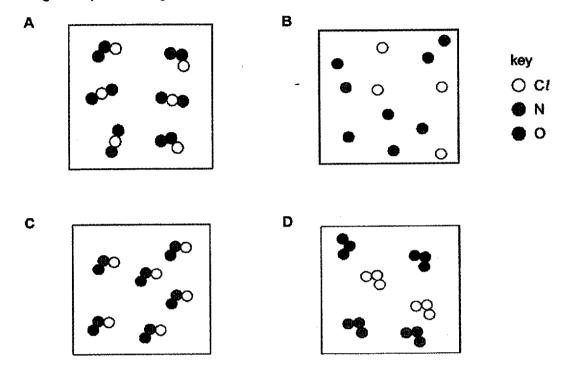
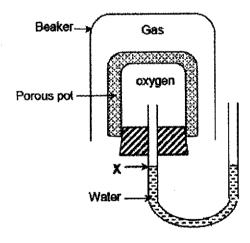

Section A (30 marks) Answer ALL questions in the OTAS provided.

1 The set-up shown below is used to purify a sample of butanoic acid (boiling point 164 °C) from its mixture with water.

Which graph shows the change in concentration of butanoic acid in flask F over time?

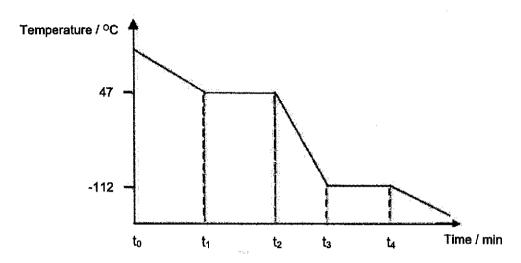


2 A sample of a gas, T, can be purified by passing it through a liquid, S. Which set-up is most suitable for this purpose?



- 3 Which process occurs when sugar crystals are placed in a beaker of water at 50 °C?
 - A decomposition
 - **B** diffusion
 - **C** evaporation
 - **D** melting
- 4 An atom of an element has the symbol ⁴₂Q. Which statement about element Q is correct?
 - A It is in Group II of the Periodic Table.
 - B It is in Group IV of the Periodic Table.
 - C There are more protons than neutrons in one atom of element Q.
 - D There is an equal number of neutrons and electrons in one atom of element Q.
- 5 Three elements X, Y and Z have consecutive, increasing proton numbers. If element X is a noble gas, which of the following ions would element Z form in its compounds?
 - A Z⁺
 - B Z²⁺
 - C Z
 - D Z²⁻

6 Which diagram represents a gas with the molecular formula NOC??


7 An experiment is set up as shown below.

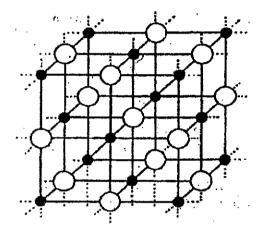
Which gas, when present in the beaker, would cause the water level at X to fall?

- A carbon dioxide, CO₂
- B chlorine, Cl₂
- c methane, CH₄
- D nitrogen dioxide, NO2

8 The graph below shows the cooling curve of carbon disulfide.

Which statement is incorrect?

- A Carbon disulfide is a liquid at -73 °C.
- B Heat energy is absorbed to overcome forces of attraction between the particles of carbon disulfide between t₁ and t₂.
- C The melting point of carbon disulfide is -112 °C.
- D The particles of carbon disulfide are closer to one another at t₁ than at t₀.
- **9** Boron exists naturally as two isotopes. The table below shows the relative abundance of both isotopes.

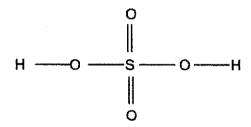

isotope	relative abundance
5B	19.7 %
5B	80.3 %

Based on the data, what would be the average mass of a boron atom?

