Name: (()	Class: Sec 4 SG 1 / 2
---------	-----	-----------------------

Queenstown Secondary School

Preliminary Examination 2024 Secondary Four Express Chemistry 6092/01

28 August 2024 Wednesday

Time: 1145 - 1245h

Duration: 1 hour

Setter:

Additional Materials: Mu

Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

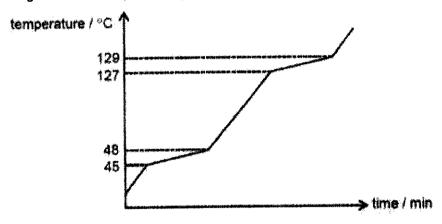
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 21.

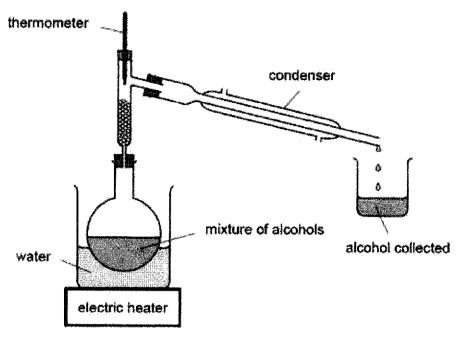
The use of an approved scientific calculator is expected, where appropriate.


1 The reaction of manganate(VII) ions with ethanedioate ions in acid solution may be represented by the following equation.

$$2MnO_4^-$$
 (aq) + $16H^+$ (aq) + $5C_2O_4^{2-}$ (aq) $\rightarrow 2Mn^{2+}$ (aq) + $8H_2O$ (l) + $10CO_2$ (g)

A student is exploring various ways to measure the rate of the reaction by measuring changes in different variables of the reaction.

Which of the following methods of monitoring the rate of reaction are suitable?


- 1 volume of gas produced
- 2 pH of the reaction mixture
- 3 mass of the reaction mixture
- 4 amount of precipitate obtained
- 5 intensity of the purple colour of the reaction mixture
- **A** 1, 2 and 3
- **B** 1, 3 and 4
- C 1, 2, 3 and 5
- **D** 2, 3, 4 and 5
- 2 The heating curve of an impure sample of substance X is shown below.

What are the melting point and boiling point of pure substance X?

melting point / °C	boiling point / °C
45	129
47	128
48	127
49	130
	45 47 48

3 A student carried out an experiment using the set-up shown below to separate a mixture containing four alcohols.

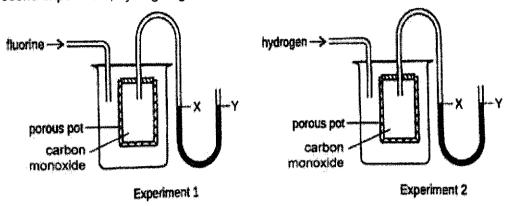
The table gives the boiling points of the four alcohols used.

alcohol	butanol	ethanol	pentanol	propanol
boiling point / °C	117	79	138	97

Despite repeated attempts, the student only managed to obtain two alcohols from the mixture.

Which alcohols did he fail to obtain?

A butanol and ethanol

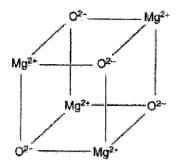

C ethanol and propanol

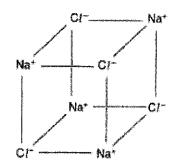
B butanol and pentanol

D pentanol and propanol

Two experimental set-ups used to demonstrate the diffusion of gases are shown in the diagrams below. In each porous pot is carbon monoxide.

In the first experiment, the gas introduced into the beaker is fluorine gas, while in the second experiment, hydrogen gas was introduced.


What changes, if any, to the water levels X and Y would you expect to see in both experiments?


experiment 1	experiment 2
Y is higher than X	X is higher than Y
X is higher than Y	Y is higher than X
X and Y remain the same	Y is higher than X
X and Y remain the same	X and Y remain the same
	Y is higher than X X is higher than Y X and Y remain the same

5 An ion, X²-, has a mass number of m and it contains n electrons. What does the nucleus of an atom of X contain?

number of protons	number of neutrons
n – 2	m – n
n – 2	m – n + 2
n + 2	m – n + 2
n + 2	m – n – 2
	n – 2 n – 2 n + 2

6 Part of the giant lattice structure of magnesium oxide and sodium chloride is shown.

The structure repeats to make a giant lattice.

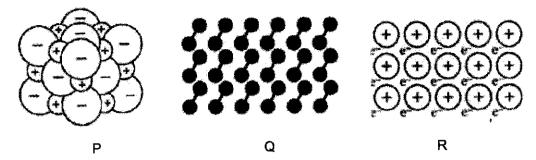
In the giant lattice, how many negative ions directly surround each positive ion?

A 3

B 4

C 5

D 6


7 The diagram shows the structural formula of the covalent molecule hydrazine, N₂H₄.

Which row is correct?

	total number of electrons involved in bonding	total number of electrons not involved in bonding
A	5	4
В	5	8
С	10	4
D	10	8

8 The structures of three substances P, Q and R are shown below.

Which statements are correct?

- 1 P and R can conduct electricity in the molten state.
- 2 Q is an element while P and R are compounds.
- 3 P has a giant structure while Q has a simple structure.
- A 1 and 2
- **B** 1 and 3
- C 2 and 3
- **D** 1, 2 and 3
- The information below shows the percentage of carbon in two samples of steel, Q and R. Q consists of 60% carbon while R consists of 20% carbon.

Which statement is correct about the two samples of steel?

- A Q has higher strength and less brittle than R.
- **B** R has higher strength and more brittle than Q.
- **C** Q has lower strength and more brittle than R.
- D R has lower strength and less brittle than Q.
- 10 Upon strong heating, a metal nitrate compound undergoes decomposition according to the following equation:

$$2XNO_{3}\left(s\right) \rightarrow2X\left(s\right) +2NO_{2}\left(g\right) +O_{2}\left(g\right)$$

Complete decomposition of 3.40 g of the nitrate gives 240 cm³ of oxygen, measured at room temperature and pressure.

What is the relative atomic mass of X?

A 85

B 108

C 133

D 170

11 The structure of oxalic acid is shown.

A 25.0 cm³ solution of oxalic acid reacts completely with 15.0 cm³ of 2.50 mol/dm³ aqueous sodium hydroxide.

What is the concentration of the oxalic acid?

- **A** 0.750 mol/dm³ **B** 2.08 mol/dm³
- C 1.50 mol/dm³
- D 4.17 mol/dm³
- 12 Aspirin, C₈H₈O₄, is made from salicylic acid, C₇H₆O₃ according to the equation:

$$C_7H_6O_3 \ + \ C_4H_6O_3 \ \rightarrow \ C_9H_8O_4 \ + \ CH_3COOH$$

Assuming a 70% yield, what is the mass of salicylic acid required to make an aspirin tablet of 325 mg?

 $[M_r: C_7H_6O_3, 138; C_9H_8O_4, 180]$

- A 174 mg
- **B** 249 mg
- C 356 mg
- **D** 424 mg

13 50.0 cm³ of hydrochloric acid has a pH of 1.0.

