polybutene		of butene
nylon-6,6		of monomers O O O HO OH and H N-(CH ₂) ₆ -N H

Table 4.1

(b) Alkyl halides are a homologous series of organic compounds. They are formed when one halogen atom (X = CI, Br, I) bonds with carbon atoms.

Table 4.2 shows the condensed formulae and boiling points of some alkyl halides.

condensed	boiling point / °C			
formula	X			
Iomula	Cl	Br	1	
CH₃X	-24.2	3.6	42.4	
CH₃CH₂X	12.3	38.4	72.3	
CH₃CH₂CH₂X	46.6	71.0	102.5	
CH ₃ CH ₂ CH ₂ CH ₂ X	78.4	101.6	130.5	

Table 4.2

(i)	Besides having the same functional group, use the information in the table to give two other pieces of evidence that suggest that the alkyl halides are a homologous series.
	[2
(ii)	Describe and explain the trend in boiling points of alkyl halides when the haloger atom changes from Cl to I.
	[3

(iii) Alkyl halides can be prepared by the reaction of halogen acids with alcohols. For example, hydrochloric acid reacts with methanol to produce methyl chloride and water.

Write an equation for the preparation of **ethyl iodide**, showing all the displayed formulae of all organic compounds.

[2]

[Total: 12]

5 Experiments on three metals (copper, manganese and chromium) were conducted.

Table 5.1 shows the appearance of the metals and the results of their reactions with air.

metal	appearance	reaction with air
соррег	reddish-brown solid	Burns in air to form black copper (II) oxide.
manganese	shiny grey solid	Burns in air with an intense white light forming a red solid, manganese (II,III) oxide, Mn ₃ O _{4.}
chromium	shiny grey solid	Burns in air to form green chromium (III) oxide, Cr_2O_3 .

Table 5.1

Small amounts of the three metals were also added to their aqueous metal nitrate solutions. The results are shown in Table 5.2.

metal	aqueous chromium (III) nitrate	aqueous manganese (II) nitrate	aqueous copper (II) nitrate
manganese	Green solution turned pale pink and grey metal coated with a silvery solid.		Blue solution turned pale pink and grey metal coated with a reddish-brown solid.
chromium		No visible change observed.	
copper	No visible change observed.	No visible change observed.	

Table 5.2

(a)	chromium metals are neated with manganese (II,III) oxide and copper (II) oxide in two separate experiments. State and explain what you would expect to see in each experiment.
	[3]
(b)	Construct an ionic equation for the reaction involving manganese and chromium (III) nitrate.
(c)	Complete Table 5.2 by stating the observations when chromium is added to aqueous copper (II) nitrate. [1]
	[Total: 5]

6	This question	is on	elements	in	Group	17	7
---	---------------	-------	----------	----	-------	----	---

(a)	Complete Table 6.1 to show the colour and state of chlorine, bromine and iodine at
	room temperature and pressure.

	colour and state at room temperature and pressure
chlorine	
bromine	
iodine	

Table 6.1

(b)	A brown solution is formed in two separate experiments. In the first experiment, aqueous bromine is added to aqueous iodide ions and in the second experiment, aqueous iodine is added to aqueous chloride ions. Explain why.
	[2]
(c)	Chlorine reacts with the OH ⁻ ion to form chloride ions and hypochlorite (OC <i>l</i> ⁻) ions.
	Cl_2 (aq) + 2OH ⁻ (aq) \rightarrow Cl ⁻ (aq) + OCl ⁻ (aq) + H ₂ O (l)
	This is a disproportionation reaction in which chlorine is oxidised and reduced simultaneously.
	Use oxidation state to explain why this is a disproportionation reaction.
	[2]

[Total: 6]

	oth phosphoric acid and tartaric acid are we ven as follows:	eak acids. The formulae o	f both acids are
	H₃PO₄	OH I HO₂C — C — I H	
	phosphoric acid	tartari	c acid
(a	Describe a simple test that can be used a weak acid.	to show that tartaric acid	or phosphoric acid is
			[1]
(b) A solution of 0.200 mol / dm³ potassium land tartaric acid separately.	hydroxide was titrated aga	ainst phosphoric acid
	Deduce the ratio of the volume of potass and concentrations of phosphoric acid ar	•	
			[1]
(c	Tartaric acid and its salts have many app One such salt is copper (II) tartarate which		
	Describe how you will prepare a pure an	d dry sample of this salt in	n the laboratory,

(d)	(i)	A 2.0 cm length of magnesium ribbon was added to 100 cm³ of 2.00 mol / dr phosphoric acid. All the magnesium reacted and the temperature of the acid increase by 6.0°C.	m³ ed
		Predict the temperature change when 2.0 cm length of magnesium ribbon was reacted completely with 100 cm ³ of 2.00 mol / dm ³ tartaric acid. Explain your answer.	ed
			[2]
	(ii)	Complete the energy level diagram for reaction between magnesium ribbon as phosphoric acid. Your diagram should include • formulae of reactants and products • enthalpy change of reaction • activation energy energy	nd
		progress of reaction	

[Total: 8]

8 Chlorofluorocarbons (CFCs)

Chlorofluorocarbons (CFCs) are compounds containing chlorine, fluorine and carbon. CFCs are also known as freons. They were widely used in refrigerants and aerosol products before the 1990s, until they were phased out in several countries due to their negative impact on the ozone layer. When CFCs are released into the environment, they vapourise and move up the atmosphere.