- A 10.0
- **B** 10.6
- C 10.8
- **D** 11.0
- 10 Which set of substances contains an element, a mixture and a compound?
 - A air, pure water, calcium chloride
 - B carbon, air, calcium chloride

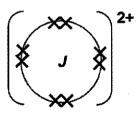
6

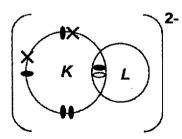
- C pure water, sulfur, calcium
- D sulfur, carbon monoxide, calcium chloride
- 11 Which statement explains why brass is harder than pure copper?
 - A Zinc atoms in brass form strong covalent bonds with the copper atoms.
 - B Zinc atoms in brass have more electrons than copper atoms.
 - C Zinc atoms in brass prevent the layers of copper atoms from sliding past one another easily.
 - D Zinc atoms in brass prevent the 'sea of electrons' from moving freely in the lattice.
- 12 The diagram below shows part of the arrangement of ions in a compound. Ions of element M are represented by and ions of element X are represented by O.


What is the simplest formula of this compound?

- A MX
- B MX₂
- C M₅X₄
- D M₁₄X₁₃
- 13 Substance Z has the following properties:
 - melting point lower than 0 °C
 - insoluble in water
 - conducts electricity in solid and molten states

Which of the following could substance Z be?


- A carbon dioxide
- **B** graphite
- **C** mercury
- D zinc


- 14 Elements X, Y and Z belong to Groups I, V and VII of the Periodic Table respectively. Which statement is correct?
 - A XZ and YZ₃ are both ionic compounds.
 - B XZ and X₃Y are both covalent compounds.
 - C XZ is a covalent compound and YZ₃ is an ionic compound.
 - $D = X_3Y$ is an ionic compound and YZ_3 is a covalent compound.
- 15 The bonding in a molecule of sulfuric acid is shown below.

What is the total number of electrons in the bonds joined to the sulfur atom?

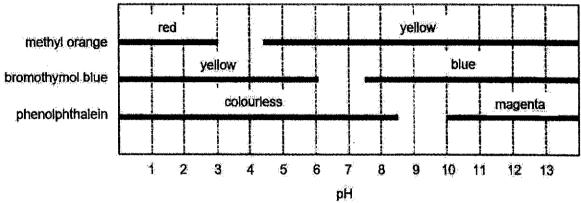
- A 4
- **B** 6
- C 12
- D 16
- 16 J, K and L are three different elements in the Periodic Table. The electronic diagram (showing only the valence electrons) of the compound formed between J, K and L is shown below.

Which of the following statements are correct?

- Element K could be nitrogen.
- Il Element J belongs to Group II of the Periodic Table.
- III Element K and element L are bonded together by covalent bond.
- IV Element L is a metal.
- A I, II and III

- B I, II and IV
- C I, III and IV
- D II, III and IV
- 17 Under the same temperature and pressure, a 24 g sample of oxygen gas occupies the same volume as 18 g of gas *P*. What is the relative molecular mass of gas *P*?
 - A 12
 - B 24
 - C 32
 - D 56
- 18 Potassium manganate(VII) decomposes when gently heated according to the equation below.

$$2 \text{ KMnO}_4 \longrightarrow \text{K}_2 \text{MnO}_4 + \text{MnO}_2 + \text{O}_2$$


When 1.65 g of a sample of potassium manganate(VII) crystals is heated until no more gas evolves, the volume of oxygen gas collected at r.t.p is 120 cm^3 . What is the percentage purity of the sample of potassium manganate(VII) crystals? (A_r : Mn 55, K 39, O 16)

- A 20 %
- B 24 %
- C 48 %
- D 96 %
- 19 Which statement correctly describes an alkali?
 - A A strong alkali has a low pH.
 - B A weak alkali undergoes a high rate of dissociation.
 - C Alkalis are bases that are soluble in water.
 - D Alkalis are not corrosive.
- 20 Which of the following shows the correct methods a student should use to prepare the named salts in a Science laboratory?

	titration	precipitation	adding excess solid reactants
Α	ammonium chloride	lead(II) sulfate	magnesium chloride
В	barium carbonate	calcium sulfate	sodium chloride
C	copper(II) sulfate	ammonium chloride	lead(II) nitrate
D	lead(II) nitrate	barium carbonate	zinc sulfate

- 21 Both acids and alkalis may be used to remove the layer of aluminium oxide formed on the surface of saucepans. Which statement explains this observation?
 - A Aluminium oxide is acidic.