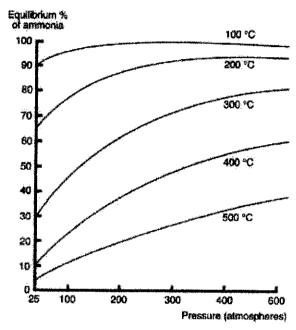
This acid requires 25.0 cm³ of aqueous sodium hydroxide to be neutralised.

A second 50.0 cm³ solution contains the weak acid, ethanoic acid.

The hydrochloric acid and ethanoic acid have the same concentration.

How will the pH of ethanoic acid and the volume of NaOH needed for neutralisation differ, if at all, from the hydrochloric acid?

	pН	volume of NaOH needed
		for neutralisation
A	higher than HCI	lower than for HCI
В	higher than HC <i>l</i>	equal to HCI
С	lower than HCI	lower than for HCI
D	lower than HCI	equal to HCI


- 14 What is a characteristic property of all bases?
 - A Alkalis are bases which are insoluble in water.
 - **B** They dissolve in water to produce hydroxide ions.
 - C They form salts with acids.
 - D They react with ammonia to form ammonium salts.
- 15 Which statements about oxides are correct?
 - 1 An aqueous solution of sulfur dioxide has a pH less than 7.
 - 2 An aqueous solution of potassium oxide turns blue litmus paper red.
 - 3 Carbon dioxide reacts with ammonia to make a salt.
 - 4 Carbon monoxide reacts with hydrochloric acid to make a salt.
 - A 1 and 2
- **B** 1 and 3
- C 2 and 3
- **D** 3 and 4
- 16 Which of the following method could not be used to prepare a dry sample of lead salt?

	name of salt	method
A	lead(II) carbonate	add aqueous sodium carbonate to aqueous lead(II) nitrate
В	lead(II) chloride	add hydrochloric acid to aqueous lead(II) nitrate
С	lead(II) iodide	add nitric acid to lead(II) carbonate, then add aqueous potassium iodide
D	lead(II) sulfate	add sulfuric acid to lead(II) carbonate

17 Ammonia is produced from Haber Process using a suitable catalyst.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The following graph shows the different yields of ammonia at different temperature and pressure.

Which of the following is not true?

- A higher percentage yield of ammonia can be obtained at higher pressure.
- B A higher percentage yield of ammonia can be obtained at lower temperature.
- **C** Some of the ammonia formed will decompose to form hydrogen and nitrogen.
- **D** At the right conditions of temperature and pressure, all of the hydrogen and nitrogen can be converted into ammonia.

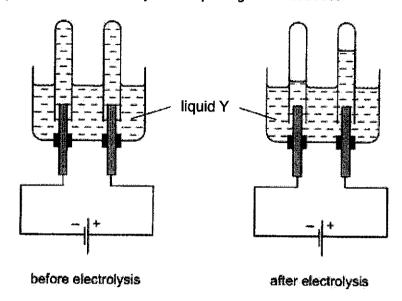
18 Three tests are carried out on salt X.

S/N	test	result
1	To 2 cm³ of salt X, add aqueous sodium hydroxide until no further change. Warm the mixture. Keep the mixture for Test 4.	White precipitate, soluble in excess giving a colourless solution.
2	To 2 cm³ of salt X, add aqueous ammonia until no further change.	White precipitate, soluble in excess giving a colourless solution.
3	To 2 cm³ of salt X, add dilute nitric acid followed by aqueous silver nitrate.	No visible reaction.
4	To 2 cm ³ of the mixture in test 1, add aluminium foil.	Gas evolved turns damp litmus paper blue.

What is the identity of salt X?

A aluminium chloride

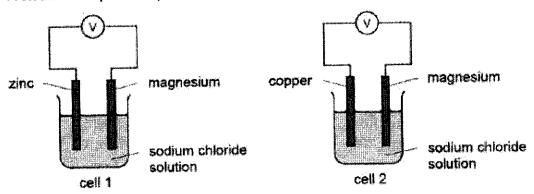
C zinc chloride


B ammonium nitrate

- D zinc nitrate
- 19 A disproportionation reaction occurs when the same element undergoes both oxidation and reduction simultaneously in a chemical reaction.

Which of the following is not a disproportionation reaction?

- A Mg + FeC $l_2 \rightarrow$ MgC l_2 + Fe
- $\textbf{B} \quad H_2SO_4 + Cu_2O \rightarrow Cu + CuSO_4 + H_2O$
- $\textbf{C} \quad 2H_2O_2 \rightarrow O_2 + 2H_2O$
- D $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$


20 The diagrams show an electrolysis set-up using inert electrodes.

Which could be liquid Y?

- 1 aqueous magnesium nitrate
- 2 aqueous copper(II) sulfate
- 3 concentrated hydrochloric acid
- 4 dilute sulfuric acid
- **A** 1 and 4 only **B** 2 and 4 only **C** 1, 2 and 4 only **D** 1, 3 and 4 only

21 A student set up two simple cells as shown below.

He recorded four statements in his notebook.

statement 1: In cell 1, sodium ions gain electrons to form sodium.

statement 2: In cell 2, copper(II) ions gain electrons to form copper.

statement 3: In both cells, magnesium loses electrons to form magnesium ions.

statement 4: The voltage of cell 1 is greater than cell 2.

Which statements are incorrect?

A 1 and 2

B 1 and 4

C 1, 2 and 4

D 2, 3 and 4

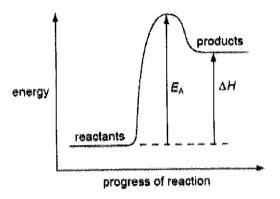
- 22 Which statement regarding the Periodic Table is correct?
 - A The elements are arranged by increasing relative atomic mass.
 - **B** Across a period from left to right, elements have weaker reducing power.
 - C Down Group 1, the elements become stronger oxidising agents.
 - D Down Group 17, the elements become weaker reducing agents.
- 23 Excess bromine is shaken with a mixture of sodium chloride and sodium iodide solutions. Which substances will the final mixture contain?
 - A bromine, iodine, sodium bromide
 - B bromine, iodine, sodium bromide, sodium chloride
 - C bromine, iodine, sodium bromide, sodium iodide
 - D iodine, sodium bromide, sodium chloride

24 The properties of the element vanadium, V, can be predicted from its position in the Periodic Table.

Which row identifies the properties of vanadium?

	can be used as a catalyst	conducts electricity at r.t.p.	forms coloured compounds	has a low density
Α	✓	✓	√	*
В	✓	✓	×	1
С	✓	*	✓	1
D	*	✓	✓	· /

[key: ✓ = yes; × = no]


25 The table below shows three unknown metals and their method of extraction.

metal	method of extraction	
Р	reduction of ore by carbon	
Q	electrolysis	
R	mining from the ground	

Which statement regarding the three metals is true?

- A Metal Q should be found high up in the reactivity series.
- B Metal R is most likely to be found above hydrogen in the reactivity series.
- C Metal R is the most reactive metal among all three.
- **D** The oxide of P must be the most stable compared to the oxides of the other two metals.

