

GREENDALE SECONDARY SCHOOL

Preliminary Examination 2024

Additional Mat	erials: Multipl	e Choice Answer S	Sheet	
CHEMISTR Paper 1 Multip				6092/01 1 hour
CLASS	4	TEACHING GROUP		REG. NO
STUDENT NAME				

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

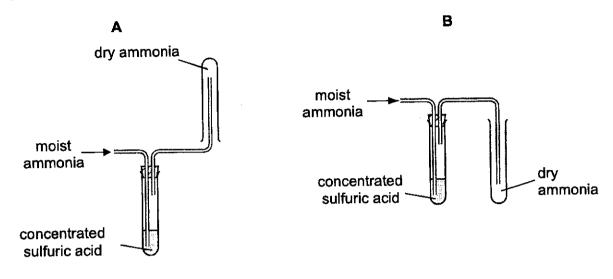
Do not use staples, paper clips, glue or correction fluid.

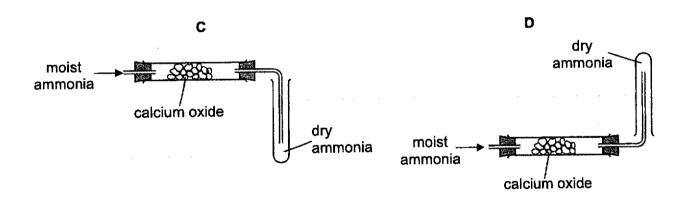
Write your name, class, teaching group and register number in the spaces provided above and on the Multiple Choice Answer Sheet provided.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

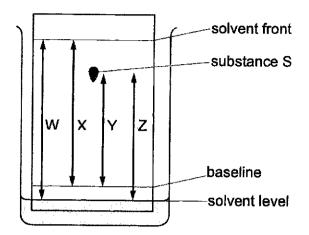

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.


A copy of the Periodic Table is printed on page 20.

The use of an approved scientific calculator is expected, where appropriate

1 A student is provided with two drying agents: concentrated sulfuric acid and calcium oxide.

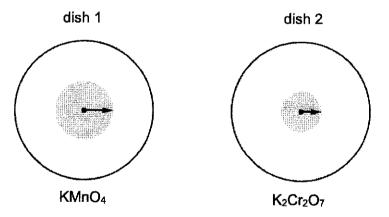
Which method should he use to collect a sample of dry ammonia? $[M_r: NH_3, 17]$



- Which ion contains the same number of electrons as ⁵⁶₂₆Fe³⁺?
 - A ⁵⁹₂₇Co³⁺
- B 52/Cr²⁺
- C ⁵⁶₂₅Mn²⁺
- D ⁵⁵₂₅Mn³⁺

3 The chromatogram of substance S is shown.

Some distances, W, X, Y and Z, are labelled on the diagram.

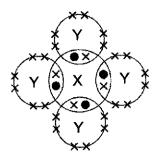


How is the Rf value of substance S calculated?

- $\mathbf{A} = \frac{\mathbf{X}}{\mathbf{Y}}$
- $\mathbf{B} = \frac{\mathbf{W}}{\mathbf{Z}}$
- $c = \frac{Y}{X}$
- $\mathbf{D} = \frac{\mathbf{Y}}{\mathbf{W}}$

Small crystals of purple KMnO₄ (M_r = 158) and orange K₂Cr₂O₇ (M_r = 294) were placed at the centres of separate petri dishes filled with agar jelly. They were left to stand under the same physical conditions.

After some time, the colour of each substance had spread out as shown.


The lengths of the arrows indicate the relative distances travelled by particles of each substance.

Which statement is correct?

- A Diffusion is faster in dish 1 because the mass of the particles is greater.
- **B** Diffusion is faster in dish 2 because the mass of the particles is greater.
- C Diffusion is slower in dish 1 because the mass of the particles is smaller.
- D Diffusion is slower in dish 2 because the mass of the particles is greater.

A compound, XY₄, is shown below. 5

Both atoms of elements X and Y combine to obtain the electronic configuration of neon.

Which row shows the correct group of elements X and Y and the number of non-bonding electrons in one molecule of XY4?

	group of X	group of Y	number of non-bonding electrons
A	14	17	24
В	14	17	34
С	17	14	24
D	17	14	34

How many sodium ions are there in 30 g of sodium sulfate, Na₂SO₄? 6

A
$$1.52 \times 10^{23}$$

B
$$2.54 \times 10^{23}$$

C
$$1.20 \times 10^{24}$$

D
$$6.02 \times 10^{24}$$

20 cm³ of propene was reacted with 150 cm³ of oxygen. 7

The equation for the reaction is shown.

$$2C_3H_6(g) \ + \ 9O_2(g) \ \rightarrow \ 6CO_2(g) \ + \ 6H_2O(I)$$

What is the total volume of gas, measured at room temperature and pressure, that remained at the end of the reaction?

- **A** 60 cm³
- **B** 90 cm³ **C** 120 cm³
- D 180 cm³

						•				
8	Br	omob	utane, C₄H	₉ Br, (can be made fro	om bu	ıtanol, C₄H ₉	OH, usir	ng	the reaction shown.
					C ₄ H ₉ OH + HBr	. → C	₄H ₉ Br + H ₂ ()		
	ln	an ex	periment, 1	0 g c	of C ₄ H ₉ OH prod	uced	12 g of C₄H	l₀Br.		
	What is the percentage yield of C ₄ H ₉ Br?									
	[<i>M</i>	r: C ₄ H	l₀OH, 74; C	₄H ₉ B	r, 137]					
	A	45%	6	В	54%	С	65%	0)	83%
9	Ca	ılcium	carbonate	reac	ts with dilute hyd	droch	loric acid ac	cording	to	the equation shown.
				Ca	$aCO_3 + 2HCl \rightarrow$	CaC	l ₂ + CO ₂ + F	I₂O		
	10	g of o	calcium car	bona	te is reacted wit	th 10	0 cm ³ of 1.0	mol / dr	m³	hydrochloric acid.
	Th	e follo	following statements are made.							
		1	1.20 dm ³	of ca	rbon dioxide is	forme	ed.			
		2	5.55 g of	calci	um chloride is fo	orme	d.			
		3			on dioxide is for					
		4			rbonate is left w		he reaction	is comp	let	ted.
	Which statements about the reaction are correct?									
	A	1 ar	d 2	В	1 and 4	С	2 and 3	D	,	3 and 4
10	The following statements describe acids, alkalis and water.									
		1	Hydrochlo	ric a	cid is acidic bec	ause	it contains	H⁺ ions :	an	d no OH ⁻ ions.
		2	Nitric acid	is a	cidic because it	conta	ains more H	† ions th	an	OH⁻ ions.
		3								s and no H ⁺ ions.
		4								ns is equal to the
					of OH ⁻ ions.			-		io io oqual to the
	Wh	ich st	atements a							
	Α	1 an	4.5	P	1 and 2	_	0 and 0	-		0 14
	~	ıanı	u Z	В	1 and 3	C	2 and 3	Đ	- 2	2 and 4

11 Beryllium hydroxide is an amphoteric white solid.

Which reagent can be used to distinguish beryllium hydroxide from solid calcium hydroxide?

- 1 HC*l*(aq)
- 2 HNO₃(aq)
- 3 KOH(aq)
- 4 NaOH(aq)
- A 1 or 2
- **B** 1 or 3
- C 2 or 4
- **D** 3 or 4

12 Which method should be used to make a pure sample of potassium chloride?

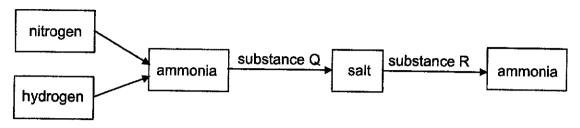
- A adding AgCl(s) to KNO₃(aq)
- B adding excess K₂CO₃(s) to HCl(aq)
- c mixing KNO₃(aq) with NaCl(aq)
- D titrating KOH(aq) with HCI(aq)

13 50.0 cm³ of hydrochloric acid has a pH of 1.0.

This acid requires 25.0 cm³ of aqueous sodium hydroxide to be neutralised.

A second 50.0 cm³ solution contains the weak acid, ethanoic acid.

The hydrochloric acid and ethanoic acid have the same concentration.


How will the pH of ethanoic acid and the volume of NaOH needed for neutralisation differ, if at all, from the hydrochloric acid?

	рН	volume of NaOH needed for neutralisation
A	higher than HCI	lower than for HCl
В	higher than HC <i>l</i>	equal to HCl
С	lower than HCI	lower than for HCl
D	lower than HCl	equal to HCI

14 Ammonia is produced by the reaction of the elements hydrogen and nitrogen in the Haber process.

One of these elements is obtained from crude oil.

The ammonia formed can be reacted with substance Q to form a salt. Ammonia can be displaced from this salt by reacting with substance R.

