

CANDIDATE NAME	
CLASS	INDEX NUMBER

ADDITIONAL MATHEMATICS

4047

3 May 2018 2 hours

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks given in the brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Examiner's Use

This document consists of 5 printed pages including this page.

[Turn over]

PartnerInLearning

More papers at www.testpapersfree.com

2

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$
where *n* is a positive integer, and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

1	Solve	the simultaneous equations.	
		2y + x = 3	
		$\frac{1}{1} - \frac{4}{1} = 3$	
		y x	[4]
		$x = 3 - 2y$ Substitute: $\frac{1}{y} - \frac{4}{3 - 2y} = 3$	M1 – substitute
		$6y^{2} - 15y + 3 = 0$ $2y^{2} - 5y + 1 = 0$	M1 – correct quadratic equation
		$y = \frac{5 \pm \sqrt{(-5)^2 - 4(2)(1)}}{2(2)}$ $y = 2.28078 \text{ or } y = 0.21922$ $x = -1.56156 \qquad x = 2.56156$	M1 – formula for solving
		x = -1.56156 x = 2.56156 $x = -1.56, y = 2.28 or x = 2.56, y = 0.219$	A1 (accept exact value)
2	Given	that $(1, k)$ is a point of intersection between the curve $4x^2 - 4xy + y^2$	=1 and the line
-		-4x, find the	
	(a)	value of k,	[1]
		k = 3	B1
	(b)	coordinates of the other point of intersection.	[3]
		$4x^{2} - 4x(7 - 4x) + (7 - 4x)^{2} = 1$ $3x^{2} - 7x + 4 = 0$ $(3x - 4)(x - 1) = 0$ $x = \frac{4}{3} \text{ or } x = 1 \text{ (reject.)}$	M1 – simultaneous equation M1 – factorized quadratic/ formula
		$y = \frac{5}{3}$ $\therefore \left(\frac{4}{3}, \frac{5}{3}\right)$	A1
3	(a)	Given that $2x^3 + 5x^2 - x - 2 = (Ax + 3)(x + B)(x - 1) + C$, where A, B	and C are
		constants, find the values of A , B and C .	[3]
		When $x = 1, 2 + 5 - 1 - 2 = C$ C = 4 When $x = 0, -2 = 3(B)(-1) + 4$ -6 = -3B B = 2 When $x = -1, -2 + 5 + 1 - 2 = (-A + 3)(-1 + 2)(-2) + 4$ A = 5	M1M1 — substitution /expansion + comparing coefficients
		$\mathbf{n} - \mathbf{s}$	A1 – 3 values

	(b)	Given that $x^2 + mx + n$ and $x^2 + ax + b$ have the same remainder where	nen divided by
		x + p, express p in terms of a, b, m and n.	[3]
		Substitute $x = -p$, $(-p)^2 + m(-p) + n = (-p)^2 + a(-p) + b$ $ap - pm = b - n$ $p = \frac{b - n}{a - m}$	M1 – remainder theorem (R=0 reject) M1 – equal remainder A1
			·
4	The fi	unction $f(x) = 54x^4 - 9x^3 - 6a^2x^2 + 7x + 2$ has a factor of $3x + a$.	
	(i)	Show that $a^3 - 7a + 6 = 0$.	[2]
		When $x = -\frac{a}{3}$, $54\left(-\frac{a}{3}\right)^4 - 9\left(-\frac{a}{3}\right)^3 - 6a^2\left(-\frac{a}{3}\right)^2 + 7\left(-\frac{a}{3}\right) + 2 = 0$	M1 – factor theorem
		$\frac{1}{3}a^3 - \frac{7}{3}a + 2 = 0$ $a^3 - 7a + 6 = 0 \text{ (shown)}$	A1
	(ii)	Hence, find the possible values of a.	[4]
		Let $a = 1$ 1 - 7 + 6 = 0 $(a^3 - 7a + 6) \div (a + 1) = a^2 + a - 6 = (a + 3)(a - 2)$ $\therefore a = 1, 2, -3$	M1 – factor theorem M1 – long division M1 – factorise A1
5	Expre	$\frac{2x^3 + 5x^2 - x + 1}{(x - 2)(x^2 + 1)}$ in partial fractions.	[5]
		$\frac{2x^3 + 5x^2 - x + 1}{(x - 2)(x^2 + 1)} = 2 + \frac{9x^2 - 3x + 5}{(x - 2)(x^2 + 1)}$ $\frac{9x^2 - 3x + 5}{(x - 2)(x^2 + 1)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 1}$ $x^2(A + B) + x(-2B + C) + (A - 2C) = 9x^2 - 3x + 5$ $A + B = 9$ $-2B + C = -3$ $A - 2C = 5$ $\therefore A = 7, B = 2, C = 1$ $\therefore 2 + \frac{7}{x - 2} + \frac{2x + 1}{x^2 + 1}$	M1 – long division M1 – partial fractions M1 – compare coefficient/ substitution M1 – values of A, B, C A1

