Name:	_ ()	Class:

GREENDALE SECONDARY SCHOOL **End-Year Examination 2018**

MATHEMATICS

4048/01

Paper 1

4 October 2018

Secondary 3 Express

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.

Write in dark or blue pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working may result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13
Strand	Α	Α	N	N	S	G	G	S	Α	G	Α	N	N
Marks													

Question	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25	
Strand	G	G	М	Α	N	N	N	Р	G	G	М	G	
Marks										·			

This document consists of 17 printed pages, including this cover page.

Greendale Secondary School 2018

PartnerInLearning 300

Mathematics Paper 1

For Examiner's Use Only

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

PartnerInLearning

Greend <u>ale</u>	Secondary	School

3

Secondary 3 Express

End-Year Examination 2018

Mathematics Paper 1

For Examiner's Use Only

Answer all questions.	
-----------------------	--

1 (a) Simplify 6x-5(5x-6).

Answer [1]

(b) Factorise $16pq^2 - 12p^2q$.

Answer [1]

2 Factorise 9b+6a-4ac-6bc.

iswer [2]

It is given that x is 40% lesser than m and y is 20% greater than n. If $\frac{x}{y}$ is p% of $\frac{m}{n}$, find the value of p.

Answer p = [2]

For Examiner's Use Only

	endale Secondary School 4	Secondary 3 Express
End-	-Year Examination 2018	Mathematics Paper 1
4	a and b are positive integers. Show that $(a+b)^2 - (a-b)^2$ is a multiple of 4 for Answer	for all values of a and b .
		[2]
5	The mean of five numbers is equal to the median Excluding the median, the mean of the other four Find the value of x .	
	Answei	r x =[2]
6	The area of triangle ABC is 32 cm ² . Given that A the two possible values of $\angle ABC$.	AB = 8 cm and $BC = 9$ cm, find

Answer or

For Examiner's Use Only

End-Year Examination 2018

7 The diagram below is made up of a regular 8-sided polygon, an equilateral triangle and a regular *n*-sided polygon.

(a) An interior angle of the regular *n*-sided polygon is a° . Find the value of a.

Answer
$$a =$$
 [2]

(b) Find the value of n.

Answer
$$n =$$
 [2]

The line graph below shows the number of new students per year in a tuition centre.

Increasing Number of New Students from 2005 - 2015

State and explain one way in which the graph above is misleading.

Answer

[2]

6

Secondary 3 Express

End-Year Examination 2018

Mathematics Paper 1

Write as a single fraction in its simplest form $\frac{x}{(x-3)^2} - \frac{3}{3-x}$. 9

For Examiner's Use Only

10 A and B are points on the circle, centre O, and BOC is a straight line. AC is a tangent at A and $\angle ACB = 35^{\circ}$.

Find (a) (i) $\angle OAC$,

(ii) $\angle OAB$.

(b) Given that D is a point along the major arc AB, find $\angle ADB$.

		econdary School amination 2018	7	Secondary 3 Exp Mathematics Pap	
11	(a)		$x+21$ in the form of $(x+p)^2$		For Examiner's Use Only
			Answer	[1]	
	(b)	Hence find the m	ninimum value of $x^2 + 10x +$	21.	
			Answer	[1]	
	(c)	Find the equation $y = x^2 + 10x + 21$	n of its line of symmetry of the	he graph of	
			Answer	[1]	
12		ustralian tourist ex exchange rate of A	changed some Australian do	llars for Singapore dollars	

At the end of his visit, he changed his remaining \$\$837.50 back to Australian dollars at an exchange rate of \$\$1 = \$\$1.075.

Calculate the amount of money he lost in Australian dollars due to the difference in the exchange rates. Give your answer to the nearest cent.

Answer A\$ = ____[3]

For Examiner's Use Only

13 (a) Khai deposited \$8000 in a bank at a compound interest of 2.4% per annum. Calculate the interest he would have at the end of 5 years.

Answer \$ [3]

(b) At the end of 5 years, Khai withdrew his money from the bank and used 25% of it to buy a watch. How much did he pay for the watch?