Which row correctly shows the element obtained from crude oil and the types of substances corresponding to Q and R?

	element obtained from crude oil	substance Q	substance R
Α	hydrogen	acid	base
В	hydrogen	base	acid
C	nitrogen	acid	base
D	nitrogen	base	acid

15 A mixture W, containing two compounds, is tested with different reagents.

The results are shown.

reagent	observation
excess aqueous ammonia followed by filtration	green precipitate and colourless solution
dilute nitric acid and aqueous silver nitrate	no visible reaction
dilute nitric acid and aqueous barium nitrate	white precipitate
warm with aqueous sodium hydroxide and aluminium foil	moist red litmus paper remains red

What are the two salts in solution W?

- A ammonium chloride and calcium sulfate
- B calcium nitrate and iron(II) chloride
- C iron(II) sulfate and zinc nitrate
- D iron(II) sulfate and zinc sulfate

16 The following substances are used in the laboratory to test for various gases.

acidified potassium manganate(VII)	aqueous sodium	blue litmus paper
limewater	red litmus paper	wooden splint

When testing for ammonia, chlorine, hydrogen and oxygen, what is the **minimum** number of items from the table above needed to identify these four gases?

A 2

B 3

C 4

D 5

Which pairs of statements correctly describe the differences between the conduction of electricity during electrolysis and the conduction of electricity by metals?

	conduction during electrolysis	conduction by metals
1	The current is due to the movement of both positive and negative ions.	The current is due to the movement of electrons.
2	Charged particles move towards both electrodes.	Charged particles move in one direction only.
3	It results in a chemical change.	It does not result in a chemical change.

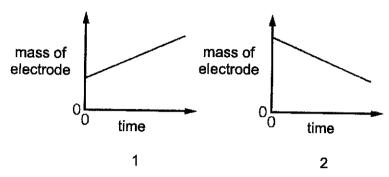
A 1, 2 and 3

B 1 and 2 only

C 2 and 3 only

D 1 only

18 Chemical Z is a powerful oxidising agent.


Which statement about Z is correct?

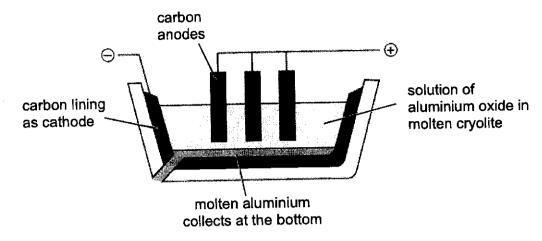
- A Z reacts with aqueous potassium iodide producing a brown solution and gains electrons in the process.
- B Z reacts with aqueous potassium iodide producing a brown solution and loses electrons in the process.
- C Z decolourises acidified potassium manganate(VII) and gains electrons in the process.
- D Z decolourises acidified potassium manganate(VII) and loses electrons in the process.

Impure copper can be purified via electrolysis, using copper electrodes and dilute aqueous copper(Π) sulfate as the electrolyte.

The current is constant and the positive and negative electrodes are weighed at regular time intervals.

The following graphs were obtained when the mass of the positive and negative electrodes are plotted against time.

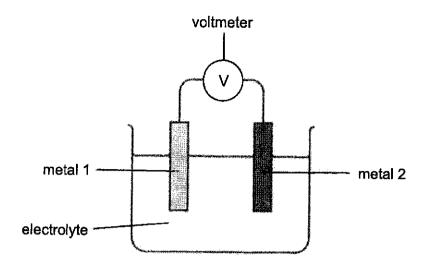
Which row correctly describes the electrolytic cell and the respective graphs obtained?


	negative electrode	positive electrode	graph for negative electrode	graph for positive electrode
A	impure copper	pure copper	1	2
В	impure copper	pure copper	2	1
С	pure copper	impure copper	1	2
D	pure copper	impure copper	2	1

- 20 Three statements about fuel cells are given.
 - 1 A hydrogen-oxygen fuel cell requires a continuous input of fuel and oxygen.
 - 2 In a hydrogen-oxygen fuel cell, hydrogen is burned in oxygen to produce electricity.
 - 3 When a hydrogen-oxygen fuel cell is operating, water is the only chemical product.

Which statements are correct?

A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only


21 The apparatus used for the extraction of aluminium by electrolysis of molten aluminium oxide is shown.

Which row correctly describes the electrolysis of molten aluminium oxide?

	negative electrode	positive electrode
Α	aluminium ions oxidised to aluminium	oxide ions reduced to oxygen
В	aluminium ions reduced to aluminium	oxide ions oxidised to oxygen
С	oxide ions oxidised to oxygen	aluminium ions reduced to aluminium
D	oxide ions reduced to oxygen	aluminium ions oxidised to aluminium

22 Two metal electrodes and an electrolyte can be used to produce electrical energy.

The table shows the voltage produced by some cells when different metals are used.

metal 1	metal 2	voltage / V	
silver	zinc	1.56	
silver	nickel	1.06	
silver	iron	1.25	
silver	magnesium	К	
copper	iron	L	

Which row best describes the voltage values K and L, and the relative reactivity of nickel?

	voltage K	voltage L	relative reactivity of nickel
A	greater than 1.56 V	greater than 1.25 V	more reactive than iron but less reactive than zinc
В	less than 1.56 V	less than 1.25 V	more reactive than both iron and zinc
С	greater than 1.56 V	less than 1.25 V	less reactive than both iron and zinc
D	less than 1.56 V	greater than 1.25 V	less reactive than both iron and zinc

23 X is a Group 1 metal, more reactive than sodium.

Y and Z are Group 17 elements.

When X reacts with Y, a salt is formed. A solution of this salt reacts with Z to form a different salt.

What are X, Y and Z?

	Х	Y	Z
Α	К	Cl ₂	I_2
В	Lì	Cl ₂	Br ₂
С	Li	Br ₂	Cl_2
D	K	\mathbf{I}_2	Cl ₂

- 24 Some properties of metals are listed.
 - forms chloride of formula XCl only, where X is the metal
 - 2 forms coloured compounds
 - 3 high density
 - 4 its presence can lower the activation energy of a reaction
 - 5 low melting point

Which row shows the properties of group 1 metals and transition metals?

	properties of group 1 metals	properties of transition metals
A	1 and 5	2, 3 and 4
В	1, 4 and 5	2 only
С	2, 3 and 4	1 and 5
D	2 and 3	1 and 4 only

25 An equal number of moles of metal carbonates XCO₃ and ZCO₃ are heated strongly.

They both decompose and release a gas.

The time taken for the compound to decompose completely is measured.

metal carbonate	time taken to decompose / s
XCO₃	92
ZCO₃	266

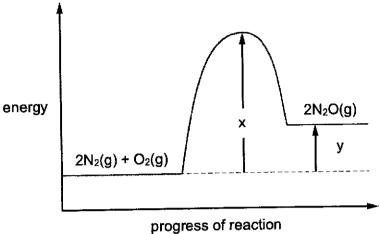
Which row describes the reactivity of the metals and the suggested method of extraction of each metal from its compound?

	reactivity of metals X and Z	method of extraction of X	method of extraction of Z
Α	X is more reactive than Z	electrolysis	reduction with carbon
В	X is more reactive than Z	reduction with carbon	electrolysis
С	Z is more reactive than X	electrolysis	reduction with carbon
D	Z is more reactive than X	reduction with carbon	electrolysis

26 Two large pieces of iron are placed in water.

In experiment 1, a small piece of copper is attached to the iron.

In experiment 2, a small piece of magnesium is attached to the iron.

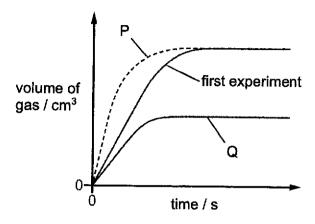

Which are the equations for reactions that would take place in experiment 1 and experiment 2?

	experiment 1	experiment 2
A	Cu(s) → Cu ²⁺ (aq) + 2e ⁻	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
В	$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$	$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$
С	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
D	Fe(s) → Fe ²⁺ (aq) + 2e ⁻	Mg(s) → Mg ²⁺ (aq) + 2e ⁻

Under certain conditions, nitrogen reacts with oxygen to form $N_2\mathsf{O}$. 27

$$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$

The reaction pathway diagram is shown.


Which of the following correctly represents the enthalpy change and activation energy for the forward and backward reactions?

	forward	reaction	backward	d reaction
	enthalpy change	activation energy	enthalpy change	activation energy
Α	x - y	х	y – x	у
В	у	y x		x – y
С	x -y	у	y – x	У
D	у	x – y	-у	x – y

25 cm³ of 1.0 mol / dm³ hydrochloric acid reacts with 10 g of a solid to produce a gas.

The solid is in excess. The graph labelled first experiment shows the volume of gas produced over time.

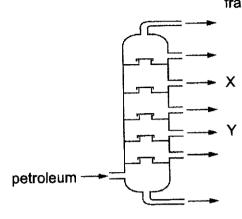
Graphs P and Q show the volume of gas produced under different conditions.