26 The diagram shows the energy profile for a chemical reaction.

What is the correct description of the reaction?

	sign of E _A	sign of ∆H	overall energy change
A	-	-	exothermic
В	+	+	endothermic
c	-	+	endothermic
D	+	+	exothermic

27 Methane burns in excess oxygen to produce carbon dioxide and water.

$$CH_{4} \ (g) \ + \ 2O_{2} \ \ (g) \ \rightarrow \ CO_{2} \ (g) \ + \ 2H_{2}O \ (g)$$

Given the following information of the bond energies, calculate the enthalpy change of the reaction.

bond	C-H	0=0	C = 0	0 – H
bond energy / kJmol ⁻¹	410	496	805	460

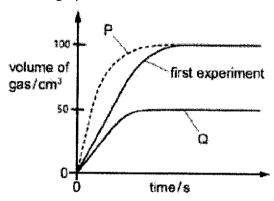
A -359 kJ/mol

B -818 kJ/mol

C +102 kJ/mol

D +818 kJ/mol

28 In which reaction is pressure least likely to affect the rate of reaction?


A
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

B
$$HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$$

$$C CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(l)$$

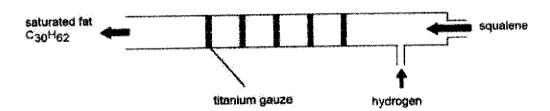
$$\textbf{D} \quad \text{K}_2\text{CO}_3 \left(s \right) + \text{H}_2\text{SO}_4 \left(aq \right) \rightarrow \text{K}_2\text{SO}_4 \left(aq \right) + \text{H}_2\text{O} \left(\mathit{l} \right) + \text{CO}_2 \left(g \right)$$

29 In the first experiment, excess magnesium reacts with 25 cm³ of 1.0 mol/dm³ hydrochloric acid to produce hydrogen gas. The volume of hydrogen produced is measured and shown in the graph.

Graphs P and Q show the volume of hydrogen produced under different conditions. What changes in conditions produce graphs P and Q?

- A P uses a higher temperature and Q uses a lower temperature.
- **B** P uses 25 cm³ of 1.5 mol/dm³ hydrochloric acid and Q uses 25 cm³ of 0.5 mol/dm³ hydrochloric acid.
- C P uses a catalyst and Q uses 25 cm³ of 0.5 mol/dm³ hydrochloric acid.
- **D** P uses smaller strips of magnesium of the same mass and Q uses a lower temperature.
- 30 The table shows the boiling points of four fractions P, Q, R and S, obtained when crude oil is distilled.

fraction	boiling point range / °C
Р	35 – 75
Q	80 – 145
R	150 – 250
S	> 250


How is fraction P different from fraction S?

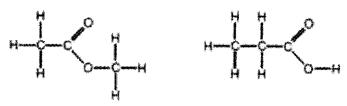
- A Fraction P is in less demand than S.
- B Fraction P is more viscous than fraction S.
- C Fraction P is more flammable than fraction S.
- **D** Fraction P contains molecules of larger relative molecular masses than fraction S.

31 Biodiesel, an alternative fuel made from vegetable oil, can be used as a fuel for vehicles. Although carbon dioxide is released during the combustion of biodiesel, scientists still claim that it is a carbon neutral fuel.

Which is the basis for this claim?

- A Biodiesel is not a carbon compound.
- B Biodiesel produces less carbon dioxide when it burns.
- C Plants release carbon dioxide during respiration.
- D Plants absorb carbon dioxide during photosynthesis.
- **32** Pentane, C₅H₁₂, and octane, C₈H₁₈, are alkanes present in the petrol fraction. Which statements about alkanes are correct?
 - 1 They are unsaturated hydrocarbons.
 - 2 Their general formula is C_nH_{2n+2}.
 - 3 Pentane has a higher boiling point than octane.
 - 4 Both pentane and octane undergo substitution reaction with chlorine in the presence of light.
 - A 1 and 2
- **B** 1 and 4
- C 2 and 3
- **D** 2 and 4
- 33 Squalene, a naturally occurring polyunsaturated oil present in sharks can be reduced to form a saturated hydrocarbon using titanium as a catalyst.

A 0.100 mol sample of squalene reacted with 14.4 dm 3 of hydrogen at room temperature and pressure to form a saturated hydrocarbon, $C_{30}H_{62}$.


What is the molecular formula of squalene?

- A C₃₀H₅₀
- B C₃₀H₅₂
- C C₃₀H₅₄
- $D C_{30}H_{56}$

Queenstown Secondary School

Turn over

34 The displayed formulae of two compounds are shown.

Which statement(s) about the compounds is/are correct?

- 1 Both compounds are from the same homologous series.
- 2 Both compounds have the same molecular formula.
- 3 Both compounds have the same percentage mass of carbon.
- 4 Both compounds undergo the same type of reactions.
- A 1 and 2 only B 1 and 4 only C 2 and 3 only D 3 and 4 only
- 35 The structures of compounds W, X, Y and Z are shown below.

What reactions do compounds W, X, Y and Z undergo?

	decolourises aqueous bromine	decolourises acidified aqueous potassium manganate(VII)	effervescence with aqueous sodium carbonate
A	X and Y	X and Z	W and Y
В	X and Y	W, X and Y	W and Y
С	W and Z	X and Z	W, X and Y
D	W and Z	W, X and Y	W, X and Y

36	Two	esters have the	san	ne molecular form	ula,	C ₃ H ₆ O ₂ .		
	What are the names of these two esters?							
	1	methyl ethanoa	te					
	2	ethyl methanoa	te					
	3	ethyl propanoa	te					
	4	propyl methano	ate					
	A	1 and 2	В	1 and 3	С	2 and 4	D	3 and 4
37	_	viscosity of engir	ne o		cha	ain of one such po	lym	added to improve er is shown below. H₂CH₂CH₃)–
	mo			ner contains 40 ca o form one molecu 5	ıle d		ny n D	nolecules of
	- •	-						

38 The structure below shows part of a polymer.

Which one of the following options show the correct monomers?

	an one of the following option	ons show the correct monor
A	HO C NH ₂	HO NH ₂
В	H ₂ N N C OH	HO C N NH ₂
С	HO-C NH ₂	H ₂ N N OH
D	HO C OH	H ₂ N N NH ₂

- 39 A sample of air is slowly passed through aqueous sodium hydroxide and then over heated copper. Which gases are removed by this process?
 - A carbon dioxide and water vapour
- C nitrogen and oxygen
- **B** carbon dioxide and oxygen
- D nitrogen and water vapour

40 Nitrogen monoxide, NO, is formed in the engines of petrol-powered cars. One constituent of petrol is pentane, C₅H₁₂. Nitrogen monoxide is removed from exhaust fumes by catalytic converters.