6	The curve $y = (k+2)x^2 - (2k+1)x + k$ has a minimum point and lies completely above the		
	x-axis	s. Find the range of values of k.	[4]
		$k + 2 > 0, k > -2$ $(-2k - 1)^2 - 4(k + 2)(k) < 0$ $-4k + 1 < 0$ $k > \frac{1}{4}$ $\therefore k > \frac{1}{4}$	$M1$ – coefficient of x^2 $M1$ – discriminant < 0 $A1$ $A1$ - conclusion
	-		
7	(i)	Find the values of m for which the curve $y = x^2 - 5x + m + 8$ touche	s the line $y = mx$
		only once.	[4]
		$x^{2} - 5x + m + 8 = mx$ $x^{2} + x(-5 - m + +m + 8 = 0)$ $(-5 - m)^{2} - 4(1)(m + 8) = 0$ $m^{2} + 6m - 7 = 0$ $(m + 7)(m - 1) = 0$ $m = -7, m = 1$	M1 – simultaneous equation M1 – discriminant = 0 M1 – factorise A1
	(ii)	Hence, state the range of values of m for which the curve $y = x^2 - 5x + m + 8$ cuts	
		the line $y = mx$ twice.	[1]
		m < -7, m > 1	B1
	(iii)	Using answers in (i) and (ii), state what can be deduced about the curve	
		$y=x^2-5x+11$ and the straight line $y=3x$, giving a reason for your answer.	[2]
		m = 3, which is > 1 . Since the value of m is more than 1, the curve will cut the line twice.	B1 - value of m + comparison B1 - conclusion (ecf)
8	The roots of the equation $3x^2 = 2kx - k - 4$ are α and β . If $\alpha^2 + \beta^2 = \frac{16}{9}$, find possible		
	value	s of k.	[5]
		$3x^{2} - 2kx + k + 4 = 0$ $\alpha + \beta = \frac{2k}{3}$ $\alpha\beta = \frac{k+4}{3}$	M1 – sum and product of roots
		$\alpha \beta = \frac{16}{3}$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{16}{9}$	M1 – formula
		$(\frac{2k}{3})^2 - 2\left(\frac{k+4}{3}\right) = \frac{16}{9}$	M1 – substitution of values
		$2k^2 - 3k - 20 = 0$ $(2k + 5)(k - 4) = 0$	M1 – factorise

4047_S3_2018MYE

PartnerInLearning

More papers at www.testpapersfree.com

		$\therefore k = 4, k = -\frac{5}{2}$	A1		
9					
	(a)	Find $\alpha + \beta$ and $\alpha\beta$.	[2]		
		$\alpha + \beta = -2$	B1		
		$\alpha\beta = \frac{5}{2}$	B1		
	(b)	Show that $\alpha^3 + \beta^3 = 7$.	[3]		
		$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$ $= (\alpha + \beta)[(\alpha + \beta)^{2} - 3\alpha\beta]$	M1 – formula M1 – simplifying		
		$= (-2)\left[(-2)^2 - 3\left(\frac{5}{2}\right)\right] = 7$	A1		
	(c)	Find the quadratic equation, with integer coefficients, whose roots are $\frac{\alpha}{\beta^2}$			
		and $\frac{\beta}{\alpha^2}$.	[3]		
		$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \frac{7}{\left(\frac{5}{2}\right)^2} = \frac{28}{25}$	M1 – sum substitution		
		$\left(\frac{\alpha}{\beta^2}\right)\left(\frac{\beta}{\alpha^2}\right) = \frac{1}{\alpha\beta} = \frac{2}{5}$ $\therefore 25x^2 - 28x + 10 = 0$	M1 – product substitution		
		252 250 , 10	A1		
			-1 (a & b)		
10	Find	the range of values for which $\frac{-5}{3x^2 + 13x - 10} > 0$.	[3]		
	$3x^{2} + 13x - 10 < 0$ $(3x - 2)(x + 5) < 0$		M1 – denominator inequality		
A CONTRACTOR OF THE PROPERTY O			M1 – diagram with shaded area (ecf)		
		-5/1/1/2	A1		
	$\therefore -5 < x < \frac{2}{3}$				