Which changes in conditions produce graphs P and Q, if all other conditions are kept the same?

- A P uses 25 cm³ of more concentrated of acid and Q has a lower temperature.
- **B** P uses higher temperature and Q uses 25 cm³ of more dilute acid.
- C P uses higher temperature and Q uses smaller pieces of solid.
- D P uses smaller pieces of solid and Q uses larger pieces of solid.

29 X reacts with steam to form Y.

Y is oxidised to form Z.


What are the formulae of X and Y?

	formula of X	formula of Y
A	C₃H ₆	C ₃ H ₇ O
В	C ₃ H ₆	C ₃ H ₈ O
С	C ₃ H ₈	C₃H ₇ O
D	C₃H ₈	C₃H ₈ O

30 Petroleum (crude oil) is separated into useful fractions by fractional distillation.

The positions at which fractions X and Y are collected from the fractionating column are shown.

fractions

Which statements are not correct?

- 1 The temperature increases up the column.
- 2 X condenses at a lower temperature than Y.
- 3 X has longer chain molecules than Y.
- 4 X is more flammable than Y.

A 1 and 3

B 1 only

C 2 and 4

D 3 only

31 The reactants and products of two reactions are shown.

reaction 1
$$C_2H_6 + Cl_2 \rightarrow X + HCl$$

reaction 2
$$C_{17}H_{36} \rightarrow 2C_2H_4 + C_3H_6 + 2Y + H_2$$

Which row correctly describes these two reactions?

	formula of X	conditions for reaction 1	reaction 2	Y
Α	C ₂ H ₅ C <i>l</i>	in the dark	cracking	saturated
В	C ₂ H ₄ C <i>l</i> ₂	in the dark	substitution	unsaturated
С	C ₂ H ₄ Cl ₂	in ultraviolet light	cracking	saturated
D	C ₂ H ₅ C <i>l</i>	in ultraviolet light	cracking	unsaturated

32 The structure of hydracrylic acid is shown.

A student added the following reagents to hydracrylic acid.

- 1 acidified potassium manganate(VII)
- 2 aqueous sodium carbonate
- 3 Universal Indicator

Which row correctly identifies the results obtained that correspond to the experiments?

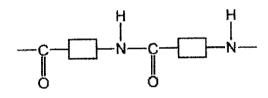
	acidified potassium manganate(VII)	aqueous sodium carbonate	Universal Indicator
A	colourless to purple	effervescence occurred	green to yellow
В	purple to colourless	effervescence occurred	green to orange
С	purple to colourless	effervescence occurred	green to blue
D	purple to colourless	no effervescence	green remains

33 A vegetable oil is polyunsaturated.

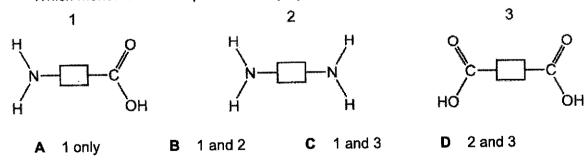
Which statement about this vegetable oil is not correct?

- A It has many carbon carbon double bonds.
- B It reacts with hydrogen to form a solid compound.
- C It will turn colourless aqueous bromine brown.
- D Nickel catalyst is added when forming margarine from vegetable oil.

There are two isomers of butene, C₄H₈. Their structures are given below. 34


The following statements are made about the isomers.

- Combustion of 1 mole of each produces equal numbers of moles of both 1 carbon dioxide and water.
- Both produce the same molecule when reacted with hydrogen. 2
- When polymerised, the same polymer is produced. 3
- The following are the possible products from the reaction between bromine 4 and each isomer.


Which statements are correct?

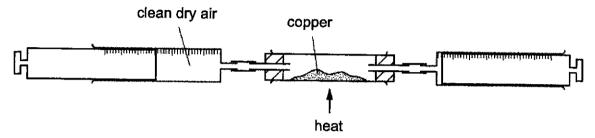
- **A** 1, 2 and 4
- 1 and 2 only
- C 2 and 3 only D 2, 3 and 4

The partial structure of a polyamide is shown. 35

Which monomers would produce this polymer?

A pure fat has a molecular mass of 400. 36

100 g of the fat reacts with 127 g of iodine, I_2 .


How many moles of carbon - carbon double bonds are there in each molecule of the fat?

- 1 mol
- 1.5 mol
- 2 mol
- D 4 mol

37 Carbon dioxide and methane are both greenhouse gases.

Which activity produces both of these gases?

- A farming animals
- **B** cracking alkanes
- C the thermal decomposition of calcium carbonate
- D using petrol-powered cars
- 38 A sample of clean, dry air is passed repeatedly over hot copper until all the oxygen reacts with the copper as shown.

The volume of air decreases by 25 cm³.

What is the starting volume of the sample of air?

- A 50 cm³
- **B** 75 cm³
- C 100 cm³
- D 120 cm³
- 39 Which gas will react with ozone in the upper atmosphere of the Earth?
 - A CF₂C_{1/2}
- B CH₄
- C CO₂
- D CF₄
- 40 The carbon cycle includes the processes combustion, photosynthesis and respiration.

Which row shows how each process changes the amount of carbon dioxide in the atmosphere?

	combustion	photosynthesis	respiration
Α	decreases	decreases	increases
В	decreases	increases	decreases
C	increases	decreases	increases
D	increases	increases	decreases

END OF PAPER

			***************************************				- Re Yer	ne renodic Labre of Elements	5 2	3					Mind Later Brown		
		***************************************	Market Company	The state of the s		***************************************		3	<u> </u>	***************************************		13	14	15	16	-	81
-	7	***************************************	***************************************	***************************************	***************************************	-	*	**************************************	Appropriate and administration of the	NAME OF TAXABLE PARTY AND POST OF TAXABLE PA	Terresono comercia	-	-		-		64
							- 3									····	£
							c										S. S
				Š			in the second										4
ř	ĺ	L		rey	1						L	5	9	7	න	o	9
~	*		project	proton (atomic) number								œ	ပ	Z	0	u.	ž
3	å		0	atomic sympo	5							vo.oq	carbo	mitrogen	u ackoo	fluorime	Decon
	Deryfilm		- Agent	pame -	4							=	Ş	4	16	С	8
7	59		(ORG)	C SECTION	0000							3	14	15	16	17	ç,
-	52											¥	ίδ	۵.	s)	ö	Ä
2	 0¥ 										•	minimizer	CONTRACT	phosphorus	******	chaorine	argen.
sodium	magnostum	₹.	70	ĸ	ŧρ	۲	60	O	9	Д	2	2	28	5	S	35.5	â
R	7.	,		3	7.7	36	36	7.6	NC.	29	98	31	32	33	Ř	35	8
Q	8	'n	2	S.	\$ 1	3 ;	3 (ić	} =			Ĉ	đ	Ą	e co	ă	ጵ
×	ű	တိ	ï	>	ბ	<u>S</u>	T.	3	Z	3	Ī -	5	3		an land	bycordina	SOUTH THE
reduces an	C C	scandium	thankm	mulpeusy		manganase	103	Coball	nicker	- doos	2	E CONTROL	Carmental Paris		2	C	. 2
96	W	**	48	in	S	8	90	65		8	ક	2	3	2	2		
3 3			Q.	**	S	63	44	45	46	47	\$	Q.	8	<u>.</u>	8	ñ	.
ð i	8 (3 >	2 %	÷ ±	: \$	۲,	ā	£	Pa	Ą	8	5	హ	හි	<u>e</u>)-wi	×
2	ñ)	2	2	2 .	2 1		and a	Assistant .) }	Castminm	imdium	s	amtimony	Intrinsim	e de la constante de la consta	Mercon
rubitari	Strontian		Encopie.	moon	mayoom m	MCT MOTHER	į	103	905	8	112	Ť.	119	22	1 38	127	131
8	8	S .		3	3 3	34	3	14	78	g	8	8	88	æ	\$	8	88
8	8	-Ja	۲:	2	! }	2 6	ځ :		. ā	Ā	£	F	£	ã	0	¥	٤
ඊ	6	an menorage	Ē	<u> </u>	>	Ë	S	3 4		3 7	2		Deal	Dismitt	potonium	astatine	radon
coesara	Continue		hadminn	lantaium + 0 +	Lingsten 124		E 8	5	25	197	Ŕ	충	202	208		\$	***
3	137		0/:	5	5			1	+ 4*	***	64.5	844	711	115	116	117	÷
88	88	89-103	₫	505	\$	70,	3	5	2 (= 6	= {	: <u>:</u>	ŭ		>	%	S
ŭ	8	actinoids	ř	8	S	듄	£	¥	5	ç Y	5	Ē			i in the second	iernessine.	0038048800
francism	un pe		rutherfordum	dubritum	emathorgium	populum	Passium:	meimenum k	darmstarffarm.	roentoernern	copermicaru	SHOWOUR !	Seronari Seronari	The second secon	,	,	
1	1		1	1	ì	1	1	ì	i	ŀ	ł	1					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

lanthanoids	57 La Laedhennen 139	Ce Ce 140	Pr Presentation	Nd Nd 144	P P P	S & 25	E E S	8 25 gg 8	2 £ £ 6	8 A 8 A 8	5	. m	E # 10	47 173 173	3 § E
actiroids	A & 88	ŧ	Pa Pa Pa 231	238 E	N dN reprinter	F S S	8 \$ *	8 & g	黄色	2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		£ § .	X	S gg .	7
i	*	,			4	Section 1	C + 1) Carried Contract from the carried	ىنى <u>ن</u>							

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L \approx 6.02 \times 10^{23} \, \text{mol}^{-1}$

GREENDALE SECONDARY SCHOOL

Preliminary Examination 2024

Student answer	er on the Ques Materials are f	stion Paper. Required.	
CHEMISTF Paper 2	RY		6092/02 1 hour 45 minutes
CLASS	4	TEACHING GROUP	REG. NO
STUDENT NAME			

READ THESE INSTRUCTIONS FIRST

Write your name, class, teaching group and register number in the spaces provided above. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer one question.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 32.