Which row identifies the reactants that produce nitrogen monoxide and a reaction that removes it in the catalytic converter?

	reactants that produce NO	reaction that removes NO
A	pentane + one gas found in air	$NO + CO \rightarrow \frac{1}{2}N_2 + CO_2$
В	pentane + one gas found in air	$NO + CO_2 \rightarrow NO_2 + CO$
С	two gases found in air	$NO + CO \rightarrow \frac{1}{2}N_2 + CO_2$
D	two gases found in air	$NO + CO_2 \rightarrow NO_2 + CO$

The Periodic Table of Elements

A 100 per 200	\$	Ct:	Ÿ;	4	10	Ž	2 c	2	<u>.</u>	₹		38	¥	respon	ŵ	Š	×	(ACHERICAL)	(-5	စ္တ	æ	rader	ŀ	118	O	CENTRAL	ı																																					
	11				ප	ш.	Buraring 10	5 6	<u>.</u>	ซ	416/ma 35,5	35	ă	browing	90	23		incente	127	60	₹	attathe	í	417	, co	Permessine	1	-	71																																			
And description by the second	16	¥			æ	0	mygen	2 5	۵,	(C)	Se de	3	စ္မ	selement	5	25	9	Pellurkan	23	3	ď	polonitum	ļ	116	2	fivermonum	1	1	52																																			
at the bifold become controllers	Ť.	-			~	z	militory en		2 (a.	phosphorus 31	33	As	SUBBRIC	£	5	හි	anthinery	22	සි	ō	Diameth	508	115	2	mbacos ium	1		69																																			
					G	Q	carhon 13		# (Ø	28 28	æ	Ů	governmentium	E	S	'n	£	,	88	đ	50	202	1.4	ï	March Aight	1		89																																			
	<u>e</u>				ம்	ω	paro.		2 ;	¥	alerrinan 27	34	Ö	148 数据性	2	49	쁘	indium	Ť.	81	Ε	thatthm	22	13	Ę	nencentum	ı		67																																			
and the contract of the contra	ryfriadiu ddalanada magaanda and										12	8	5	Sinc.	8	84	පි	cadmitum	11.	8	Ï	Mercury	201	112	ర్	copernicium	***		99																																			
errennen over det er de mandet de des minerales de la constant de la constant de la constant de la constant de		Arrest At Branch Address of the Control			The state of the s												#	29	ਠੋ	copper	\$	47	Ą	SHVER	108	ą,	Æ	8	197	111	8	roen(genium)	1		65																													
Group		H H Mangen			can was a consider Marman Philosophia																																										10	28	Z	*icke	59	46	P	peliedienn	- - - - - - - - - - - - - - - - - - -	%	₫.	manued	195	110	Ds	darmstadbern	;	
Ò	Administration of the same of		eransın variabeli kişarınının delektri	ann an an ann an an an an an an an an an				an and the state of the state o	and the second	i						ත	27	රි	fedoa	ß	.	Æ	modern	5	7	<u> </u>	ridian	192	109	×	rnedneduzz	1		63																														
	-I		-I Maga								6	92	Ē.	#O#	B	44	2	TURPHONISTE	2	29	ő	SEMPLE.	190	108	Ĩ	hassign	ı		62																																			
					,		<u> </u>	7			7	25	ž	телданове	55	43	ပ္	technetium		£	æ	therten	186	107	뮵	Cohmiten	***		ب م																																			
					number	<u>log</u>	mass				8	24	<u></u> ნ	chromism	S	4	§ Z	molybdenum	8	Z	3	tungstern 1	<u>z</u>	50	SG	**************************************	1		8																																			
						Key	proton (atomic)	omic syn	relative atomic				જ	23	>	чяподаже	2	7-	Ź	ritorpients	8	2	TO.	Checkeller	181	Š	රි	deliberation			69																																	
					proto	ä	relat				4	22	F	Glencan	.	4	Z	Circanium	5	2	Ξ	Pathium.	1/8	\$	ž	nutherfordium	1		88.																																			
				ŧ				····			60	23	သိ	scandium	45	ස	>-	Addien	ග	5771	Mentifranteoids			89-103	- Medianolician				. 57																																			
Managed Andrews (Managed Andrews (Manage	73					9	E CO	5		<u>ე</u>	портевыян 24	8	ර්	calcium	\$	æ	స	Michigan	20	29	œ	Parking 4	13(88	œ œ	radkira	****																																					
					ი;	.	E ~	÷	- 2	20	23	đ.	¥	DO (SERVICE)	38	(C)	₽	Tubitility 2	8	<u>د</u>	රී	CAMPENIES	50	28	Ļ	frameduns	1																																					

		 		4	
2	165	66	S L	and the state of t	1
۵	dysprosium 163	88	ర	estikantens	1
e	159	97	츖	berkelkun	ſ
Ö	gestofmum 157	96	동	cutions	ı
ū	152	ક્ક	Am	antworksians	i
Ę	150	85	₫	menund	1
E	ptomethaum	င်	2	neptunium	ŀ
S N	heodymium 144	8	>	(##YER	238
<u>د</u>	majaodynaim 141	55	ų.	protectinem	231
రి	140	06	F	(Textiling	232
2	fambanson 139	<u>8</u>	Ac	activity	1
lanthanoids			actinoids		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, L = 6.02 \times 10 29 mol⁻¹.

N I		
Name:	()	Class: Sec 4 SG 1 / 2

Queenstown Secondary School

Preliminary Examination 2024 Secondary Four Express Chemistry 6092/02

20 August 2024 Tuesday

Time: 1115 - 1300h

Duration: 1 hour 45 minutes

Setter:

Additional Materials:

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer one question.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question. A copy of the Periodic Table is printed on page 24.

The use of an approved scientific calculator is expected, where appropriate.

Examiner's Us	e
Section A	/70
Section B	/10
B9	
B10	
TOTAL	/80

copper

Section A

Answer all questions.

carbon monoxide

A1 Use the list of substances to answer the questions.

calcium hydroxide

	hydrogen	magnesium	nitrogen	
	nitrogen dioxide	sulfur dioxide	zinc oxide	
Each	substance can be used once	e, more than once or	not at all.	
Nam	e the substance(s) which			
(a)	is added to soil to increase	the pH,		
				[1]
(b)	helps prevent iron in underv	vater pipes from rusti	ng,	
				[1]
(c)	lead to the formation of acid	I rain that corrodes lir	mestone buildings,	
		and	·	[1]
(d)	react in a 1:3 ratio in the Ha	iber Process to produ	ice ammonia.	
		and		[1]
			[Total: 4]	

- A2 Esters are commercially used as solvents for cosmetics, perfumes and glue.
 - (a) Propyl ethanoate has a characteristic odour of pears and is commonly used in fragrances. A bottle of perfume containing propyl ethanoate is left opened in a laboratory and it diffused throughout the laboratory.
 - (i) Give the names and draw the full structural formulae of the carboxylic acid and the alcohol that react to form propyl ethanoate.

			[2]
ii)	The temperature of the laboratory is	increased.	
	Explain, in terms of collisions between	en reacting particles, what effect	
	would this have on the rate of diffusion	on of propyl ethanoate.	
		***************************************	[2]

Table 2

(b) The table shows some information about different esters.

name	formula	relative molecular mass
methyl methanoate	HCO₂CH₃	60
ethyl methanoate	HCO ₂ C ₂ H ₅	74
propyl methanoate	HCO₂C₃H ₇	88
butyl methanoate	HCO₂C₄H ₉	102
pentyl methanoate	HCO ₂ C ₅ H ₁₁	116