Ozone Depleting Potential (ODP)

Ozone depleting potential (ODP) is a measure of how much damage a chemical can cause to the ozone layer compared with a similar mass of trichlorofluoromethane (CFC-11). CFC-11, with an ozone depleting potential of 1.00, is used as the base figure for measuring ozone depleting potential.

Global Warming Potential (GWP)

Global Warming Potential (GWP) of a refrigerant is its global warming impact relative to the impact of the same quantity of carbon dioxide over a 100 year period. All effects beyond 100 years are disregarded.

Table 8.1 gives t	the ODP	and GWP	of some	common	CFCs.
-------------------	---------	---------	---------	--------	-------

CFC	structural formula	ODP	GWP
CFC-11	CC <i>l</i> ₃F	1.00	4000
CFC-12	CCl ₂ F ₂	0.82	8500
CFC-113	C₂F₃Cl₃	0.90	11700
CFC-114	?	0.85	5000

Table 8.1

Alternatives to CFCs

Two of the chemical classes under consideration for replacing CFCs are hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Use of HCFCs and HFCs as transitional refrigerants allows industries to phase out the production of CFCs and offer environmental benefits over the continued use of CFCs. Because they contain hydrogen, HCFCs and HFCs break down more easily in the atmosphere than do CFCs.

Table 8.2 gives the ODP and GWP of some common HCFCs and HFCs.

HCFC	structural formula	ODP	GWP
HCFC-22	CHC/F ₂	0.04	1700
?	C₂HC/₂F₃	0.014	93
HFC-23	CHF ₃	< 4 × 10 ⁻⁴	12100
HFC-125	?	< 3 × 10 ⁻⁵	3200

Table 8.2

Naming of CFCs, HCFCs and HFCs

The naming of CFCs follows the rule of 90 which determines the number of chlorine, fluorine and carbon atoms in the molecule.

Fig. 8.3 gives the example of the naming of trichlorofluoromethane (CCl_3F). Adding 90 to 11 gives 101. The first digit gives the number of carbon atoms, second digit gives the number of hydrogen atoms and the third digit gives the number fluorine atoms. Given that all carbon atoms must have four bonds, any other bonds left is a carbon-chlorine bond. Trichlorofluoromethane (CCl_3F) is named CFC-11.

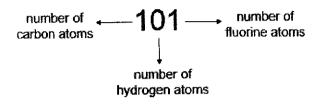


Fig. 8.3

The naming of HCFCs and HFCs follows the same format except with the addition of 'H' at the front.

Bond energy values

Table 8.4 gives some bond energy values for some carbon-hydrogen and carbon-halogen bonds.

bond	bond energy / kJ mol ⁻¹
C - Cl	328
C-F	485
C-H	413

Table 8.4

(a)		ferring to Table 8.1, Table 8.2 and Fig. 8.3 and ເ lowing questions.	ising the rule of 90, an	swer the
	(i)	Derive the naming for C ₂ HCl ₂ F ₃ .		[1]
	(ii)	State the structural formula for		ang par anc memberahan dan memberahan
		CFC-114	HFC-125	

	Using evidence from the information, compare the alternative use of HCFCs and HFCs against CFCs in relation to the impact on ozone layer depletion and global warming.				
	NPhilippin				
	trivata				
		[4			
(c)		Os break down ozone in several steps. The first step occurs when energy from the light breaks a bond in CFC to produce a chlorine atom. $CCl_3F \to CCl_2F + Cl$			
	Chlorine atoms break down the ozone in two steps.				
		$Cl + O_3 \rightarrow ClO + O_2$ $ClO + O_3 \rightarrow Cl + 2O_2$			
	(i)	Explain how the equations show that one molecule of CFC can destroy thousands of ozone molecules.			
		[2			
	(ii)	A student made the following comment.			
		'HFCs have lower ODP values than CFCs because of the bond energy values.' Explain whether you agree with the student.			
		[2]			
(d)	and	nough not as effective, ammonia and carbon dioxide are also used as refrigerants d both have ODP values of 0.00. plain why.			
		[1]			

[Total: 12]

Section B Answer one question from this section.