- B Aluminium oxide is amphoteric.
- C Aluminium oxide is basic.
- D Aluminium oxide is neutral.
- 22 The diagram below shows the colour range of three pH indicators, methyl orange, bromothymol blue and phenolphthalein.

When added separately to solution **X**, methyl orange is yellow, bromothymol blue is blue and phenolphthalein is colourless. What is the pH range of solution **X**?

- A 4.5 to 6.0
- **B** 6.0 to 7.5
- C 7.5 to 8.5
- D 8.5 to 10.0
- 23 Which gas is used to fill light bulbs?
 - A argon
 - **B** krypton
 - C nitrogen
 - **D** oxygen
- 24 Element M reacts with water producing an acidic solution. This solution gives a white precipitate with aqueous silver nitrate. In which Group or section of the Periodic Table is M found?
 - A alkali metals
 - **B** halogens
 - C noble gases
 - D transition metals
- 25 Rubidium is in Group I of the Periodic Table. Which pair of properties is rubidium likely to have?
 - A hard, high melting point

- B hard, low melting point
- C soft, high melting point
- D soft, low melting point
- 26 An experiment is carried out to determine the order of reactivity of some metals. Three metals are placed in aqueous solutions of metal ions. The results are shown below.

		aqueous solution	s of metal ions	
metal	W ²⁺	X ²⁺	Y ²⁺	Z ²⁺
W		reaction observed	reaction observed	reaction observed
Y	no reaction observed	no reaction observed		no reaction observed
Z	no reaction observed	no reaction observed	reaction observed	

Which of the following is the correct order of reactivity, from the most to the least reactive metal?

- A W, X, Y, Z
- B W, X, Z, Y
- C W, Z, Y, X
- D Y, Z, X, W
- 27 Which of the following correctly describes high-carbon steel?
 - A soft and brittle
 - B soft and easily shaped
 - C strong and brittle
 - D strong and easily shaped
- 28 Scrap iron is often recycled. Which reason for recycling is not correct?
 - A It reduces the amount of pollution at the site of the ore extraction.
 - B It reduces the amount of waste taken to landfill sites.
 - C It reduces the need to collect the scrap iron.
 - D It saves natural resources.
- 29 Which of the following is a redox reaction?
 - A $CaCl_2 + Pb(NO_3)_2 \square Ca(NO_3)_2 + PbCl_2$
 - B CH₄ + 2O₂ I CO₂ + 2H₂O
 - C HCI + NaOH I NaCI + H2O
 - D 2O₃ [] 3O₂
- 30 In the reaction shown below, which pair of substances correctly identifies the oxidising and reducing agents?

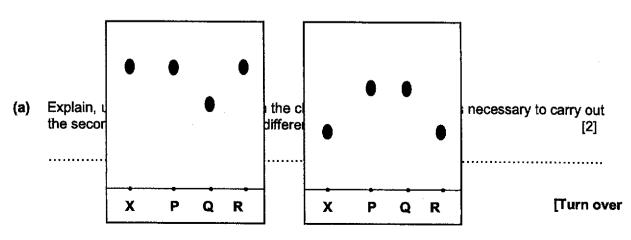
$$2KMnO_4(aq) \ + \ 5SO_2(g) \ + \ 2H_2O(l) \ \rightarrow \ K_2SO_4(aq) \ + \ 2MnSO_4(aq) \ + \ 2H_2SO_4(aq)$$

[5]

	oxidising agent	reducing agent
Α	H₂SO₄	MnSO₄
В	KMnO₄	SO₂
C	KMnO ₄	H₂O
D	SO ₂	KMnO₄

Section B (40 marks)

Answer ALL questions in the spaces provided.


1 A list of substances is given below.

hydrogen	caesium	helium	oxygen
copper	chlorine	graphite	magnesium oxide

Using each substance once, more than once or not at all, identify the substance which

(a)	extinguishes a lighted splint with a 'pop' sound;
(b)	is necessary for rusting;
(c)	exists in variable oxidation states;
(d)	bleaches litmus paper when in gaseous state;
(e)	is used to line the interior of a blast furnace.