[Turn over

		(i)	Use	information in the table	to give one piece of e	vidence that suggests	
			that	the esters belong to the	e same homologous se	ries.	
							[1]
		(ii)	Whic	ch ester has the greate	st rate of diffusion at ro	om temperature and	
			pres	sure? Explain your ans	swer.		
							[2]
						[Total: 7]	
43	Seaw	ater (const	itutes a rich source of v	rarious commercially im	portant elements.	
	(a)	Magr	nesiu	m bromide is an import	ant salt found in seawa	iter.	
		Table	e 3 st	nows some information	about two isotopes of I	oromine.	
					Table 3		
		syn	nbol	number of protons	number of neutrons	number of electrons	
		79 35	Br	35		35	
		81 35	Br-		46		
		(i)	Cor	nplete the table.			[1]
		(ii)	Use	e data from the table to	explain the term isotop	oes.	
							[1]
		(iii)	 Ch		sample of seawater co		[1]
		(iii)					[1]
		(iii)	bro	orine is treated with a s		ntaining magnesium	[1]
		(iii)	bro	orine is treated with a smide.	sample of seawater con	ntaining magnesium	[1]

Queenstown Secondary School

	Explain why astatine does not react with aqueous magnesium bromide.	(iv)
741		
[1]		
	e distinctive smell of the seaside was thought to be due to ozone (O_3) .	
	one reacts with aqueous potassium iodide as shown in the equation below.	Ozo
	$2I^{-}(aq) + O_3(g) + 2H^{+}(aq) \rightarrow I_2(aq) + O_2(g) + H_2O(l)$	
	Describe what is observed when ozone is bubbled into aqueous	(i)
	potassium iodide.	
[1]		
	Explain, in terms of oxidation states, why this is a redox reaction.	(II)
[2]		
	now known that the smell of the seaside is due to the presence of dimethyl	(c) It is
	de, (CH₃)₂S.	sulfi
	Draw a 'dot-and-cross' diagram for dimethyl sulfide, (CH₃)₂S.	(i)
[2]		
	Explain, in terms of bonding and structure, why dimethyl sulfide is a gas	(ii)
	at room temperature and pressure.	
w		
[1]		
	[Total: 10]	
	now known that the smell of the seaside is due to the presence of dimethyl de, (CH ₃) ₂ S. Draw a 'dot-and-cross' diagram for dimethyl sulfide, (CH ₃) ₂ S. Explain, in terms of bonding and structure, why dimethyl sulfide is a gas at room temperature and pressure.	sulfi (i)

A4 (a) Complete the table.

Table 4.1

ſ				1-15	effect on	
	electrolyte	state	electrode	half-equation at anode	electrolyte	
i	silver nitrate	aqueous			no change	
	copper(II)				fully	
	chloride		graphite		decomposed	[2]

(b) The diagram below shows the electrolysis of concentrated aqueous sodium chloride.

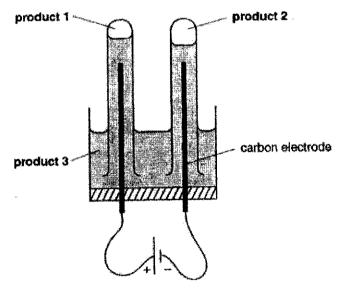


Fig. 4.2

- (i) Write the half equation for the reaction that occurs at the negative electrode.
 - ______[1]
- (ii) The volumes of products 1 and 2 should theoretically be the same.

 Explain why the volume of product 1 is lesser.

Queenstown Secondary School

Turn over

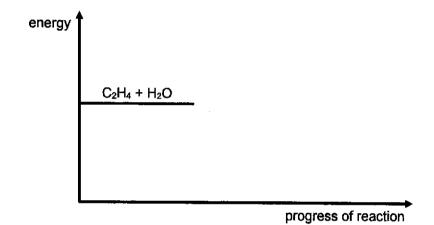
(iii)	What happens to the resulting solution during the electrolysis?	
	Explain your reasoning.	
		[1]
(iv)	The same apparatus can be used to electrolyse dilute aqueous sodium	
	chloride. Give one similarity and one difference between the products of	
	the electrolysis of concentrated and dilute aqueous sodium chloride.	
	similarity	
	difference	
		[2]
	[Total: 7]	

- A5 Ethanol is the intoxicating ingredient of many alcoholic beverages such as beer.
 - (a) Ethanol is manufactured by the reaction between ethene and steam.

$$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(l)$$

Table 5

bond	C-C	C=C	C-H	O-H	C-0	C=O	0-0	0=0
bond energy	346	610	414	463	358	804	144	498
in kJ/mol			<u> </u>					


(I) Using the bond energies provided in Table 5.1, calculate the enthalpy change for this reaction.

	enthalpy change	[3]
(ii)	The reaction between ethene and steam is exothermic.	
	Using ideas about bond breaking and bond forming, explain why the	
	reaction is exothermic.	
		[21

(iii) Complete the energy profile diagram for the reaction between ethene and steam.

Your diagram should show:

- the products of the reaction
- the activation energy for the reaction
- the enthalpy change of reaction, ΔH

(b) Ethanol is also manufactured by the fermentation of glucose.

(1)	write a balanced chemical equation for this fermentation.	
		[1]

(ii) Briefly describe this process.

Include in your answer the conditions needed for fermentation and how the ethanol is purified.

••••••	••••	***************************************		• • • • • • •
***********	******************		***************************************	
***************************************	****			
	• • • • • • • • • • • • • • • • • • • •	·····		
***************************************	• • • • • • • • • • • • • • • • • • • •		************************	

Queenstown Secondary School

Turn over

[3]

[3]

	(c)	Ethanol is oxidised by oxygen in the air to form ethanoic acid.	
		Ethanol and ethanoic acid can be distinguised by chemical tests.	
		Describe two of these chemical tests and the observations that allow you to	
		make the distinctions.	
		test 1	
		observation	
		test 2	
		observation	
		,	[2]
		[Total: 14]	
A6	Poly	[Total: 14] (propene) and nylon are both used to make strong, waterproof ropes.	
A6	-	•	
A6	-	(propene) and nylon are both used to make strong, waterproof ropes.	
A6	Poly	(propene) and nylon are both used to make strong, waterproof ropes.	
A6	Poly	(propene) and nylon are both used to make strong, waterproof ropes. (propene) is an addition polymer. Nylon is a condensation polymer. Describe one difference between addition polymers and condensation	
A6	Poly	(propene) and nylon are both used to make strong, waterproof ropes. (propene) is an addition polymer. Nylon is a condensation polymer. Describe one difference between addition polymers and condensation polymers.	
A6	Poly	(propene) and nylon are both used to make strong, waterproof ropes. (propene) is an addition polymer. Nylon is a condensation polymer. Describe one difference between addition polymers and condensation polymers.	[1]
A6	Poly	(propene) and nylon are both used to make strong, waterproof ropes. (propene) is an addition polymer. Nylon is a condensation polymer. Describe one difference between addition polymers and condensation polymers.	[1]

(c) There are several different types of nylon. One type of nylon is nylon-6,6.

This is the repeating unit of nylon-6,6.

(i) Draw the structures of the two monomers that react to form nylon-6,6.

[2]

(ii) During the manufacturing process, the chain length of the nylon is controlled so that the nylon polymer molecules have an average relative molecular mass in the range 12 000 to 20 000.

What is the range of the average number of repeating units in the nylon-6,6 molecules? Show your working.

range[2]

[Total: 6]

A7 Read the information about elements and compounds in the Earth.

The Earth's crust is the thin outer layer of the Earth. The pie charts show a comparison of the percentages of elements in the whole Earth and in the Earth's crust.