9 (a) Fig. 9.1 gives the reaction scheme of organic compound A.

(a)

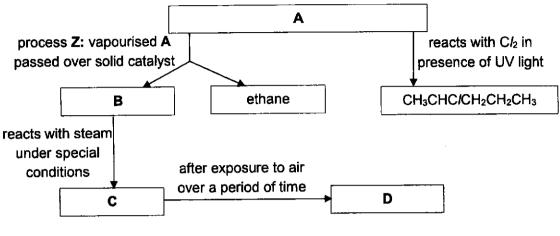


Fig. 9.1

(i)	Construct a balanced chemical equation for process Z.	
		[1]
(ii)	Describe a test to differentiate compound A from B.	
		[2]

(iii) Draw the displayed formula of the compound formed when **C** and **D** are heated with concentrated sulfuric acid.

(b) Table 9.2 gives structures of two polymers X and Y are shown below.

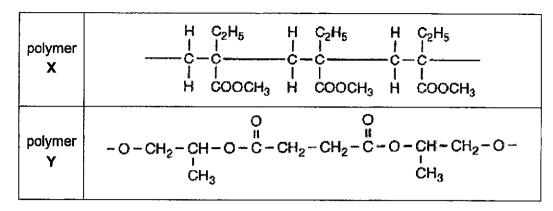


Table 9.2

(i) A potential customer requires the chain length of the polymer X to be controlled so that the polymer molecules have an average relative molecular mass in the range of 16 000 to 50 000.

What is the range of the average number of repeat units in the polymer molecules? Show your working.

[2]

(ii) Draw the displayed formulae of the monomers where polymer Y could be made with.

(iii) Calculate the mass of polymer Y produced when 1 kg of each of the monomers reacted.

[2]

[Total: 10]

- 10 (a) Three reactions take place in the catalytic converter installed in car exhaust systems.
 - 1. Conversion of nitrogen oxides (NO, NO₂) into nitrogen.
 - 2. Conversion of carbon monoxide into carbon dioxide.
 - 3. Conversion of hydrocarbons into carbon dioxide and water.

The air/fuel ratio in the car engine affects how the conversion efficiency of the catalytic converter. A 'lean' air/fuel mixture to the engine has a higher ratio of air to fuel while a 'rich' air/fuel mixture has a lower ratio of air to fuel.

Fig. 10.1 gives the conversion efficiency of a converter based on air/fuel ratio.

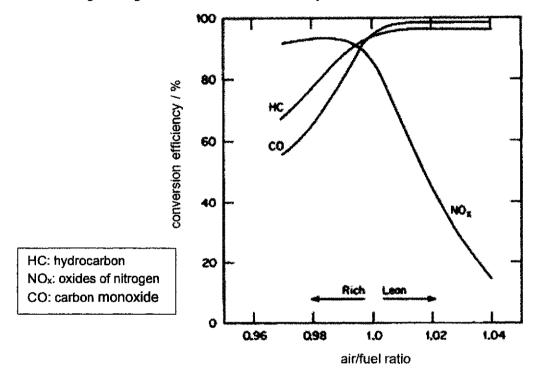


Figure 10.1

		efficiency the catalytic		ide, nitrogen	monoxide
-					All the state of t
-	 Print		 	**************************************	
-	 				
-					
-	 		 		

·	(ייי)	human health than those from vehicles fitted with catalytic converters. Explain why this is true.
		[2]
(b)	hydr	chloro-alkali industry is a chemical industry manufacturing chlorine, sodium oxide and other products, by the electrolysis of brine (concentrated sodium chloride tion). Sodium chloride is a readily available mineral existing as sea salt.
		mineral is, however, often contaminated with mud, Ca ²⁺ , Mg ²⁺ , Fe ³⁺ and SO ₄ ²⁻ ions, f which must be removed before the purified salt is to be put into the electrolytic.
		first step of purification of sea salt involves dissolution and filtration of mud. The cted filtrate is then treated with the following chemicals in the order as shown below.
	step	1: aqueous barium chloride solution 2: aqueous sodium carbonate solution 3: substance Z
	(i)	Explain the purpose of treating the filtrate with the chemicals listed in step 1 and step 2 above in order to obtain a reasonably pure sample of brine for the electrolytic process.
		step 1:
		step 2:
		[2]
	(ii)	The filtrate is treated with substance Z in step 3 to remove excess carbonate ions from step 2. Identify substance Z . Explain your choice
		[2]