2 The ink, X, from a forged letter was analysed with three other inks, P, Q and R, taken from the pens of three suspects. Two chromatograms, as shown below, were obtained using different solvents - water and ethanol.

water as solvevPartnerInLearning 6PEs solvent

More papers at testpapersfree.com

	(b)	Iden	tify the ink that was used to write the forged letter.	[1]
	(c)		arrying out chromatography, the following precautions are taken. Suggest a reason	n for
		(i)	The solvent front must not be allowed to reach the top edge of the chromatographer.	aphy [1]
		(ii)	The start line is drawn in pencil.	[1]
3	The	struc	tures of two particles, J and Z are shown below.	
			11(+) 12(•) Sey:	
			particle J particle Z	
	(a)	Stat	te the formula of each particle.	[1]
		J:		
		Z :		
	(b)	Stat	e the formula of the compound formed between J and Z.	[1]

(C)	Calculate the mass of one mole of the compound formed between J and Z.	[1]
(d)	Explain how the bond between J and Z is formed.	[3]
		•••••••
		•••••
		·
	,	
(e)	Predict whether the compound formed between J and Z has a high or low melt Explain your answer.	ing point. [3]

		• • • • • • • • • • • • • • • • • • • •
	taric acid, H_2T , is a weak acid found in wines. The reaction between sodium hydroaric acid can be represented by the equation shown below.	oxide and
	H₂T + 2NaOH □ Na₂T + 2H₂O	
(a)	Explain the meaning of 'weak acid'.	[1]
(b)	Write the equation for the reaction between tartaric acid and magnesium ribbon.	[1]
(-,		
, .		
(c)	In a titration experiment, it was found that 25.0 cm ³ of wine required 20.0 cn mol/dm ³ sodium hydroxide for complete neutralisation. Calculate the concer tartaric acid in the wine.	n³ of 0.10 ntration of [3] [Turn ove

PartnerInLearning

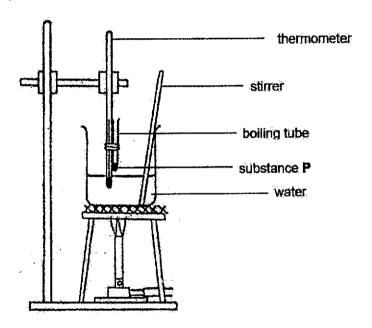
5	Titanium is commonly found in the Earth's crust in the form of its oxide, TiO ₂ . To extract titanium, the oxide is first heated with coke and chlorine to produce titanium chloride and a gas P. The titanium chloride is then heated in a furnace with magnesium so that titanium will be produced.			
	(a)	(i)	Identify gas P.	[1]
		(ii)	Describe a test to confirm the identity of gas P.	[2]
	(b)		pare the reactivity of titanium and magnesium. Explain your answer.	[2]
	(c) Name another metal that is also extracted by a similar process.		[1]	
	\-,'			
	(d)	Titar	nium is known to be a metal with the strength of steel and also with the low density osion-resistance of aluminium.	and

		(i)	Define the term 'corrosion'.	[1]
				•••••
		(ii)	State a possible use of titanium.	[1]
6	In ar	n expe	eriment, chlorine gas is passed through a tube as shown below.	******
		c	potassium bromide potassium iodide P Q R (black solid)	
			gentle heat	
	After	r a sh	ort while, coloured vapours are observed at P and Q.	
	(a)	Stat	e the colours of the vapours observed at P and Q.	[1]
		P : .	***************************************	
		Q:		
	(b)	With	n reference to electron transfer , explain the redox reaction that occurred in nation of the vapour at P .	n the [3]
				•••••
		•••••		
•		,,,,,		
	(c)	lder	ntify the black solid that formed at R .	[1]
				•••••
	(d)	Stat	te and explain the trend in the reactivity of elements in Group VII.	[3]

1	16

Section C (30 marks)

PartnerInLearning
More papers at www.estpapersfree.com


Answer ALL questions in the spaces provided.