The use of an approved scientific calculator is expected, where appropriate.

Section A

Answer all questions.

- 1 Two chloride salts, iron(II) chloride and lead(II) chloride are made from the same acid but different preparation methods.
 - (a) Complete Table 1.1, in identifying the reactants to prepare iron(II) chloride and lead(II) chloride salts.

Table 1.1

salt		reacta	nts
		acid	other reactant
iron(II) chloride		hydrochlonic acid	iron(II) carbonate
		X	(ead(II)nitrate
L			[2]
(b)	Use Table 1.7 lead(II) chlorid	1 to name the resulting solution fo de salt.	rmed during the preparation of
	solution forme	ed:	[1]
(c)	While preparis	ng iron(II) chloride, a student added	one of the reactants in excess.
	Use Table 1 preparation of	.1 to identify which reactant mus firon(II) chloride.	t be added in excess for the
	Explain your r	reasoning.	

			[1]

[Total: 4]

2 (a) Fig. 2.1 shows the structure of compound A.

Fig. 2.1

Compound A can be polymerised.

Draw **two** repeating units of the polymer formed when compound **A** is polymerised.

	[1	1]
(b)	Poly(ethene) is an example of a polymer that can be recycled.	
	Describe one physical method and one chemical method used to recycle this polymer.	S
	physical method	
	chemical method	
		•
	[2]

[1]

[1]

[Total: 7]

(c) (i) Fig. 2.2 shows two monomers that react together to produce a polymer.

$$H_2N - (CH_2)_2 - NH_2$$
 $C - (CH_2)_4 - C$

HO

OH

monomer 1

monomer 2

Fig. 2.2

Draw the structure of the repeating unit of the polymer produced from monomers 1 and 2.

(iii) The repeating unit for a different polymer is shown in Fig. 2.3.

-O -(CH₂)₂-O -C -(CH₂)₄-C
Fig. 2.3

Suggest one similarity and one difference between the monomers used to make this polymer and those used to make the polymer in (c)(i).

[2]

(iii) Name the type of linkage found in the polymer formed in (c)(i) and the polymer shown in Fig. 2.3.

polymer formed in (c)(i):

polymer shown in Fig. 2.3:

3 Compounds A and B are isomers.

Table 3.1 shows some information about the isomers **A** and **B**.

Table 3.1

isomer	desc	ription of isomer				
	H - C - H	- C -	O	empirical formula	M _r	pH of 0.1 mol/dm³ of solution
Α	✓	✓		C ₂ H ₄ O	88	3
В	✓	×	✓	C₂H₄O	88	3

	R	✓	*	/	C₂H₄O	88	3
		ence of unit nce of unit					
(a)	Whi	ch data in Table	3.1 supports t	he statemer	nt that A and	B are	isomers?
		•••••	•••••••••••		••••••		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			•				[
(b)	Use isom	the information ners A and B .	in Table 3.1 t	to deduce a	nd draw the	struct	ural formula fo
	Sho	w all atoms and l	bonds.				
				isomer A			
				····			
				isomer B			
	1						

(c) The structure of another isomer of A and B is shown in Fig. 3.1.

Draw the displayed formula of the carboxylic acid and the alcohol that react to form the isomer in Fig. 3.1.

alcohol	carboxylic acid
	[2]

(d) Another compound R is from the same homologous series as isomers A and B.

Compound R contains of 62.1% carbon, 10.3% hydrogen and 27.6% oxygen.

Deduce the $\mbox{\it empirical formula}$ of compound $\mbox{\it R}.$ Show your working.

4 Fig. 4.1 shows some elements in the Periodic Table.

	1	2	13	14	15	16	17	18
Period 2	Li			С		o	F	
Period 3	Na						C <i>i</i>	
Period 4	K						Br	
Period 5	Rb						I	

Fig. 4.1

(a) Put a tick (\checkmark) in **one** box for each row to show whether the following statements about the trends of some of these elements in Fig. 4.1 are true or false.

	true	false
Atoms lose electrons more easily down group 1.		
Melting point decreases from fluorine to iodine.		
The strongest non-metal oxidising agent is at the top of a group.		
Metallic character increases across Period 3.		

(b) Table 4.1 shows information about some of the elements in Period 2.

Table 4.1

element	melting point /°C	electrical conductivity
lithium	180.5	good
carbon (graphite)	3600	good
oxygen	-218.8	poor

Use ideas about bonding and structure to explain the differences in properties of the elements shown in Table 4.1.
······································
·····

[5]

[Total: 7]

Table 5.1 shows some information about the hydrides of elements in Period 3 of the Periodic Table. Read the information and answer the questions that follow.

Table 5.1

element	metal / non-metal	formula of hydride	M _r of hydride	effect of adding hydride to water
Na	metal	NaH	24	reacts to form H₂(g) and an alkaline solution
Mg	metal	MgH ₂	26	reacts to form H ₂ (g) and an alkaline solution
A <i>l</i>	metal	A/H₃	30	reacts to form H ₂ (g) and an alkaline solution
Si	non-metal	SiH₄	32	does not react
Р	non-metal	PH ₃	34	reacts to form H ₂ (g) and a slightly alkaline solution
S	non-metal	H ₂ S	34	reacts to form a slightly acidic solution
Cl	non-metal	HC <i>i</i>	36.5	reacts to form an acidic solution

(a)	Write a balanced chemical equation for the reaction between NaH and water.
	[1]
(b)	A student performs an experiment to test whether some hydrides react with water
	He adds each hydride to water and tests the pH of the mixture.
	Explain how the result shows whether a hydride is a metal hydride or a non-meta hydride.
	······
	[1]

(c) Draw a 'dot-and-cross' diagram to show the bonding in NaH.

Show only outer electrons.

	[2]
(d)	Explain why sodium hydride can conduct electricity in molten state but not in solid state.
	[2]
(e)	Two students make these statements about the percentage by mass of hydrogen in the hydrides.
	Student 1: 'The greater the number of hydrogen atoms in the hydride, the greater the percentage by mass of hydrogen.'
	Student 2: 'The percentage by mass of hydrogen is the same for the same number of hydrogen atoms in the hydride.'
	Does the information in Table 5.1 support the statements made by students 1 and 2?
	Explain your reasoning.
	[2]
	[Total: 8]

A student investigates the progress of the reaction between 20 cm³ of 0.1 mol/dm³ dilute hydrochloric acid, HCl, and an excess of large pieces of marble, CaCO₃, using the apparatus shown in Fig. 6.1.

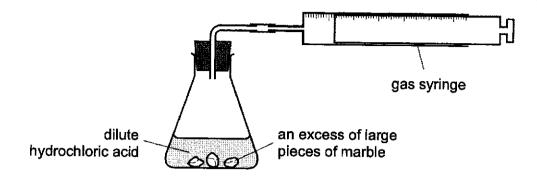


Fig. 6.1

(a) A graph of the volume of gas produced against time is shown in Fig. 6.2.

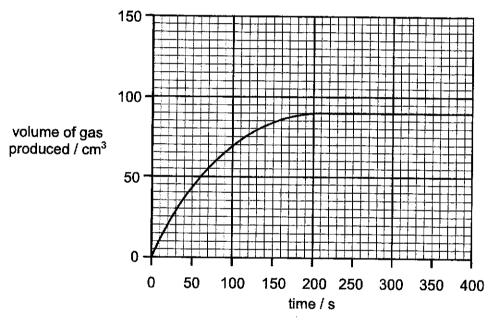


Fig. 6.2

(i) Deduce the time at which the reaction finishes.

time = s [1]

(ii) Calculate the average rate of the reaction for the first 90 seconds.State the unit for the rate of reaction.

average rate of reaction =[1]

(b)	The ex	periment	is	repeated	using	the
-----	--------	----------	----	----------	-------	-----

(c)

- same mass of smaller pieces of marble,
- half the volume of 0.1 mol/dm³ of HCl.