BLANK PAGE

_
\$
5
Ě
<u>0</u>
f Elements
ō
Φ
Table
⊒a
•
Periodic
<u>Q</u>
e
The
产

	20	N	ピ	nelium	4	9	Š	ng c	3;	Σ,	¥	агдоп	3	36	ż	motor	22	54	Š	xenon	2	96	2	radon	ì	138	Ö	ganesson	1
-	17				_			fluorine	4												+							-	-
	16				- 1			nagkvo	ᆚ				_			_	_				-				_				
	15					~	z	nitragen	4	ξ.	۵.	smoudsoud	31	33	As	arsentc	75	એ	S	antimony	122	83	ã	bismuth	209	115	Μc	moscovium	1
	4					9	ပ	carbon	7.	7	Ś	silicon	28	32	ð	germanium	7.3	30	က်	£.	119	82	ď	lead	207	114	Ŧ	flerovium	ı
	13					5	М	paron	11	<u>6</u>	₹	aluminium	27	31	Ö	gallium	2	49	드	mdium	115	₩	F	thalfurn	8	113	£	กเกือกเนต	l
	****				•						******		12	90	Z,	zinc	92	48	පි	cadmium	112	80	운	mercury	201	112	ర్	copernicium	ı
													<u>-</u>	29	ਹੋ	copper	64	47	Ag	silver	108	79	Αľ	plog	197	111	R	roentgenium	1
dn.													5	28	Z	nickel	29	46	Pd	pelladium	106	78	ō.	platinum	195	110	S	darmstadilum	1
Group													O)	27	පි	cobalt	59	45	몺	rhadium	103	11	_	iridium	192	109	Ź	meltnerium	**
		,	I	hydrogen	-								ထ	26	9	Iron	99	44	Ru	ruthenium	101	9/	S	Osmium	6	108	£	hasslum	Na.
	1															5										<u> </u>		pohrlam	_
						umber	TO.		nass				9	24	ර්	chromium	25	42	2	molybdenum	96	74	3	tunasten	<u>*</u>	1 8	S	seaborgium	1
		CANAL TO SERVICE STREET, SERVI			Key	(atomic) n	mir svm	name	re atomic :					ļ		-		İ				<u> </u>				_		dubnium	
						noton	ote		relati				4	22	ï	titznium	48	04	*	zirconium	6	72	Ť	hafnium	178	104	à	Rutherforthum	-
						-				,			ന	24	ý	Scandistm	45	ç	; >	yttrinm	68	57 - 71	lanthanoids			89 – 103	actinoids		
	2					4	ď	beryllium	တ	12	Ma	magnesium	24	20	Ĉ	michian	40	85	Ġ.	strontum	88	56	ď	parium m	137	88	Ω.	Ladium:	,
	+					c.	> =	Enpara i	^		Ž	Sodium	23	6	. .	motoseium	39	2.5	6	mpldim	85	55	٢	Calestina	133	œ	ů	francium	3

					·	ŧ	**			1		0	Ce	10	ł
larthanolds.	2/2	28	අ	8	5		63	2	င္	8	ò	9	Ĉ	2	
	0	ď	à	Ž	E d		ũ	Ö	2	2	운	ш	E	\$	
	The second	3	Draseodymium	neodymium	promethium	in)	europlum	gađolinium	terbium	dysprosium	holmium	erbinm	thulum	ytterbium	
	139	140	1	144	1		152	157	159	163	59	167	169	173	
000000000000000000000000000000000000000	68	8	15	92	93	ı	95	96	97	86	66	100	101	102	
ACIII OLOB	Ac Th Pa	 	2 2	=	2	2	Am	S	ă	ັວ	ß	E	P	2	
	actinium	thorium	protection	maulum	neptunium	Ω	americium	Curlum	berkeilum	californium	einsteinlum	fermium	mendejevium	nobelium	ā
	1	232	234	238	l		1	J)	J	+	-	1	1	1
	-							-							

71 Lu lutetium 175 103 Lr lawrencium

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.). The Avogadro constant, L = 6.02 x 10°mol 4

FUHUA SECONDARY SCHOOL Sec 4E Chemistry 6092 Preliminary Examinations 2024 – Mark Scheme

PAPER 1

1	2	3	4	5	6	7	8	9	10
D	Α	В	D	D	В	С	С	D	В
11	12	13	14	15	16	17	18	19	20
С	D	В	С	D	В	С	Α	С	В
21	22	23	24	25	26	27	28	29	30
Α	D	Α	Α	В	D	D	С	D	В
31	32	33	34	35	36	37	38	39	40
С	С	D	С	D	В	С	В	В	D

FUHUA SECONDARY SCHOOL Sec 4E Chemistry 6092 Preliminary Examinations 2024 – Mark Scheme

PAPER 2 Section A [70 marks]