11		out using a calculator, find the value of 6^x , given that $a^2 = 4^{-3-x}$.	[4]
		$(3^{2x})(3^2) = 2^{-6-2x}$ $9(3^{2x}) = 2^{-6}(2^{-2x})$	M1 – base 2 M1 – combine
		$(3^{2x})(2^{2x}) = (2^{-6})(3^{-2})$ $6^{2x} = \frac{1}{2^{6}3^{2}} = \frac{1}{576}$	power x M1
		$6^x = \frac{1}{24} \text{ (reject negative)}$	A1
12	(a)	Solve the equation $4^{x+1} = 2 - 7(2^x)$.	[3]
		$2^{2x+2} = 2 - 7(2^{x})$ Let $2^{x} = y$ $4y^{2} + 7y - 2 = 0$ $(4y - 1)(y + 2) = 0$	M1 – quadratic
		$(4y-1)(y+2) = 0$ $y = \frac{1}{4} \text{ or } y = -2$ $2^{x} = \frac{1}{4} 2^{x} = -2 \text{ (rej.)}$ $\therefore x = -2$	M1 – solve for y (no marks if reject at y)
	(b)	Solve the simultaneous equations	A1 – with reject
	(6)	$4^{x-2} = \frac{64}{2^y}$	[5]
		$\log_{x}(y+2) - 1 = \log_{x} 4$ $4^{x-2} = \frac{64}{2^{y}}$ $2^{2x-4} = 2^{6-y}$	M1 – base of 2
		$2x - 4 = 6 - y$ $x = 5 - \frac{y}{2}$ $log_x(y+2) - log_x x = log_x 4$ $y + 2$	M1 – compare power
		$\frac{y+2}{x} = 4$ $y+2 = 4x$ $y+2 = 4\left(5 - \frac{y}{2}\right)$ $3y = 18$	M1 – compare logarithm M1 – substitution
		y = 6 $x = 2$	A1

13	Solve	the equation $\sqrt{x-5} = \sqrt{x} + 2$.	[3]	
i i		$x - 5 = \left(\sqrt{x} + 2\right)^2$ $x - 5 = x + 4\sqrt{x} + 4$	M1 – correctly squaring both sides	
		$4\sqrt{x} = -9$ $\sqrt{x} = -\frac{9}{4}$ $x = \frac{81}{16}$	M1 – square root x	
14	In the	In the diagram, ABCD is a parallelogram, with heights DE and CF. It is given that		
	CD =	$(7+4\sqrt{2})$ cm, $BC = (11-2\sqrt{2})$ cm and $DE = (3+3\sqrt{2})$ cm.		
	Find			
	Find (a)	the perimeter of ABCD,	[2]	
:	(# <i>J</i>	$2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$	M1 – formula A1 – with units	
	(b)	the area of ABCD,	[2]	
		$(3+3\sqrt{2})(7+4\sqrt{2}) = 21+12\sqrt{2}+21\sqrt{2}+12(2)$ = $45+33\sqrt{2}$ cm	M1 – formula A1	
	(c)	the length of CF.	[3]	
	` ` '			

15	(a)	Solve $\log_3(\frac{1}{x}) = 2$.	[2]
		$log_3 \frac{1}{x} = 2$ $3^2 = \frac{1}{x}$ $\frac{1}{x} = 9$	M1 – exponential
		$\therefore x = \frac{1}{9}$	A1
	(b)	Given that $\lg x = a$ and $\lg y = b$, express $\lg(\frac{1000x^2}{y})$ in terms of a and b .	[2]
		$\lg\left(\frac{1000x^2}{y}\right) = \lg 1000 + 2\lg x - \lg y$ $= 3 + 2a - b$	M1 – product and quotient law A1
	(c)	Solve $ln(x-1) = 3$, leaving your answer in exact terms.	[2]
		$\ln(x-1) = 3$ $e^3 = x - 1$ $x = 1 + e^3$	M1 – exponential equation

End of Paper