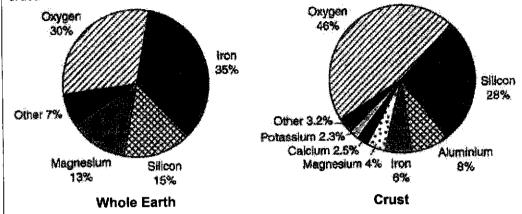


Fig. 7.1

In the Earth's crust, silicon and oxygen are the most abundant elements. Rocks such as quartz are made of covalently bonded compounds of silicon and oxygen. Typically, quartz contains 46.7% silicon and 53.3% oxygen by mass.

Some rocks such as feldspars contain ionic silicate compounds. These contain metal ions ionically bonded to silicate ions.

Examples of naturally occurring silicates are shown in the table below.

Table 7.2

name of silicate compound	formula
forsterite	Mg₂SiO₄
phenacite	Be ₂ SiO ₄
anorthite	CaAl ₂ Si ₂ O ₈
microcline	KA/Si ₃ O ₈

The formulae of the silicate compounds are not simple. Some silicate compounds contain one type of metal ion, others contain more than one. All silicate ions contain silicon and oxygen, but the numbers of the atoms and the charges on the ions vary. For example,

- phenacite (Be₂SiO₄) contains only Be²⁺ metal ions and the formula of its silicate
 ion is SiO₄⁴⁻,
- microcline (KA/Si₃O₈) contains K⁺ and Af³⁺ metal ions and the formula of its silicate ion is Si₃O₈⁴⁻.

(a)	Scie	entists believe that the cen	tre of the Earth is mad	e from an inner core	
	mad	le mainly of iron.			
	Wha	at evidence from the pie ch	arts supports this idea	n?	
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••••••••••••••••••••••••••••••••••••	
			••••••	••••••	
					[1]
(b)	(i)	Use the information to w	ork out the empirical f	ormula and hence the	
		name of the main compo	ound in quartz.		
			empirical formula		
			name		[2]
	(ii)	There are other compound	nds of oxygen found in	the Earth's crust as well	
		as quartz. One such exa	mple is potassium oxid	de.	
		The table shows some d	ifferences between the	e properties of potassium	
		oxide and the compound	l in (b)(i) .		
			Table 7.3		
		compound	melting point / °C	electrical conductivity	
			3	under room conditions	
		potassium oxide	740	does not conduct	
		compound in (h\(i)	2230	door not conduct	

	Explain, in terms of bonding and structure, why potassium oxide and	
	the compound in (b)(i) have different properties.	
	***************************************	[4]
(c)	Give the formulae and charges of the ions present in anorthite.	
	and	[1]
(d)	Beryllium and silicon can both be extracted from the mineral phenacite.	
	Show by calculation that 1 kg of phenacite contains a larger mass of silicon	
	than beryllium but a larger number of moles of beryllium atoms than silicon	
	atoms.	

[4]

[Total: 12]

A8 A series of experiments was carried out to investigate the effect of different catalysts on the rate of a reaction.

The table shows the time taken for the reaction to finish when different metal compounds were used as catalysts.

The metal compounds contained Group 1 metals, Group 2 metals or transition metals.

Table 8

experiment	catalyst	temperature at start	time taken for reaction to finish
CAPCHINEIR	Calalyst	/ ℃	/ s
1	NaC <i>l</i>	19	45
2	FeCl ₂	20	22
3	CoCl ₂	19	26
4	MgCl ₂	20	46
5	NaNO ₃	19	45
6	Fe(NO ₃) ₂	20	22
7	Fe(NO ₃) ₃	19	15
8	Co(NO ₃) ₂	19	26
9	Mg(NO ₃) ₂	19	46

a)	Explain, in terms of collisions and energy, the effect of a catalyst on the rate of	
	a reaction.	
		[2]

(b)	Group	o 1 and Group 2 metal compounds are less effective than transition	
	metal	compounds as catalysts.	
	Expla	in how the information in the table supports this statement.	
		•••••••••••••••••••••••••••••••••••••••	
			[2]
(c)	Iron is	s a transition metal.	
	Two	different iron ions were used in the experiments.	
	(i)	Give the formulae of the two ions and	[1]
	(ii)	Which iron ion appears to be the more effective catalyst?	
		Explain your reasoning.	

			[1]
	(iii)	State one other property of transition metals.	
			[1]

(d)	A stu	udent wrote this conclusion from the results in the table.	
		The type of anion in the catalyst compound	
		does not affect the rate of reaction.	
	(i)	Do you agree with this conclusion?	
		Use the results to explain your reasoning.	
			[2]
	(ii)	Predict the time taken for the reaction to finish if iron(III) chloride was	
		used as a catalyst.	
			[1]
		[Total: 10]	

Section B

Answer one question from this section.

B9 A factory is suspected of releasing non-biodegradable toxic waste such as calcium ions, aluminium ions, zinc ions and nitrate ions into the nearby river.

A scientist tested two samples of the river water by adding excess aqueous sodium hydroxide and aqueous ammonia respectively, followed by warming with aluminium foil. He recorded his observations in Table 9 below.

Table 9

test	on adding a few drops	on adding excess	on warming with aluminium foil
aqueous sodium hydroxide	white precipitate formed	white precipitate, soluble in excess giving a colourless solution	no visible reaction
aqueous ammonia	white precipitate formed	white precipitate, some soluble in excess giving a colourless solution, some remained insoluble in excess	gas evolved turns damp litmus paper blue

Based on this information, the scientist claimed that the factory had indeed been releasing aluminium ions, zinc ions and nitrate ions into the river. However, the factory owner argued that this data showed that the factory was only releasing aluminium ions and zinc ions, but not nitrate ions.

(a)	(i)	Explain how the data shows that calcium ions are absent, but both	
		aluminium ions and zinc ions are present in the river water.	
			[3]
	(ii)	The scientist claims that nitrate ions are detected in the river water as	
		the test with aqueous ammonia produced ammonia gas.	
		Do you agree? Explain your answer.	
			[2]
(b)	The r	iver water also contained trace amounts of chloride ions.	
, DJ			
	Desc	ribe how you would carry out a test to show the presence of chloride ions	
	in a s	olution. Include the observations you would expect.	
	•••••		

			[2]

(c)	The salt zinc chloride found in the river water can be prepared in the	
	laboratory.	
	Describe how a pure sample of zinc chloride crystals can be prepared from	
	insoluble zinc carbonate.	
		[3]
	[Total: 10]	

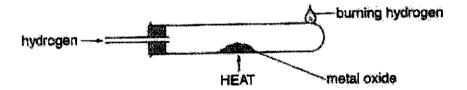
- **B10** The reactivity series summarises information about the reactions of metals with acids and water, displacement reactions and the extraction of metals from their ores.
 - (a) A student carried out some experiments to place four metals, W, X, Y and Z in order of reactivity. The table shows the results.

Table 10.1

	metal W	metal X	metal Y	metal Z
solution of W nitrate		*	*	*
solution of X nitrate	7		~	1
solution of Y nitrate	1	×		7
solution of Z nitrate	~	×	*	

[key: ✓ = shows a reaction happened] * = shows no reaction happened]

(i)	Place the metals in order of reactivity, starting with the most reactive.	
		[1]
(ii)	Metal Z reacts with hydrochloric acid.	
	What would you see when metal Z reacts with hydrochloric acid?	
	Explain your reasoning.	
	*13.4	[2]
(iii)	The student carried out further experiments to place metal M in the list.	
	She used dilute hydrochloric acid and samples of the metals.	
	She found out that metal M is the fourth most reactive metal.	