	Answer	-						N 4 ~	Remarks
	Q and R							1	Remarks
b								1	
Ci		ne .		· · · · · · · · · · · · · · · · · · ·				1	
Ģi	non-bonded e							। 4	
cii	Charge of Mg					***		2	3- [3]
OI.	Three Mg ²⁺ ar								3; [2]
	_	s for Mg ²⁺ and	M³-ſ:1						
		3							
	:								
d					true	false		2	4√ [2]
	Molecule 3 h	as lower boiling	point then mo	lecule 2.		✓			
	<u> </u>	a saturated or			✓				
	Element Z re only.	acts with oxyge	n to form acidi	ic oxide		/			
	Elements P	and T are in Gr	oup 16.		✓				
	<u> </u>					<u> </u>	Total	<u> </u>	marks
2ai	Mass of CO ₂ =	100 – 97.8 = 2	.2 a			· · · · · · · · · · · · · · · · · · ·		Ī	
		= 2.2 / 44 = 0.05						1	
		44					-	-	
ii	experiment	particle size	volume of	I	ation of aci	d /			
ii	experiment 1		acid / cm ³	mol/dm³	ation of aci	d /		1	
ii		particle size	1	I	ation of aci	d /		1	
ii	1	powder	50 e.c.f from (a)(i) mole	mol/dm³ 2.0	ation of aci	d /		1	
			50 e.c.f from (a)(i) mole 200 [1]	mol/dm³	ation of aci	d /		1	
1	1	powder	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x	mol/dm³ 2.0	ation of aci	d /		1	
	1	powder	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/	mol/dm³ 2.0	ation of aci	d /		1	
	1	powder	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;]	mol/dm³ 2.0	ation of aci	d /		1	3; [1]
	2	powder !ump	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3)	mol/dm ³ 2.0 1.0		d /			3; [1]
	2	powder lump Powder [;] Same as expt 1	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1	mol/dm ³ 2.0 1.0		d /			3; [1]
**************************************	1 2 3 Expt 1: mole of	powder lump Powder [;] Same as expt 1 f H+= 0.05 x 2 =	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1	2.0 [;] Same as e		d /			3; [1]
	1 2 3 Expt 1: mole of	powder lump Powder [;] Same as expt 1	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1	2.0 [;] Same as e		d /			3; [1]
The state of the s	2 3 Expt 1: mole or Volume of acid	powder lump Powder [;] Same as expt 1 f H ⁺ = 0.05 x 2 = 1 = 0.10 / 2.0 = 0	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [:] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 c	2.0 [;] Same as e	expt 1			4	
The state of the s	2 Expt 1: mole of Volume of acid As particle size carbonate in co	powder lump Powder [;] Same as expt 1 f H ⁺ = 0.05 x 2 = 1 = 0.10 / 2.0 = 0 e decreases[;], tontact with the a	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 condended there is a large acid. There are	mol/dm³ 2.0 1.0 2.0 [;] Same as e	expt 1 urface area	[;] of barium crease in	ļ	4	3; [1] 4; [2] 2; [1]
The state of the s	2 Expt 1: mole of Volume of acid As particle size carbonate in confrequency of elements.	powder lump Powder [;] Same as expt 1 f H ⁺ = 0.05 x 2 = 0.10 / 2.0 = 0 e decreases[;], to thact with the affective collision	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [:] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 condended the second there is a large acid. There are secondended to the seconded the seconded to the seco	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed service collision carbona	expt 1 urface area	[;] of barium crease in	ļ	4	4; [2]
The state of the s	2 Expt 1: mole of Volume of acid As particle size carbonate in confrequency of elements.	powder lump Powder [;] Same as expt 1 f H ⁺ = 0.05 x 2 = 1 = 0.10 / 2.0 = 0 e decreases[;], tontact with the a	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [:] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 condended the second there is a large acid. There are secondended to the seconded the seconded to the seco	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed service collision carbona	expt 1 urface area	[;] of barium crease in	ļ	4	4; [2]
2b	2 Expt 1: mole of Volume of acid As particle size carbonate in confrequency of eliparticles[:], her	powder lump Powder [;] Same as expt 1 f H* = 0.05 x 2 = 0.10 / 2.0 = 0 e decreases[;], tontact with the affective collision are increasing s	acid / cm³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [:] 2x of expt 1 = 0.10 mol 0.05dm³ = 50 con here is a large acid. There are s between bar speed of reaction	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed some collision carbona confi].	expt 1 urface area ions and ind ate and H ⁺ i	[;] of barium crease in ons the acid		2	4; [2]
2b	2 Expt 1: mole of Volume of acid As particle size carbonate in cofrequency of elparticles[;], her	powder lump Powder [;] Same as expt 1 f H ⁺ = 0.05 x 2 = 0.10 / 2.0 = 0 e decreases[;], tontact with the affective collision and the increasing section of the collision of the solution of the collision of the solution of the collision of th	acid / cm³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [:] 2x of expt 1 = 0.10 mol 0.05dm³ = 50 con the second of the second	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed service collision carbona on[:].	expt 1 urface area ions and inc ate and H ⁺ ions, the ac	[:] of barium crease in ons the acid	R	4	4; [2]
2b	2 Expt 1: mole of Volume of acid As particle size carbonate in confrequency of exparticles[:], here Add aq. silver ranged Add aq. NaOH	powder lump Powder [;] Same as expt 1 f H* = 0.05 x 2 = 0.10 / 2.0 = 0 e decreases[;], tontact with the affective collision are increasing s	acid / cm³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm³ = 50 conditions a large acid. There are a between bar speed of reactions o each acid, if to each acid a	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed semore collision carbona on[:]. white ppt found heat the	expt 1 urface area ions and inc ate and H ⁺ ions rms, the ac mixture, if a	[:] of barium crease in ons the acid	R	2	4; [2]