All other conditions are kept the same.

Draw a line **on the grid** in Fig. 6.2 to show the progress of the reaction with the changes in conditions.

The original experiment is repeated at a higher temperature.

All other conditions are kept the same.

Explain why the rate of a reaction increases when temperature increases, in terms of activation energy and collisions between particles.

[Total: 5]

7 Peroxodisulfate ions, S₂O₈²⁻, react with iodide ions in aqueous solution.

$$S_2O_8{}^{2-}(aq) + 2I^-\left(aq\right) \to 2SO_4{}^{2-}(aq) + I_2(aq)$$

Table 7.1 shows how the relative rate of this reaction changes when different concentrations of peroxodisulfate ions and iodide ions are used.

Table 7.1

experiment	concentration of S ₂ O ₈ ²⁻ / mol dm ⁻³	concentration of I ⁻ / mol dm ⁻³	relative rate of reaction
1	0.008	0.02	1.7
2	0.016	0.02	3.4
3	0.032	0.02	6.8
4	0.008	0.04	3.4
5	0.008	0.08	<u> </u>

(a)	Use information in Table 7.1 to deduce the relative rate of experiment 5.
	Explain your reasoning.
	[1]
(b)	In experiments 4 and 5, the volume of aqueous peroxodisulfate ions used is 20 cm ³ each.
	In experiments 4 and 5, the volume of aqueous iodide ions used is 10 cm ³ each.
	Which is the limiting reactant at the start of experiments 4 and 5?
	Show your working.

(a)	Emis	ssions from power stations contain the pollutant gas, sulfur dioxide.
	(i)	Describe one harmful effect on marble statues and metal bridges caused by sulfur dioxide.
		[1]
	(ii)	One way to remove sulfur dioxide is to use a 'scrubber' containing wet calcium carbonate.
		The reaction of sulfur dioxide with wet calcium carbonate happens in several stages.
		In the first stage, sulfur dioxide reacts with water to make an acid, H ₂ SO ₃ .
		In the second stage, this acid reacts with calcium carbonate to make calcium sulfite, $CaSO_3$.
		Write a chemical equation for the reaction in each stage.
		equation in stage 1:
		equation in stage 2:
		[2]

(b)	Car engines are adjusted to work at a particular air: fuel ratio
-----	--

The amount of air that is mixed with the fuel affects the temperature of the engine, the amount of pollutant gases that form and how efficiently the catalytic converter works.

WOIR	. S.			
The	The major pollutant gases are carbon monoxide and nitrogen monoxide.			
(i)	A 'lean burn' engine runs with a higher ratio of air to fuel than a normal car engine.			
	This means that the mixture contains a higher amount of air compared to fuel.			
	One effect of this is a lower running temperature of the engine.			
	How will a lean burn engine affect the amount of carbon monoxide and nitrogen monoxide formed compared to a normal car engine?			
	Explain your reasoning.			
	······································			

(ii)	The catalytic converter removes pollutant gases.	
	The converter removes carbon monoxide and nitrogen monoxide by oxidation and reduction.	
	from oxidising agent to reducing agent	
	$CO + [O] \rightarrow CO_2$ $2NO \rightarrow N_2 + 2[O]$	
	Write an overall equation to show how carbon monoxide and nitrogen monoxide react together in the converter.	
	[1]	
(iii)	ii) Explain in terms of oxidation states, why the reactions in the cataly converter are described as redox.	
	[2]	
	[Total: 9]	

9 Alkynes are a homologous series of organic compounds.

Alkynes contain the C≡C group. They react in a similar way to alkenes.

Table 9.1 shows some information about the first four alkynes.

Table 9.1

alkyne	molecular formula	boiling point / °C
ethyne	C ₂ H ₂	-84
	C ₃ H ₄	-23
butyne	C ₄ H ₆	8
pentyne	C₅H ₈	40

(a)	Sug	gest the name of the alkyne with the molecular formula C ₃ H ₄ .
		[1]
(b)	Ded	uce the general formula of the alkyne homologous series.
		[1]
(c)	Ethy	ne reacts with oxygen in an exothermic reaction.
Н	— (i)	$E = C - H + 2\frac{1}{2}O = O + $
		Use ideas about the energy changes that take place during bond breaking and bond making.

ii)	The complete combustion of one mole of ethyne releases 1410 kJ of energy.
	Calculate the energy released when 1000 dm ³ of ethyne, measured at room temperature and pressure, is completely combusted.

		energy released = KJ [2]
d)	Ethy	ne is bubbled through aqueous bromine.
	(i)	Suggest a possible molecular formula of the product of this reaction.
		[1]
	(ii)	What is observed during the reaction?
		[1]
		[Total: 8]

10 Dynamic equilibrium

Reversible reactions often have a product yield much lower than 100%, and always result in a mixture of products and reactants after no further chemical change occurs.

A reversible reaction comprises of a forward reaction and a backward reaction, as shown in Fig. 10.1.

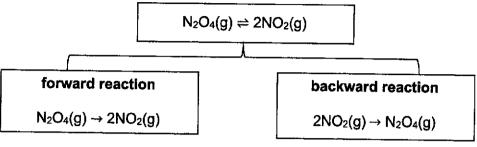
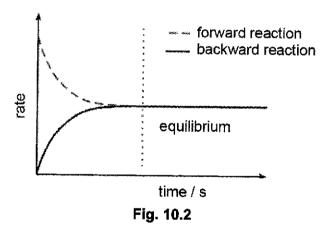



Fig. 10.1

A unique feature about reversible reactions is that both forward and backward reactions occur simultaneously.

Eventually, a state of **dynamic equilibrium** is achieved, whereby any new amount of products formed is converted back into the reactants, and the reactants are converted into products, as time passes. Hence, the system is in a state of balance, known as equilibrium. The concentration of reactants and products remain constant.

Fig. 10.2 shows a graph of forward and backward reaction rates as time passes, based on the decomposition of N_2O_4 , dinitrogen tetroxide, shown in Fig. 10.1.

Le Chatelier's principle

In the late 1800s, Henri Louis Le Chatelier, devised an important principle. It states that if a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract and remove the change to re-establish a new equilibrium of reactants and products.

One way in which the equilibrium can be disturbed is by adding reactants or products to, or removing reactants or products from the mixture.

The composition of an equilibrium mixture in a reversible reaction can be affected by changes in concentration, temperature and pressure.

Factors affecting equilibrium

Changing concentration

An example is the formation of a white precipitate of bismuth oxychloride, BiOCI, when colourless bismuth(III) chloride, BiCI, is added to water.

$$BiCl_3(aq) + H_2O(l) \Rightarrow BiOCl(s) + 2HCl(aq)$$

Read Table 10.1 which describes the changes when excess HCI(aq) is added to the equilibrium mixture. This addition of excess HCI(aq) is a 'disturbance'.

Table 10.1

substances present at initial equilibrium	BiCl ₃ (aq), H ₂ O(I), BiOCl(s) and HCl(aq)
disturbance: adding excess HC/ at equilibrium	increase in concentration of $H^+(aq)$ and $C\varGamma(aq)$
to counteract and remove the disturbance	shift towards the backward reaction to remove excess HCI(aq)
new equilibrium obtained	more BiC&(aq) and H ₂ O(I); less BiOCI(s)

Changing temperature

An example is the industrial manufacture of ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Read Table 10.2 which describes the changes when temperature is increased.

Table 10.2

substances present at initial equilibrium	N ₂ (g), H ₂ (g) and NH ₃ (g)
	forward reaction releases heat (exothermic);
energy change for this reaction	backward reaction absorbs heat (endothermic)
disturbance: increase in temperature at equilibrium	excess heat added to the reaction
to counteract and remove the disturbance	shift towards the backward reaction which absorbs the excess heat
new equilibrium obtained	more N ₂ (g) and H ₂ (g); less NH ₃ (g)

Changing pressure

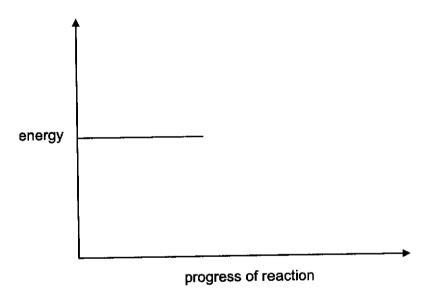
The same example of the industrial manufacture of ammonia is used.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Read Table 10.3 which describes the changes when pressure is increased.

Table 10.3

moles of gas	moles of gaseous reactants: 1 mole of N ₂ + 3 moles of H ₂ = 4 moles moles of gaseous product: 2 moles of NH ₃ = 2 moles
disturbance: increase in pressure at equilibrium	excess pressure in the reaction
to counteract and remove the disturbance	shift towards the forward reaction (fewer number of moles of gas) to decrease the number of moles of gas present
new equilibrium obtained	less N₂(g) and H₂(g); more NH₃(g)


(a)	Use information from Fig. 10.2 to describe how the forward and backward reaction rates change over time.			
		•		
		•		
	ro)]		

(b) Complete the energy profile diagram for the manufacture of ammonia.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
 $\Delta H = negative$

Your diagram should show:

- the reactants and products of the reaction,
- the energy profile and activation energy, E_a,
- the enthalpy change of reaction, ΔH .