Describe the experiments that the student carried out.

Your answer should include

- the experiments that she carried out using dilute hydrochloric acid and samples of the metals,
- · the measurements that she made,

 how the results showed that metal M is the fourth most reactive 		
	metal.	
		[3]

(b) The student also carried out some experiments to investigate the reduction of three metal oxides by hydrogen.

The table shows the appearance of each metal oxide when cold.

Table 10.2

experiment	metal oxide	colour when cold
1	calcium oxide	white
2	copper oxide	red
3	lead oxide	yellow

(i)	What would you expect to see happen in each experiment?	
	Explain your answer.	
		[2]
(ii)	In which tube would you expect to see the fastest reaction?	
	Explain your answer.	
		[2]
	[Total: 10]	

Miser Periodic Tanti

MARK SCHEME

1	2	3	4	5	6	7	8	9	10
С	С	В	В	В	D	D	В	D	В
11	12	13	14	15	16	17	18	19	20
Α	С	В	C	В	ם	D	D	Α	Α
21	22	23	24	25	26	27	28	29	30
С	В	В	Α	Α	В	В	D	С	C
31	32	33	34	35	36	37	38	39	40
D	D	Α	С	С	Α	C	Α	В	C

MARK SCHEME

Section A [70 m]

A1	(a) (b)		ium hydroxid Inesium		r dioxide and <u>nitrog</u> gen and <u>hydrogen</u>	en dioxide	[2] [2]		
A2	(a)	(i) (ii)	At higher to a higher free	ethanoic acid, CH ₃ COOH; propanol, C ₃ H ₇ OH At higher temperatures, the reacting particles move faster leading to a higher frequency of effective collisions between the particles, resulting in a higher rate of diffusion.					
	(b)	(i)	The esters	have the same ger	neral formula, HCO2 ctional group, HCO		[1]		
		(ii)		Methyl methanoate It has the lowest relative molecular mass of 60.					
A3	(a)	(i)	symbol	number of	number of	number of			
			79 25Br	protons 35	neutrons 44	electrons 35	[1]		
			35Br 35Br	35	46	36	F.,1		
		(ii)			per of protons (i.e. 3		[1]		
					(i.e. 44 and 146 neu	itrons).	[1]		
		(iii)		Br (aq) <i>→</i> 2C <i>t</i> (aq)		.1.1. 4			
		(iv)	Astatine, b		han bromine, is <u>una</u>	ible to displace			
	(b)	(i)		less solution turns	dark-brown.		[1]		
	` ,	(ii)	The iodine	The iodine in potassium iodide undergoes oxidation, as the					
			oxidation state of iodine increases from -1 in I to 0 in I2.						
			The oxygen in ozone undergoes reduction, as the oxidation state of						
	(c)	(i)	oxygen decreases from 0 in O_3 to -2 in H_2O . 'Dot-and-cross' diagram [covalent; $H_3C - S - CH_3$]						
	(0)	(ii)	Dimethyl sulfuide is a simple covalent molecule.						
		. ,	A small amount of heat energy is required to overcome the weak						
			intermolecular forces of attraction between molecules.						
A4	(a)		er; <u>Ag (s)</u> → A				[1]		
	/L>			en; $2CI \cdot (I) \rightarrow CI_2 \cdot (g) + 2e^-$					
	(b)	(i) (ii)	$2H^+$ (aq) + 2e ⁻ \rightarrow H ₂ (q) As chlorine is slightly soluble in water, the volume collected is						
		(11)	As chlorine is <u>slightly soluble</u> in water, the volume collected is lesser.						
		(iii)	The resulting solution becomes increasingly alkaline.						
		-	With the removal of H ⁺ and Cl ⁻ ions, the remaining Na ⁺ and OH ⁻						
		(i.A	combine to form the strong alkali, NaOH.						
		(iv)		ode. H ⁺ ions are di	scharged to form hy	/drogen gas	[1]		
			difference	<u></u>		<u> </u>			
					scharged to form ox		[1]		
					ile CI ions are disch				
	chlorine gas for concentrated aqueous sodium chloride.								

		(i) energy absorbed for bond-breaking = 610 + 4(414) + 2(463)	[1]				
A5	(a)	(i) energy absorbed for bond-breaking = 610 + 4(414) + 2(463) = 3192 kJ/mol	1.7				
,		Olioidi ioidasoa ioi maria	[1]				
		= 3237 kJ/mol	[1]				
		enthalpy change of reaction = 3192 + (-3237) = -45 kJ/mol					
		(ii) More energy is released in bond forming (i.e. C-C, C-H, C-O and O-H) than absorbed in bond breaking (i.e. C=C, C-H and O-H).	[2]				
		on diagram:					
		(iii) on diagram:the products of the reaction	[1]				
		the activation energy for the reaction	[1]				
		 the enthalpy change of reaction, ΔH 	[1]				
	(b)	(i) $C_8H_{12}O_6 \rightarrow 2C_2H_6OH + 2CO_2$	[1]				
	(~)	(ii) The fermentation of glucose can be carried out using <u>yeast</u> as	[2]				
		catalyst. The mixture is kept at a temperature of about 37°C,					
	·	producing a dilute solution of ethanol, with concentration 12-14%.					
		The process is carried out under <u>anaerobic</u> conditions.	[1]				
	(0)	Ethanol is purified using <u>fractional distillation</u> . test 1 : To 5 cm ³ of sample, add 1 g of <u>solid sodium carbonate</u> .	[1]				
	(c)	observation: With ethanol, there is no visible reaction.					
		With ethanoic acid, effervescence is observed.	643				
Ì		test 2 : To 5 cm ³ of sample, add an equal volume of <u>acidified</u>	[1]				
		potasisum manganate(VII).					
		observation: With ethanol, the <u>purple</u> solution turns <u>colourless</u> . With ethanoic acid, <u>no visible reaction</u> .					
		With ethanoic acid, no visible reaction.					
A6	(a)	Choose any one:	[1]				
		 The addition polymer contains the <u>C-C chain</u>, while the condensation 					
		polymer contains the <u>amide</u> or <u>ester</u> linkages.	j				
		 The formation of addition polymers <u>does not involve any loss of small</u> molecules (i.e. 1 product formed). While the formation of condensation 					
		polymers involves the loss of small molecules like water (i.e. 2					
		products formed).					
1		 The formation of addition polymers involves the <u>C=C</u> functional group, 					
		while the formation of condensation polymers involves monomers with					
		functional groups like <u>-NH₂, -COOH and -OH</u> .	[1]				
	(b)	H H H H					
		-C-C-C-C-					
		H CH₃ H CH₃	123				
	(c)	(i) O	[2]				
		$H - N - C_6H_{12} - N - H$ $H - O - C - C_4H_8 - C - O - H$					
		 	İ				
		н н					
		(II) NA -4 (C. H. N. O. – 226	[1]				
		(ii) M_r of $C_{12}H_{22}N_2O_2 = 226$ range = $\underline{54}$ to $\underline{88}$					
	1	Tarige - <u>54 to 66</u>					