d Rate will be slower [] and change in mass will be the same [] as experiment 1. Ethanoic acid is a weak acid which dissociates partially in acqueus solution to give a lower concentration of H lons [] compared to the strong acid, hence rate is slower. The acid / H* lons remains as the limiting reagent / same number of moles of H* lons used [] hence mass of gas produced is the same and same change in mass of the reaction. Total 10 marks 3al Concentration of CuSO₂ decreases [] from 1.10 mol/dm³ until all Cu³* ions in solution reduced to form Cu at the cathode. [] Cu²*(aq) + 2e → Cu(s) [] ii Amount of Cu deposited = 200/1000 X (1.10 − 0.22) = 0.176 mol Mass of Cu = 0.176 X 64 = 11.3 g				
3al Concentration of CuSO₄ decreases [;] from 1.10 mol/dm³ until all Cu²³ ions in solution reduced to form Cu at the cathode. [;] 2 3; [2] iii Amount of Cu deposited = 200/1000 X (1.10 − 0.22) = 0.176 mol Mass of Cu = 0.176 X 64 = 11.3 g 1 iii Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object. 1 c Once tin is scratched, iron will lose electrons / oxidise more readily to form iron(II) in sa stin is less reactive than iron	ď	give a lower concentration of H ⁺ ions [:] compared to the strong acid, hence rate is slower. The acid / H ⁺ ions remains as the limiting reagent / same number of moles of H ⁺ ions used [:] hence mass of gas produced is the same and same	3	2-3[;] – [2],
3al Concentration of CuSO₄ decreases [;] from 1.10 mol/dm³ until all Cu²³ ions in solution reduced to form Cu at the cathode. [;] 2 3; [2] iii Amount of Cu deposited = 200/1000 X (1.10 − 0.22) = 0.176 mol Mass of Cu = 0.176 X 64 = 11.3 g 1 iii Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object. 1 c Once tin is scratched, iron will lose electrons / oxidise more readily to form iron(II) in sa stin is less reactive than iron		Tabal	4.0) madea
until all Cu²* ions in solution reduced to form Cu at the cathode. [:] Cu²*(aq) + 2e → Cu(s) [:] ii Amount of Cu deposited = 200/1000 X (1.10 − 0.22) = 0.176 mol Mass of Cu = 0.176 X 64 = 11.3 g				
Box Straight horizontal line at 1.10 g	3ai	until all Cu ²⁺ ions in solution reduced to form Cu at the cathode. [;]	2	3; [2]
bi straight horizontal line at 1.10 g Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object. Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object. Colourless gas given off at the graphite electrode.	ji	= 0.176 mol Mass of Cu = 0.176 X 64	1	
ii Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object. c Once tin is scratched, iron will lose electrons / oxidise more readily to form iron(II) ions as tin is less reactive than iron Total 9 marks 4a butyl propanoate[], butanol[], propanoic acid[] ************************, addition of hydrogen Accept catalytic hydrogenation. ***********************************		=11.3 g	'	
ii Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object. c Once tin is scratched, iron will lose electrons / oxidise more readily to form iron(II) ions as tin is less reactive than iron Total 9 marks 4a butyl propanoate[], butanol[], propanoic acid[] ************************, addition of hydrogen Accept catalytic hydrogenation. ***********************************			4	
Grey / silvery solid deposited on the iron object. C Once tin is scratched, iron will lose electrons / oxidise more readily to form iron(II) ions as tin is less reactive than iron Total 9 marks 4a butyl propanoate[:], butanol[:], propanoic acid[:] 4a butyl propanoate[:], butanol[:], propanoic acid[:] 4b butyl propanoate[:], butanol[:], propanoic acid[:] 4c butyl propanoate[:], butanol[:], propanoic acid[:] 4b butyl propanoate[:], butanol[:], propanoic acid[:] 4c butyl propanoate[:], propanoic acid[:] 4c butyl propanoate[:], propanoic acid[:] 4c			<u>'</u>	
Intermoleular forces of attraction between molecules increases Intermoleular forces of alky halide increases and amount of energy taken in to overcome these forces increases Intermoleular forces of alky halide increases and amount of energy taken in to overcome these forces increases Intermoleular forces of a fare to find the size of nate of the size of nations Intermoleular forces of attraction between molecules increases Intermoleular forces of a fare to the size of national patterns Intermoleular forces of attraction between molecules increases Intermoleular forces of attraction Intermoleular forces of attraction Intermoleular forces of attraction		Grey / silvery solid deposited on the iron object.	1	
butyl propanoate[;], butanol[;], propanoic acid[;] Hold Hol	С	Once tin is scratched, iron will lose electrons / oxidise more readily to form iron(II) ions as tin is less reactive than iron	1	
butyl propanoate[;], butanol[;], propanoic acid[;] Hold Hol		Total	9	marks
Accept catalytic hydrogen 1				
Accept catalytic hydrogenation.	- 7α			
Reject additional polymerisation \[\begin{align*} \begin{align*} \text{H & H & O & O \\ \begin{align*} \text{N-(CH2)_6-N-C-(CH2)_4-C} \end{align*} \] Any two of the following: • Members have the same general formula \$C_nH_{2n+1}X\$ • Members have the same general formula of carbon atoms increases. • Successive members differ from the next by a -CH2 group. \[\begin{align*} \text{ii} \text{ As the halogen atom changes from C/ to I, the boiling point of the alkyl halide increases.} \end{align*} \] The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases.} \[\text{Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases} \]		Accept catalytic hydrogenation.	1	
bi Any two of the following: • Members have the same general formula C _n H _{2n+1} X • There is gradual increase in boiling point as the number of carbon atoms increases. • Successive members differ from the next by a –CH ₂ group. ii As the halogen atom changes from C/ to I, the boiling point of the alkyl halide increases. The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases. Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases		Reject 'addition polymerisation'	1	1 1
Members have the same general formula C _n H _{2n+1} X There is gradual increase in boiling point as the number of carbon atoms increases. Successive members differ from the next by a –CH ₂ group. ii As the halogen atom changes from C/ to I, the boiling point of the alkyl halide increases. The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases. Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases 1		$ = \begin{pmatrix} H & H & O & O \\ I & I & I & I \\ N-(CH_2)_6-N-C-(CH_2)_4-C \end{pmatrix}_n \text{ , condensation polymerisation} $	1	
ii As the halogen atom changes from C/ to I, the boiling point of the alkyl halide increases. The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases. Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases	bi	 Members have the same general formula C_nH_{2n+1}X There is gradual increase in boiling point as the number of carbon atoms 	2	
increases. The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases. Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases			1	
of alky halide increases [1] and hence boiling point increases. Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases increases and amount of energy taken in to overcome these forces increases increase	"	increases.		
and amount of energy taken in to overcome these forces increasesi		The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases.	1	
111		Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases	1	
			\dagger	