(c)	When hydrogen ions are added to methyl orange (Meor), a red coloured complex (H-Meor) is formed.
	An equilibrium mixture between the two forms of methyl orange will be established.
	H-Meor(aq) ⇌ H⁺(aq) + Meor⁻(aq) red yellow
	Meor is yellow in colour.
	Using Le Chatelier's Principle, suggest what you would observe when hydroxide ions are added to this equilibrium mixture.
	Explain your reasoning.
	······································
	[2]
(d)	An equilibrium mixture for the formation of methanol from carbon monoxide and hydrogen is shown.
	$CO(g) + 2H_2(g) \Rightarrow CH_3OH(g)$
	Using Le Chatelier's Principle, predict and explain the effect of decreasing the pressure on the amount of methanol in the equilibrium mixture.
	The temperature remains constant.
	[2]

(e) At 200 °C and 200 atmospheric pressure, phosphorus(V) chloride, PC &, forms an equilibrium mixture with phosphorus(III) chloride, PC &, and chlorine, C &.

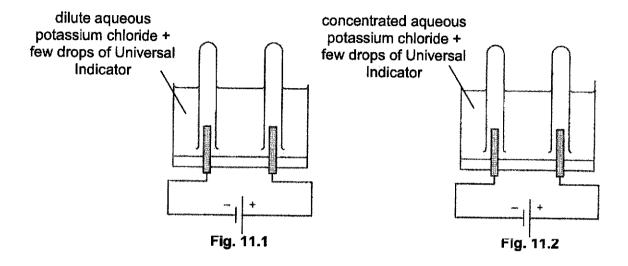
$$PCL(g) \Rightarrow PCL(g) + CL(g)$$

The table shows the percentage of phosphorus(III) chloride in the equilibrium mixture at different temperatures.

The pressure is the same in each case.

temperature / °C	% of PC& in the mixture
200	48
300	95
400	99

(i)	Describe how the composition of this equilibrium mixture changes with temperature.
	[1]
(ii)	Use your answer from (e)(i) and Le Chatelier's Principle to predict whether the forward reaction is endothermic or exothermic.
	Explain your reasoning.
	•••••••••••••••••••••••••••••••••••••••
	[2]
	[Total: 12]


Section B

Answer one question from this section.

11 (a) Electrolysis of dilute aqueous potassium chloride and concentrated aqueous potassium chloride were carried out separately using inert electrodes.

A few drops of Universal Indicator were added to each of the electrolyte.

The set-up is shown in Fig. 11.1 and Fig. 11.2.

A student made this conclusion regarding both the electrolysis.

For both of the electrolysis,

- the gaseous product at the negative electrode is the same but
- the gaseous product at the positive electrode is different.

Explain the student's conclusion and the changes to the electrolyte.

Your answer should:

- explain why the products form,
- describe and explain the changes to the Universal Indicator added to each electrolyte,

•	give half-equations for the reaction at each electrode.	
		-
		•
		•
	•••••••••••••••••••••••••••••••••••••••	•
		•
		•
		•
••••		••
••••		••
••••		••
•••••		••
		••
		••
]	 5]

(b) A new type of electroplating is known as brush electroplating. It can be used to electroplate copper onto very large iron structures.

During the electroplating process, a metal brush spreads a layer of aqueous copper(Π) sulfate over the surface of the iron structure. A layer of copper metal forms on the surface of the iron support.

Fig. 11.3 shows the set-up.

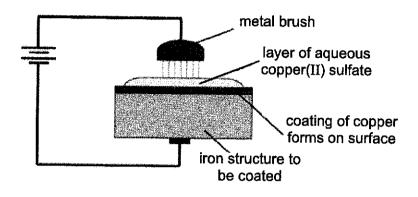


Fig. 11.3

(i)	Identify each electrode in the electroplating process in Fig. 11.3.	
	negative electrode:	
	positive electrode:	
		[1
(ii)	Write an ionic half-equation for the formation of copper metal on the structure.	iror
	State symbols are not required.	
		[1]

(iii)	Two different designs of metal brush are available. One type of brush is made of copper while the other is made of platinum.
	As the electroplating takes place, each brush has a different effect on the concentration of $copper(II)$ ions in aqueous $copper(II)$ sulfate.
	State the effect on the concentration of copper(II) ions during the electrolysis when each brush is used.
	brush made of copper:
	effect:[1]
	brush made of platinum:
	effect:[1]
(iv)	Platinum brushes are much more expensive than copper brushes.
	However, copper brushes need replacing regularly but platinum brushes do not.
	Explain why.
	[1]
	[Total: 10]

12 (a) Fig. 12.1 shows an experiment, where rods of copper and zinc are dipped into dilute sulfuric acid.

The top of each rod is touching.

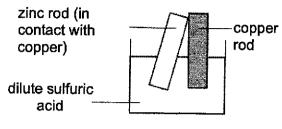


Fig. 12.1

Predict and explain the expected observations.

Your answer should:

•	describe the	e expected	observations	at each	piece	of metal	rod,
---	--------------	------------	--------------	---------	-------	----------	------

explain why each change occurs,

give half-equations for the reaction at each metal rod.	

[3]

(b) Table 12.1 gives some data about two fuels, hydrogen and ethanol.

Table 12.1

fuel	boiling point/ °C	density at r.t.p / g dm ⁻³	volume of 1 mol of fuel at r.t.p / dm ³	enthalpy change of combustion / kJ mol ⁻¹	enthalpy change of combustion / kJ g ⁻¹
hydrogen, H ₂	-252	0.083	24		-143
ethanol, C₂H₅OH	78.4	789		-1367	

(i) Complete Table 12.1 by calculating the volume of 1 mol of ethanol, and the enthalpy change of combustion of hydrogen in kJ / mol and the enthalpy change of combustion of ethanol in kJ / g.

Use the space below to show your working.

(ii)

Use the information in Table 12.1 to evaluate the use of hydethanol as fuels.	arogen and
Your answer should consider: the ease of storage, the energy content of the fuels.	
	[2]

(iii)	Ethanol can be manufactured from ethene and from glucose.
	State which source of ethanol makes it a renewable fuel and explain your answer.
	[1]
	[Total: 10]