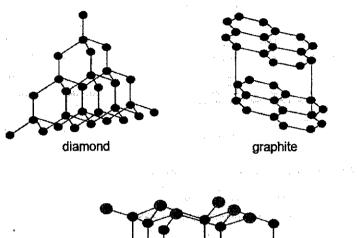
7	Sod cont	ium c amina	hloride is commonly known as table salt. A pot of uncooked rice is accidentally ted with some salt.
	(a)	Des	cribe in detail how you would separate the rice from the salt. [4]
			······································
		•••••	
	(b)	Sodi	ium chloride crystals are very hard and have regular shapes. In industry, electrolysis of centrated aqueous sodium chloride produces chlorine.
		(i)	With reference to the two statements above, state a difference between an element and a compound. [2]
		(ii)	Explain why sodium chloride crystals are 'very hard and have regular shapes'. [2]
		(/	Explain why sodium chloride crystals are 'very hard and have regular shapes'. [2]

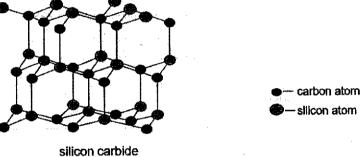
(iii) In the space below, draw the dot-and-cross diagram of sodium chloride.

[2]

8 A student set up an experiment as shown below, to find the melting point of a substance, P.

(i)	Upon checking, the student's teacher identified a mistake in the set-up. the student should modify the set-up for greater accuracy.	[1]
(ii)	The student made an effort to stir the water in the beaker throughout the Suggest why the student did so.	ne experiment [1]


(a)


(b) Using the modified set-up, the student observed that the thermometer reading rose from 82 °C to 86 °C as substance P melted. To identify substance P, the student referred to the table below.

substance	melting point / °C
naphthalene	80
octacosanol	83
stearone	88

	(i)	ls substance P a pure substance? Explain your answer.	[2]
			•••••
	(ii)	Based on the experimental data and table above, suggest the identity of P. Eyour answer.	Explain [2]
(c)		separate experiment, another student found that solid carbon dioxide sublimes ed at room temperature and pressure.	s when
	(i)	Draw the dot-and-cross diagram of carbon dioxide, showing only the velectrons.	alence [2]
	(ii)	Using your knowledge of kinetic particle theory and chemical bonding, expla solid carbon dioxide sublimes when placed at room temperature and pressure.	in why [2]
			•••••
			•••••

9 The diagram below shows the structures of three macromolecules.

(a) Identify two allotropes in the diagram above.

[1]

(b) Suggest the formula of silicon carbide.

[1]

(c) (i) Which macromolecule is able to conduct electricity?

[1]

(ii) Explain your answer in (c)(i).

[2]

(d)	With reference to the physical properties of diamond, explain why it is used to make tips.	drill [3]
	***************************************	•••••
		•••••
		•••••
		•••••
		•••••
(e)	Explain why graphite can be used as a solid lubricant. [2]	
		•••••

End of Paper

The Periodic Table of Elements

	0	子 子	helium 4	2	<u>§</u>	DOC.	ş	2 4	X	4	98	Z	rojekon O	\$	ž	ě	13.1	£	ត់		500	1				
	₹			on	j.	Nuorine 10	2 +	≐ გ	3	35.5	35	à	ogmine So	3	ß	⊢j i i	100 107	. ¥	7₹	Č.	Statue	1.			•	
	5			83	O	oxygen 16	3 4	۵ د	n ŝ	32	8	8	E CE	2	S	ø	TO ACT	ž	5 6	2		j	9		Svermonfutb	ļ.
	>			7	z	nthogen 1.7	<u>.</u>	Ω.	L	35	R	B	arsenic 7	2	io	හි	to cct	3 2	3 6	ō,		883				
	Δ			Œ	်ပ	carbon	2	1 (75 E	28	32	æ	germanikan	2	g G	ଜ	2 Ç	2 8	ð	<u>ت</u> (20/	7	<u>.</u>	fierovium	r-
	=			ıc	ж	poron	_ {	71 3	7	27	8	8		9	40	ន		2 5	5 F	Ž.	¥ .	204		-		
											R	5	ZIK	8	48	3	Cadmium	Z 6	3 5	Đ.	merculy	201	4	5	copernictum	L
											æ	ಕ	aeddoo	ঠ	#	PQ	all a	92	2 2	₹	ě.	197	Į	æ	roentgentum	,
Group		_									88	Z	PICKe	20	94	8	palladium	<u> </u>	2 2	Σ.	plathum	8	92	Š	darms/adfaum	1
Ğ											27	රි	copan	26	45	돈	rhodium	3 4	= 1	=	iridium	192	109	₹	meitherum	ì
		~ I	hydragen 1	-							56	ę.	Lon	96	117	丞	rutherium	5 6	2 8	ຶ່ງ	osmium	190	108	£	hassium	ì
											25	₩	manganese	સુ	43	<u>၁</u>	lechnetium		2 ر	Υ Φ	rhenium	186	201	6	bohrium	1
				umbor	mbol		mass				24	ර්	chromium	25	42	Mo	molybdenum	s i	4,	*	lungstan	184	106	SG	seaborgum	I
			Kov	(opomor)	mic sym	name							-		L.		niobium	- 1			_		l		~	
				acqua	in the	1	relati				22	 =	fftankım	84	40	Z.	zírconium	5	7	ŧ	hafnium	178	Š	ăZ	Rutherfordium	1
											21	တ်	scandium	₹	39	>	yttyta	3	0/ - /	BUURROUS			89 - 103	actinoids		
				•	4 G	peryffum	ဘ	7	¥g	magnesium 24	18	ප	calclum	4	38	જ	stronttum	38 1	ያ,	æ	parinu	137	88	æ	radium	1
	_			ç	ი <u>:</u>	E I	_	=	Š	sodhun 23	5	×	potaestum	93	37	8	nubidium	2	ස .	క	caesium	8	87	<u>. </u>	franclum	ı