	displayed formula	H + HI → H - C - C - I + H ₂ O H H H e of organic compounds and formulae of other chemicals	1	
1		Total	12	2 marks
5a	as chromium is less When chromium is h Cu / grey Cu turned black CuO and grey	eated with manganese oxide, there is no visible change. [;] reactive than manganese. [;] eated with copper (II) oxide, black CuO turned to reddish-brown to green Cr ₂ O _{3.} / Cr turned to green Cr ₂ O _{3.} and reddish-brown Cu. eactive than copper and displaces copper from CuO.	1 1	2; [1]
b		→ 3Mn ²⁺ (aq) + 2Cr (s)	1	
С		green and grey metal coated with a reddish-brown solid.	1	
l		Total	5	marks
6a	chlorine	colour and state at room temperature and pressure Greenish-yellow gas [;]	2	2; [1] 3; [2]
	bromine	Reddish-brown liquid [;]		
	iodine	Purplish-black solid [;]		
b	iodine from aqueous In the second experi	nt, bromine is more reactive than iodine [;] and displaces iodide[;], forming aqueous iodine which is brown. [;] ment, iodine is less reactive than chlorine [;] and unable to m aqueous chloride ions. Hence aqueous iodine remains and	2	4; [2] 2; [1]
С	decreases to -1 in Ca	of chlorine increases from 0 in Cl_2 to +1 in OCl_2 and l_2 . So oxidised and reduced simultaneously.	1	
l.		Total	6	marks