END OF PAPER

1
S
Section Part
9 5 6 7 8 9 B C N O F B C N O F 11 12 N O F 13 14 15 16 17 14 15 16 17 19 15 14 15 16 17 16 17 12 14 15 16 17 17 28 29 30 31 32 35.5 35.5 20 NI Cu 27 28 31 32 35.5 35.5 20 NI Cu 27 28 31 32 35.5 35.5 45 46 47 48 49 50 51 79 80 Rh 46 47 48 49 50 51 72 78 103 40 48
9 10 11 12 A1 55 6 7 8 9 27 B C N O F 19 F 11 17 A1 51 A2 16 17 19 Cl F 19 Cl F 19 Cl F 10 17 A2 A2 A3
Part
9 10 11 12 14 15 16 19 27 28 10 11 12 27 28 17 19 27 28 29 30 31 32 35.5 26 Cobalt 10 11 12 27 28 33 34 35.5 So NI Cu 2n 2n 2g 33 34 35.5 So NI Cu 2n 2n 2g 33 34 35.5 So NI Cu 2n 2n 3g 3g 35.5 35.5 So So 6d Ge As Se Br Br 35.5 53 35.5 53 35.5 53 45.5 53 45.5 53 45.5 53 45.5 53 45.5 53 45.5 53 45.5 53 45.5 53 45.5 53
11 12 14 15 16 17 17 17 18 14 15 16 17 17 18 14 15 16 17 17 18 14 15 16 17 17 18 18 18 18 18 18
9 10 11 12 A1 Si P S C1 27 28 29 30 31 32 35.5 C1 Co NI Cu Zn Ca A5 Se Br 35.5 35.5 59 59 64 85 70 73 75 79 80 Rh Pod A7 48 49 50 51 52 53 Rh Pod A7 48 49 50 51 52 53 Rh Pod A4 48 49 50 51 75 79 80 Rh Pod A4 11 119 122 128 127 103 108 108 115 119 122 128 127 108 110 111 112 114 115 116 117 108 110 111<
9 10 11 12 altuminum silecom sileco
9 10 11 12 alterninkum selecon phosphorius sulfur chokine 27 28 29 30 31 32 33 34 35 Co NI Cu Zn Ga Ge As Se Br cobali nickel copar ann gelikum germanium severium bromina 59 59 64 65 70 73 75 Se Br 45 46 47 48 49 50 51 52 53 Rh Pd Aq 11 Sn Sh 17 17 Rh Pd Aq 11 Sn 51 52 53 103 At Hq 11 Ph Bl Po At 11 Pt Au Hq 11 Ph Bl Po At 11 Pt Au
27 28 29 30 31 32 33 34 35 Co NI Cu Zn Ga Ge As Se Br 59 59 64 47 48 49 50 51 79 80 45 46 47 48 49 50 51 79 80 Rh Pd Ag Cd In Sn 51 79 80 Rh Pd Ag Cd In Sn 5b Te I 103 106 Ag Cd In Sn 8b Te I 103 106 108 112 119 122 128 127 1 Pr Au Hg Ti Pb BI Po At 1 Pr Au Hg Ti Pb BI Po At 1 Pg
Control NI Cu Zn Ga Ge As Se Br 59 59 64 65 70 73 75 79 80 45 46 47 48 49 50 51 52 53 Rh Pd Ag Cd In Sn Te Te I Rh Pd Ag Cd In Sn 5b Te I Rh Pd Ag Cd In Sn Sb Te I 103 106 Ag Cd In Sn Sb Te I 103 106 108 112 119 122 128 127 1 Pr Au Hg Ti Pb Bl Po At 1 Pr Au Hg Ti Pb Bl Po At 1 Pg 196 </td
coball Inches copper zinc gaillum germanium sersentium bromine 59 59 64 47 48 49 50 51 52 53 Rh Pd 46 47 48 49 50 51 52 53 Rh Pd Ad In 10 50 51 52 53 53 Rh Pd Ag Cd In Sn 5b Te I 80 81 80 81 85 127 128 127 178 177 119 172 178 177 178 170 AI Hg Ti Pb 81 Po AI AI Hg Ti Pb BI Po AI AI 117 114 115 114 115 117 AI AI 114 114 115 114 AI AI AI AI AI
59 59 64 65 70 73 75 79 80 45 46 47 48 49 50 51 52 53 Rh Pd Ag Cd In Sn 5h Te I frodum painatum shear cadmitum instant ins
45 46 47 48 49 50 51 52 53 Rh Pd Ag Cd In Sn Sh Te I 103 108 112 112 119 122 128 127 17 78 79 80 81 82 83 84 85 1 F Pt Au Hg Ti Pb Bl Po At 182 195 197 201 204 207 208 103 110 111 112 113 114 115 116 117 MR Ds Rg Cn Nh F2 Mc Lv Ts
Rh
nodum patiendum silver cadentum indium tin antimony reliunium codernium indium tin 112 115 119 122 128 127 T 77 78 79 80 81 82 83 84 85 Ir Pt Au Hg T/I Pb BI Po AI indum patientum gold T/I Pb Binnum potonium astutine 192 195 197 201 204 207 209 — — 109 111 112 113 114 115 116 117 MR Ds Rg Cn Nh Fl Mc Lv T's
103 106 108 112 115 119 122 128 12/1 1r 77 78 79 80 81 82 83 84 85 1r Pt Au Hg T/1 Pb BI Po At 182 195 197 201 204 207 209 — — 109 110 111 112 113 114 115 116 117 Mt Ds Rg Cn Nh Fl Mc Lv Ts
T7 78 79 80 81 82 83 84 85 If Pt Au Hg T/I Pb BI Po AI 192 196 197 201 204 207 209 — — 109 110 111 112 113 114 115 116 117 MR Ds Rg Cn Nh Fl Mc Lv Ts mentmenum demestabilitum roenigenium coopermicium nithonium fierovium moscovium fivermessina
If Pt Au Hg T/l Pb BI Po Al 192 195 197 201 204 207 209 — — 109 110 111 112 113 114 115 116 117 MR Ds Rg Cn Nh Fl Mc Lv Ts merinerum demestabilium roenigenium coopernicium nithonium ferovium moscovium fivermessine
192 195 197 201 204 204 207 208
192 195 197 201 204 207 209
Mt Ds Rg Cn Nh F? Mc Lv Ts meinerum darmstaditum roentgenium coppernicium nihonium ferroxium moccovium ferroxium fer
Mt Ds Rg Cn Nh F? Mc Lv Ts metrerium darmstaditum roentgenium coopernicium nitronium ferovium ferovium ferovium terminastroe
metherium (demistaditum roemigenium) copernicium nihonium feroxium moscovium invermorium termissimo

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23}$ mol⁻¹

2024 Class Preliminary Examination Chemistry Secondary 4 Express Suggested answers

Section A

		4.56						10.7	
D	С	O	D	В	В	С	С	А	D
41	120				16	10			
D	D	В	Α	D	Α	Α	Α	С	С
21		20	24-	25	25				30
В	С	D	Α	D	D	В	В	В	Α
3 3 1 100 5	32	(3.5)	3.0		Program	67	geri		61
D	В	С	Α	Α	С	Α	D	Α	С

Section B

Qn	Answer	Mark
1(a)	acid: hydrochloric acid	[1]
	other reactant: lead(II) nitrate	[1]
1(b)	nitric acid	[1]
1(c)	Iron(II) carbonate is added in excess to ensure all the acid is completely reacted / used up.	[1]
		[4]
2(a)	H H H H -C-C-C-C- 4-C-H CI H-C+H CI	[1]
2(b)	physical: melted, AND cooled AND cut into pellets	[1]
	chemical: cracking to break into smaller molecules	[1]
2(c)(i)		[1]
2(0)(1)	H H H H O H H H H O -N-C-C-N-C-C-C-C-C-C- -	
2(c)(ii)	similarity: The monomer 2 used to make both the polymers is the same dicarboxylic acid, O (CH ₂) ₄ OH	[1]
	difference: The other monomer used to make this polymer is a diol but the other monomer in (c)(i) is a diamine.	741
2/0\/!!!\	(c)(i): amide (linkage) AND	[1]
2(c)(iii)		
	Fig. 2.3: ester (linkage)	A CONTRACTOR
3(a)	Same empirical formula AND M_r AND different arrangement of atoms / different units present.	[1]

Qn	Answer	Mark
3(b)	isomer A: H H H P isomer B: H - C - C - C - C - O - H H H H	[2]
	H-C-C-C-O-H H-C-H H+C-H	
3(c)	alcohol:	
	H H-C-O-H H	[1]
<u> </u> [carboxylic acid:	
	H H O H-C-C-C H H O-H	[1]
3(d)	С Н О	[2]
	Percentage 62.1 10.3 27.6 by mass	
	No. moles $f = \frac{62.1}{12} = 5.175$ $\frac{10.3}{1} = 10.3$ $\frac{27.6}{16} = 1.725$	
	Mole ratio $\frac{5.175}{1.725}$ =3 $\frac{10.3}{1.725}$ ≈6 $\frac{1.725}{1.725}$ =1	
	empirical formula: C ₃ H ₆ O	
	may TOTAL	71

Qn		Ansv	ver		Mark
4(a)			fal		[2]
		true	se		
	At la sa electrono		-	-	
	Atoms lose electrons	1			
	more easily down group	•			
	1. Melting point decreases	<u> </u>	1		
	from fluorine to iodine.				
	The strongest non-metal			-	
	oxidising agent is at the	1			
	top of the group.				
	Metallic character		1		
	increases across Period		-		
	3.				
4(b)	Comparison of structure	D:			[1]
4(5)	lithium: giant metallic stru				
			ro (co	neisting of huge network of	
	C atoms)	Structu	re (co	nsisting of huge network of	
	oxygen: simple molecular molecules	structi	ure co	nsisting of discrete	
	Comparison of bonding	:	<u>-</u>		[1]
	lithium: strong electrostat sea of electrons	ic force	es bet	ween lithium cations and	
	graphite: strong covalent	bonds	betwe	een carbon atoms	
	oxygen: weak intermolec	ular for	ces b	etween discrete molecules	
	comparison between th	e melt	ing p	oints:	[1]
	Most energy needed to o between carbon atoms; he point AND	vercon ience (ne the graphi	strong covalent bonds te has the highest melting	
	Least energy needed to o oxygen.	overco	me we	eak intermolecular forces in	
·	Electrical conductivity				[1]
	lithium: presence of delocate to conduct electricity	calised	/ free	moving / mobile electrons	
	AND				
	oxygen: exist as molecul free moving electrons or	es and ions to	no m	obile charge carriers / no uct electricity	