L T T	103 Lr tawrendu
古名	- 1
88 T ₹ 59 169	101 Md mendelevium
器 型 2	100 Fm fermium
67 Ho holimitim 165	99 Es einsteintum
66 Dy dysprosium 163	98 Cf californium -
35 다 (1951 1951	97 BK berkeltum
2 G Selection	Cm auritum
SS TELE TELESTREET	95 Am ameridum
62 Sm semertum	94 Pu plutonium
61 Pm promethium	93 Np neptunkum
60 Nd neodymium	92 U uranlum 238
59 Pr praseodymum	91 Pa protacfinium 231
8 9 m 6	90 Th thorium 232
57 La lanthanum	Ac Ac actinium

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Deyi Secondary School End-of-Year Examination 2019 Chemistry (6092) Secondary 3 Express

Marking Scheme

Section A [30m]

Qn No.	Answer	Qn No.	Answer	Qn No.	Answer
1	В	11	С	21	В
2	D	12	Α	22	С
3	В	13	C	23	Α
4	D	14	D	24	В
5	В	15	С	25	D
6	С	16	A	26	В
7	С	17	В	27	C
8	В	18	D	28	C
9	С	19	C	29	В
10	В	20	A	30	В

Section B [40m]

Qn.	Answer	Marks	Remarks
(a)	Hydrogen	1	A The Assessment
(b)	Oxygen	1	
(c)	Copper	1	
(d)	Chlorine	1	
(e)	Magnesium oxide	1	
	Total	5	

Qn.	Answer	Marks	Remarks
(a)	Using water as a solvent, Rf values for inks P and R were the same	1	
	Another solvent is used to determine if the ink in the forged letter was P or R	1	
(b)	Ink R	1	
(c)(i)	If the solvent front reaches the top of the chromatography paper, Rf value cannot be calculated	1	
(c)(ii)	Carbon in pencil lead is insoluble in most solvents and would not interfere with the separation process	1	
	Total	5	

Question 3

Qn.	Answer	Marks	Remarks
(a)	J ⁺ Z ⁻	1	
(b)	JZ	1	
(c)	46 g	1	no units - minus ½ m
	Atom of J loses one electron to form a positively charged ion	1	
(d)	Atom of Z gains one electron to form a negatively charged ion	1	
` '	lonic bond is formed through the electrostatic force of attraction between both ions	1	
	High melting point		
, ,	Large amount of heat energy is needed to	1	
(e)	Overcome strong electrostatic forces of attraction between	1	
	Oppositely charged J ⁺ and Z ⁻ ions in the giant ionic lattice	1	
	Total	9	