7a	Measure each sample of acid with a pH meter AND If the pH reading ranges from 3 to 6, then it is a weak acid OR Add a few drops of Universal indicator to each sample AND If the indicator changes to a yellow or orange colour, it is a weak acid [1]	1	
b	volume ratio 3: 2	1	
С	 Add aqueous sodium tartarate to a fixed volume of aqueous copper(II) nitrate in a beaker till no more precipitate is formed. [1] Filter the mixture to obtain copper(II) tartarate as a residue Wash the residue with a little distilled water and pat dry between pieces of filter paper. 	;	2; [1]
di	6.0°C [;] Since the magnesium ribbon is the limiting reactant [;], amount of heat energy given out is the same for same no. of moles of Mg [;]	2	3; [2] 1-2; [1]
ii	Arrow and label activation energy [;] Arrow and label ΔH [;] Correct formulae of products [;] ignore state symbols	2	3; [2] 1-2;[1]
	progress of reaction		
	Total	8	marks

8ai	HCFC-123				2	
	CFC-114: C ₂ Cl ₂ F ₂ HFC-125: C ₂ HF ₅	4			1	
b	Comparing CFC-1 molecule, [;]	1 and HCFC-22 and h	IFC-23 with one cart	oon atom in each		9; [4] 7-8; [3] 4-6; [2]
		HCFC	HFC	CFC] [1-3; [1]
	ODP	HCFC-22 has ODP of 0.04 less than CFC-11 but more than CFC- 11. [;]	HFC-23 has the lowest ODP at less than 4 × 10 ⁻⁴ . [;]	CFC-11 has the highest ODP of 1.00. [;]		

	GWP	HCFC-22 has the least GWP of 1700 [;]	HFC-23 has the highest GWP at 12100. [;]	CFC-11 has GWP of 4000 [;]		
	Although use of HFC by 2500X but it incre by 3X. [;] Use of HCFC reduce	eases global warming	to the greatest extended	ent, increases GWP		
ci		med by reacting with her O ₃ molecule in th	n one O ₃ molecule [; ne second step. [;]] is regenerated when	2	4; [2] 1-3; [1]
ii	Agree C-F and C-H have hi (328 kJ/mol), less (light) energy is react with ozone.			·	1	
d	Ammonia and carbo	n dioxide do not read	t with ozone.		1	
				Total	12	marks

Section B [10 marks]

Q	Answer	М	Remarks
9aii	$C_5H_{12} \rightarrow C_2H_6 + C_3H_6$	1	
iii	Add aqueous bromine to A and B separately. [;] For A , aqueous bromine remained reddish-brown. [;] For B , reddish-brown aqueous bromine turned colourless.[;]	2	3; [2]
	Displayed formula for propyl propanoate H H H H H H H H H H H H H H H H H H H	1	
bi	Mr of repeat unit = 114 When M_r = 16 000, number of repeating units = 16 000/114 = 140.35 [;] = 141 [round up] When Mr = 50 000, number of repeating units = 50 000/114 = 438.596 = 438 [round down] [;]	1	2; [1]
	Therefore, the range of the average number of repeating units is between 141 and 438 [1] inclusive.	1	
ii	displayed formula HOOCCH₂CH₂COOH	1	
	HOCH(CH₃)CH₂OH	1	

		Т	
iii	M_r of dicarboxylic acid $(C_4H_6O_4)$ = 118 M_r of diol $(C_3H_8O_2)$ = 76 No of moles of dicarboxlic acid = 1000/118 = 8.47458		
	Dicarboxyic acid is limiting. No of moles of polymer = 8.47458	1	
	Mass of polymer produced = 8.47458 × (118+76-2×18) = 1338 g = 1.34 kg	1	
	OR consider terminating monomer for each molecule Mass of polymer produced = 8.47458 × (118+76)- (8.47458-1)(18) = 1509.5 g = 1.51 kg		
	Total	10	marks
10ai		1	
ļ	As the air/fuel ratio changes from rich to lean, the amount of oxygen available to oxidise CO to CO ₂ increases,	1	
	amount of oxygen available to oxidise HC to CO₂ increases.	1	
	lesser CO amount available to reduce NO and hence conversion of NO _x decreases.	1	
ii	Nitrogen oxide causes respiratory problems.	1	
	Inhalation of carbon monoxide prevents haemoglobin from absorbing oxygen and may lead to suffocation / organ failure / headaches. [NB: discuss effect of each gas separately]	1	
bi	Step 1: Aqueous barium chloride removes the sulfate ions by precipitation due to formation of BaSO ₄ which is insoluble.	1	
	Step 2: Aqueous sodium carbonate removes the calcium, magnesium and iron(III) ions and the excess barium ions by precipitation due to the formation of CaCO ₃ , MgCO ₃ & Fe ₂ (CO ₃) ₃ which are insoluble.	1	
ii	Substance Z is hydrochloric acid. Hydrochloric acid reacts with carbonate ions to form water and carbon dioxide gas.	1	
-	Total	10	marks