Qn	Answer	Mark
	graphite: each C atom is bonded to 3 other atoms and 1 free / non-bonded electron per C atom and there are free moving electrons to conduct electricity.	[1]
F(a)	Notice to the second se	77
5(a)	NaH + H ₂ O → NaOH + H ₂	[1]
5(b)	If the pH of the mixture is less than 10, it is a non-metal hydride; AND	[1]
	If the pH of the mixture is more than 10, it is a metal hydride;	
5(c)	Na * H	[2]
5(d)	In solid state, ions held in fixed position / no free moving ions to conduct electricity.	[1]
	In molten state, giant (crystal)/ (ionic) lattice structure breaks down AND free moving ions to conduct electricity.	[1]
5(e)	Student 1 is correct. AND SiH ₄ has the most number of H atoms; % by mass of hydrogen in SiH ₄ = 4/28 x 100% = 12.5%	[1]
	This is the highest compared to the rest: Eg: 3/30 = 10% for H in A/H ₃ Student 2 is wrong. AND Given the same number of H atoms,	[1]
	Eg: % of H in PH ₃ = 3/34 x 100% = 8.8% % of H in A/H ₃ = 3/30 x 100% = 10%	
6(a)(i)	200 s	<u>[8]</u>
		[1] ————
6(a)(ii)	average rate = 65/90 = <u>0.722 cm³ / s</u>	[1]
6(b)	Gradient is larger than original / steeper AND Volume of gas produced is half – levels off at 45 cm ³	[1]

Qn	Answer	Mark
6(c)	Particles gain energy and move faster OR Greater fraction / more particles have energy greater than or	[1]
	equal to activation energy; Frequency of effective collisions increases, increasing rate of reaction;	[1]
	ALL PROPERTY OF THE PROPERTY O	
7(a)	6.8 AND Comparing experiments 1 and 4, when concentration of $S_2O_8^{2-}$ ions is constant, concentration of I^- is doubled, rate of reaction is also doubled. AND comparing expt 4 and 5, concentration of iodide is doubled, rate from expt 4 to 5 should be 3.4 x 2 = 6.8	[1]
7(b)	amount $S_2O_8^{2-}$ ions in both experiments = $20/1000 \times 0.008$ = 0.00016 mol AND amount of I ⁻ ions in expt 4 = $10/1000 \times 0.04$ = 0.0004 mol AND amount of I ⁻ ions in expt 5 = $10/1000 \times 0.08$ = 0.0008 mol	[1]
	Mole ratio: $S_2O_8^{2-}$: I^- 1 : 2 0.00016: 0.00032 needed Since only 0.00032 mol needed to react with 0.00016 mol of $S_2O_8^{2-}$, I^- ions in excess in both experiments, hence $S_2O_8^{2-}$ ions is the limiting reactant.	[1]
		[3]
8(a)(i)	Reacts / dissolves in rain water to form acid rain AND Corrodes metal and limestone buildings	[1]
8(a)(ii)	equation in stage 1: SO ₂ + H ₂ O → H ₂ SO ₃	[1]
	equation in stage 2: $H_2SO_3 + CaCO_3 \rightarrow CaSO_3 + H_2O + CO_2$	[1]

Qn	Answer	Mark
8(b)(i)	As air to fuel ratio is higher,	-
	 higher concentration of O₂ in air occurrence of incomplete combustion of petrol is less AND lead to less carbon monoxide formed. 	[1] [1]
	As the temperature of the internal combustion engine is lower,	
	 O₂ and N₂ from air will less likely combine to form nitrogen monoxide. lead to less nitrogen monoxide formed. 	[1]
8(b)(ii)	2CO + 2NO → N ₂ + 2CO ₂	[1]
8(b)(iii)	Oxidation state of carbon increases from +2 in CO to +4 in CO ₂ ; hence carbon undergoes oxidation.	[1]
	Oxidation state of nitrogen decreases from +2 in NO to 0 in N ₂ ; hence nitrogen undergoes reduction.	[1]
	TOTAL	[9]
9(a) 9(b)	propyne C _n H _{2n-2}	[1]
		[1]
9(c)(i)	Energy absorbed to break 1 mole of C≡C bond, 2 moles of C − H bonds and 2.5 moles of O=O bonds is less than the energy released to make 2 moles of O − H bonds and 4 moles of C=O bonds.	[2]
9(c)(ii)	Amount of C ₂ H ₂ = 1000/24	[1]
	= 41.67 / 41.7 mol	r
	Energy released = 41.67 x 1410	[1]
i	= 58 750 kJ / 58 800 kJ	
9(d)(i)	C ₂ H ₂ Br ₂ / C ₂ H ₂ Br ₄	[1]
9(d)(ii)	Reddish-brown aqueous bromine turns colourless.	[1]
No.	TOTAL:	[8]
10(a)	Forward reaction rate decreases over time, while backward reaction rate increases.	[1]
	Eventually, both forward and backward reaction rates are equal/same.	[1]

Qn	Answer	Mark
10(b)	energy $N_2(g) + 3H_2(g)$ Eq. $2NH_3(g)$ progress of reaction	[3]
10(c)	turned yellow/ orange	[1]
	idea of hydroxide ions reacting with hydrogen ions AND increase / shift towards the forward reaction / more Meor is present in equilibrium	[1]
10(d)	3 moles of gaseous reactant and 1 mole of gaseous product / counteract the decrease in pressure / to increase pressure;	[1]
	shift towards the backward reaction AND less methanol produced as pressure decreases	[1]
10(e)(i)	percentage of PCI ₃ increases as temperature increases;	[1]
10(e)(ii)	increase temperature, more PCI ₃ formed hence shift towards the forward reaction to remove the heat "disturbance"	[1]
	forward reaction must be endothermic, (as reaction mixture absorbs heat)	[1]
and the	TOTAL	[12]

Section C

<u>Qn</u>	Answer	Mark
11(a)	similarity at negative electrodes:	1
	At the negative electrode:	
	H ⁺ ions selectively discharged (over K ⁺) in both electrolytes as hydrogen is below potassium in the reactivity series; AND $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	[1]
	Electrolysis of dilute potassium chloride:	[4]
	At the positive electrode:	[1]
	OH ⁻ ions selectively discharged (over Cl^- ions), forming oxygen gas; AND $4OH^-(aq) \rightarrow 2H_2O(l) + O_2(g) + 4e^-$	1.
	electrolysis of concentrated potassium chloride:	[1]
	At the positive electrode:	
	CI ions selectively discharged over OH ions as higher concentration of chloride ions, forming chlorine gas. AND	
	$2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-$	
- ms	Electrolysis of dilute potassium chloride:	[1]
	Electrolyte: K ⁺ and C <i>l</i> ⁻ ions remain in the electrolyte, Universal Indicator remains green.	
	electrolysis of concentrated potassium chloride:	[1]
	Electrolyte: K ⁺ and OH ⁻ ions remain in the electrolyte, increase in concentration of OH ⁻ ions over H ⁺ ions. Universal Indicator changes from green to violet / purple / blue.	
441-141		
11(b)(i)	negative electrode: iron structure / iron / support AND	[1]
	positive electrode: metal brush	
11b(ii)	Cu ²⁺ + 2e ⁻ → Cu	[1]
1(b)(iii)	effect: concentration of Cu2+ ions remains the same / unchanged	[1]
	effect: concentration of Cu ²⁺ ions decreases	[1]

Qn	Answer	Mark
11(b)(iv)	Copper brush will be oxidised to form Cu ²⁺ ions and will dissolve.	[1]
	Platinum is inert and will not be oxidised.	
t in a street	THE REPORT OF THE PROPERTY OF	140
12(a)	zinc electrode: <u>zinc is more reactive</u> than copper and hence is preferentially <u>oxidised</u> . AND $Zn \rightarrow Zn^{2+} + 2e^{-}$	[1]
	H^+ ions are selectively discharged as hydrogen is below zinc in the reactivity series, at the copper electrode. AND $2H^+ + 2e^- \rightarrow H_2$	[1]
	observation at zinc rod:	[1]
	zinc dissolves / decreases in mass / size	F41
	observation at copper rod: bubbles of gas observed	[1]
12(b)(i)	Volume of ethanol	[1]
	= (12 x 2 + 5 + 16 + 1) / 789	
	$= 0.0583 \text{ dm}^3$	
	Mass of 1 mole of H ₂ = 2 g	[1]
	1 g produces 143 kJ	נין
	2 g (1 mol) = 143 x 2 = 286 kJ produced	
	– <u>286</u> kJ/mol	
	Mass of 1 mole of ethanol = 46 g	[1]
	1 g of ethanol produces 1367/46	
	= -29.7 kJ / g	
12(b)(ii)	Burning the same mass of hydrogen produces / releases more energy than burning ethanol; 143 kJ for 1 g hydrogen compared to 29.7 kJ for 1 g of ethanol.	[1]
	OR	
	Burning the same amount of hydrogen produces less energy than burning ethanol; 286 kJ for 1 mol of hydrogen compared to 1367 kJ for 1 mol of ethanol	
	At r.t.p, ethanol is a liquid while hydrogen exist as a gas.	[1]
	H ₂ will occupy a larger volume for storage of 24 dm ³ compared to ethanol of 0.0583 dm ³ for 1 mol of each fuel.	

Qn	Answer	Mark
	OR	
	Density of hydrogen of 0.083 g/dm³ is smaller than density of ethanol of 789 g/dm³, indicating less mass of hydrogen can be stored in fixed volume.	
12(b)(iii)	Ethanol obtained from glucose AND glucose is obtained from plants which can be regrown and replaced within a short period of time.	[1]
	TOTAL 1	[10]