A7	(a)	The pie charts show that there is 35% of iron in the whole Earth, while	[1]
	(-)	there is only 6% in the Earth's crust. This implies that 29% of the iron is in	
		the inner core of the Earth.	
1	(b)	(i) Si O	ĺ
		percentage 46.7 53.3	
		A _r 28 16	
i .		no. of moles 1.6679 3.3333	
	ļ	+ 1.6679 1 2	
		empirical formula = SiO ₂ ; name = silicon dioxide	[2]
		(ii) Potassium oxide is an ionic compound.	[1]
		A large amount of heat energy is required to overcome the strong	
		electrostatic forces of attraction between oppositely-charged ions.	
		Silicon dioxide is a giant covalent molecule.	[1]
		An even larger amount of heat energy is required to overcome the	
		stronger covalent bonds between atoms.	
			Patr
		For potassium oxide, the ions are held rigidly in fixed positions in	[1]
		the solid state. The absence of mobile charged ions prevents the	
		electric current from being carried.	FAI
		For silicon dioxide, all valence electrons are used for bonding. The	[1]
		absence of mobile charged electrons prevents the electric current	
}		from being carried.	[1]
	(c)	<u>Ca²⁺</u> , <u>A/³⁺</u> and <u>Si₂O₈⁸⁻</u>	[1]
	(d)	$M_{\rm r}$ of phenacite = 110	1
		mass of silicon in phenacite = $\frac{28}{110}$ x 1000 g = $\underline{255}$ g (to 3 s.f.)	[1]
		mass of beryllium in phenacite = $\frac{2(9)}{110}$ x 1000 g = $\underline{164}$ g (to 3 s.f.)	[.]
		From the above calculations, 1 kg of phenacite contains a larger mass of silicon than beryllium.	
		254 545a	[1]
		no. of mol. of silicon = $\frac{254.545g}{28}$ = $\frac{9.09 \text{ mol}}{28}$ (to 3 s.f.)	
			[1]
		no. of mol. of beryllium = $\frac{163.636g}{9}$ = 18.2 mol (to 3 s.f.)	
		From the above calculations, 1 kg of phenacite contains a larger number	
		of moles of beryllium atoms than silicon atoms.	1
		of moles of beryslum atoms man shoon atoms.	
A8	(0)	A catalyst provides an alternative pathway with a lower activation energy	F47
A0	(a)	for the reaction to proceed, leading to a higher frequency of effective	[1]
		collisions between the particles, resulting in a higher rate of reaction.	[1]
	(b)	Comparing experiments 5, 7, 8 and 9, with the same starting temperature	
	(1)	of 19°C, Group 1 and 2 metal compounds are less effective as the time	[1]
		taken for reaction to finish is longer (i.e. NaNO ₃ takes <u>45s</u> , while	ניו
		$Mg(NO_3)_2$ takes $46 s$), as compared to the transition metal compounds	[1]
		which take a shorter time (i.e. Fe(NO ₃) ₃ takes 15s, and Co(NO ₃) ₂ takes	[L'I
		26s.	
	(c)	(i) Fe ²⁺ and Fe ³⁺	[1]
		17 17 210 24	

		(ii)	<u>Iron(III) ion</u> is the more effective catalyst. Comparing experiments 6 and 7, iron(III) ion took a <u>shorter</u> time (i.e. <u>15s</u> in experiment 7) to complete the reaction, as compared to that of iron(II) ion (i.e. <u>22s</u> in experiment 6), despite the slight change in temperature.	[1]
	C-4\	(iii)	Transition metals form coloured compounds when hydrated.	[1]
	(d)	(1)	Yes. Comparing experiments 1 and 5, both NaCl and NaNO ₃ took <u>45s</u> to complete the reaction, regardless of the anion. Also, comparing experiments 2 and 6, both FeCl ₂ and Fe(NO ₃) ₂ took <u>22s</u> to complete the reaction, regardless of the anion.	[2]
ļ		(ii)	15s	[1]

Section B [10 m]

B9	(a)	(i) From the test with aqueous NaOH, the white precipitate formed is soluble in excess, implying that both A/3+ ions and Zn2+ ions are	[1]
		present. If Ca ²⁺ ion is present, then some white precipitate formed	[1]
		is insoluble in excess.	• '•
		From the test with aqueous NH ₄ OH, some white precipitate	[1]
		formed is soluble in excess, confirming that Zn ²⁺ ions are present,	• •
		while some white precipitate formed is insoluble in excess,	
		confirming that A/s+ ions are present.	1
			[1]
		(ii) ito, the allimonia gas proceeds so the second	۱.,
		aqueous ammonia. To test for nitrate ions, the scientist should use warm aqueous	[1]
		TO COOL TO LINGUIST THE STREET STREET	۱.,
		sodium hydroxide and aluminium foil. test : To a 2 cm³ sample of river water, add an equal volume of	[1]
	(b)	reat . To at Z offi contribute at the state of the state	r.1
		dilute acid, followed by aqueous silver nitrate.	[1]
		1630it . Willo bioorbitate .c.m.c.	[1]
	(c)	1. Add CAOCOO Zino Carbonate [2005] periods to	f.1
		acid [acid].	
i		2. Filter the mixture to remove the excess zinc chloride.	[1]
}		J. HEAL HE HILLOLD III ICIO CALALACTA	F.1
		4. Allow the solution to <u>cool</u> and crystals of zinc chloride will form.	
'		Filter off the crystals.	[1]
		5. Wash the crystals with distilled water.	1.1
		Dry the pieces of crystals between two pieces of filter paper.	
B10	(a)	(i) W > Z > Y > X	[1]
	` ′	(II) Effervescence is observed.	[1]
	<u> </u>	Metal Z, being a reactive metal (i.e. above H in the reactivity	[1]
	ļ	series), reacts with acid to displace hydrogen gas.	
		(iii) Approach:	[1]
		The student measured and compared the volume of hydrogen gas	
		collected for a metal of fixed mass (i.e. 0.5 g each of metals W, X,	
		Y Z and M) to react completely with dilute hydrochloric acid of a	
		fixed concentration (i.e. 1 mol/dm³) and volume (30 cm³) over a 2-	
-	1	minute duration.	
ļ	<u> </u>		

		Procedure: 1. Using a 50 cm³ measuring cylinder, measure 30 cm³ of HC <i>I</i> and place it in a 250 cm³ conical flask. 2. Transfer the dilute hydrochloric acid into the conical flask, connect a gas syringe 3. Using an electronic mass balance, measure 0.5 g of metal W	[1]
		and add it to the conical flask. Stopper the conical flask and connect a gas syringe to the conical flask using a delivery tube. Start the stopwatch immediately. 4. Stop the stopwatch when it reaches 2 minutes.	:
		Record the volume of gas produced in a table of suitable format.	
		Conclusion: Metal W will have the highest volume of hydrogen gas collected, followed by metals Z , Y , M (i.e. 4 th most reactive) and X .	[1]
(b)	(i)	There is <u>no visible reaction</u> for experiments 1 and 3. Calcium and lead, being <u>more reactive</u> than hydrogen, <u>cannot be</u> displaced from their oxide by hydrogen.	[1]
:		In experiment 2, the <u>red</u> copper oxide turns <u>red-brown</u> . Copper, being <u>less reactive</u> than hydrogen, <u>can be displaced</u> from its oxide by hydrogen.	[1]
	(ii)		[1]