Qn.	Answer	Marks	Remarks
(a)	A weak acid partially ionises in water to form hydrogen ions	1	
(b)	H ₂ T + Mg 🛭 MgT + H ₂	1	
	Number of moles of sodium hydroxide used = (20/1000) x 0.10 = 0.002 mol	1	
(c)	From the equation, 2 mol of sodium hydroxide reacts with 1 mol of tartaric acid; hence 0.002 mol of sodium hydroxide reacts with 0.001 mol of tartaric acid	1	
	Concentration of tartaric acid = 0.001/(25/1000) = 0.04 mol/dm ³	1	
	Total	5	

Question 5

Qn.	Answer	Marks	Remarks
(a)(i)	Carbon dioxide	1	
(=\('!\	Bubble the gas through limewater	1	
(a)(ii)	A white precipitate forms	1	
(L)	Titanium is less reactive than magnesium	1	
(b)	Magnesium displaces titanium from its chloride	1	
(c)	Zinc / Iron / Tin / Lead / Copper / Silver	1	accept any metal less reactive than magnesium
(d)(i)	Corrosion is the wearing away of the surface of a metal by a chemical reaction	1	
(d)(ii)	Jewellery / artificial replacements for hip or knee joints / spectacle frames / golf clubs / racing cars or bicycles	1	accept any appropriate use of titanium
	Total	8	

Qn.	Answer	Marks	Remarks
(a)	P: reddish-brown Q: violet/purple	1	
(b)	Electrons are transferred from bromide ions to chlorine (atoms)	1	
	Bromide ions lose electrons and are oxidised to bromine (molecules)	1	explain both oxidation and reduction (redox)
	Chlorine (atoms) gains electrons and is reduced to chloride ions	1	
(c)	Iodine	1	
(d)	Reactivity decreases down Group VII	1	
	Atomic radii increases as number of electron shells increases down the Group	1	
	Force of attraction for electrons from the positive nucleus weakens and electrons are attracted less readily	1	
	Total	8	

Section C [30m]

Question 7

Qn.	Answer	Marks	Remarks
	Add water to the mixture of rice and salt and stir to dissolve the salt	1	
	Filter the mixture to obtain rice as the residue and	1	
(a)	Salt solution as the filtrate	1	
	Heat the filtrate to dryness to obtain the salt crystals	1	
	A compound consists of 2 or more elements chemically combined such as sodium chloride	1	
(b)(i)	An element is a substance that cannot be broken down into simpler substances such as chlorine	1	
(b)(ii)	Sodium and chloride ions are held together by strong electrostatic forces of attraction which require a lot of energy to overcome (hard)	1	
(5)(11)	lons are held in fixed positions in a giant ionic lattice (regular shape)	1	
(b)(iii)	sodium ion, chloride ion, Na* [2,8] * CI* [2,8,8]*	2	1m for each correct ion with all electrons drawn
	Total	10	

Qn.	Answer	Marks	Remarks
(a)(i)	The boiling tube should be placed inside the beaker of water OR the position of substance P should be aligned with the bulb of the thermometer	1	
(a)(ii)	To distribute the heat evenly throughout the water bath	1	
/L\/!\	No	1	
(b)(i)	Substance P melted over a range of temperatures	1	
	P is stearone	1	
(b)(ii)	Impurities lower the melting point of a substance and P melted over a range of temperatures lower than 88 °C	1	
(c)(i)		2	1m for correct number of C and O atoms; 1m for correct number of electrons
(c)(ii)	Little heat energy is needed to overcome weak intermolecular forces of attraction between carbon dioxide molecules in solid state	1	
	As forces of attraction are overcome/weakened, molecules move rapidly in all directions in gaseous state	1	
	Total	10	

Qn.	Answer	Marks	Remarks
(a)	Diamond and graphite	1	1m if both correct
(b)	SiC	1	
(c)(i)	Graphite	1	
(c)(ii)	Each carbon atom is covalently bonded to three other carbon atoms, thus having one valence electron not involved in bonding	1	
	Presence of these delocalised (free-moving) electrons allows graphite to conduct electricity	1	
(d)	Diamond is hard and has high melting and boiling points as	1	
	A lot of heat energy is needed to break the strong covalent bonds between carbon atoms throughout the	1	
	Giant molecular structure	1	
(e)	Weak intermolecular forces of attraction between the layers of carbon atoms allow	1	
	The layers to slide over one another easily when force is applied	1	
	Total	10	