Answer \$ _____[1]

14 In the diagram below, ABCD is a rhombus. P is a point on the diagonal.

Prove that $\triangle APD$ is congruent to $\triangle CPD$.

Answer

For Examiner's

Use Only

15 In the diagram below, FEG and CBA are a pair of parallel straight lines.

AF and BE are straight lines and they intersect at point D. Given that $\angle BDF = 80^{\circ}$ and $\angle CBE = 120^{\circ}$,

find

(a) $\angle FED$,

(b) reflex $\angle DAB$.

Answer reflex
$$\angle DAB =$$
 [2]

(c) Explain, if the points F, E, A and B lie on the circumference of a circle with centre D.

Answer _______ [2

The cross section of a cylindrical water tank of base radius 15 cm is shown. The tank is filled with water to a depth of 10 cm.

For Examiner's Use Only

(a) Find an expression for the volume of water in the tank in terms of π .

Answer cm³ [1]

(b) If 250 spherical marbles each of radius 0.7 cm are put into the tank, and are completely submerged in water, calculate new water level.

Answer _____cm [3]

[2]

For Examiner's Use Only

End-Year Examination 2018

On the axes given, sketch the following graphs, indicating the x and y**17** (a) intercepts where relevant.

(i)
$$y = -\frac{2}{x^2}$$

(ii)
$$y = 2^x$$

Hence explain if $2^x + \frac{2}{x^2} = 0$ will have any solutions. (b)

Answer	
	f17

The number 2016 and 2160 are written as a product of its prime factors 18 respectively as $2016 = 2^5 \times 3^2 \times 7$ and $2160 = 2^4 \times 3^3 \times 5$.

Find

the highest common factor of 2016 and 2160, (a)

Answer [1	1	Į		J
-----------	---	---	--	---

the smallest 3-digit number that is a factor of 2160, **(b)**

the minimum values of p and q, given that $2160 \times 5p = q^3$, where p (c) and q are integers.

Answer
$$p =$$
 [1]

$$q =$$
 [1]

The table shows the cost of petrol and the fare per kilometre charged by a taxi 19 driver for a customer's ride.

For Examiner's Use Only

	Cost of petrol per km	Fare per km	
	\$0.25	55 cents	
(a)	Find the ratio of the cost of po	etrol to the fare per km.	I
		Answer:	[1]
(b)	On a particular day, the total of \$88.50. Calculate	cost of petrol for all custome	ers' rides was
	(i) the total distance trave	elled,	
		Answer	km [1]
	(ii) the total fare collected	by the taxi driver on that da	y.
		Answer \$	[1]
(c)	The maintenance cost \$A, of t distance, d km, travelled. For maintenance cost is \$150. Find an equation to represent	every 5000 km travelled, the	e
		Answer	[1]
		· · · · · · · · · · · · · · · · · · ·	

01 40 000

For Examiner's Use Only

A map of a city is drawn to a scale of 1:40 000.

(a) The distance between a post office and a police station is 4.2 km. Find the distance, in centimetres, between them on the map.

Answer ____cm [1]

(b) A school occupies an area of 0.68 cm² on the map. Find the actual area, in square kilometres, of the school.

Answer km² [2]

In the diagram, ABCD is a square. P and Q are points on AB and BC respectively such that AP = 2PB and BQ = 2QC.

A point is selected at random in the square ABCD. Calculate the probability that the point selected lies outside triangle PBQ.

Answer ____[2]

The scale is 1 cm to 4 km.

22 The scale drawing shows a lighthouse P and a police speedboat Q. For Examiner's Use Only

A jet ski is 28 km from P on a bearing of 155°. (a) Mark and label on the diagram the position J, of the ski.

[1]

- **(b)** The jet ski is out of petrol and sends out a distress call. The police speed boat sets out from Q to travel to J. The average speed of the police speed boat is 85 km/h.
 - (i) On what bearing does the police speed boat travel?

Answer	0	ſ	1	1

Calculate the travelling time of the police speed boat. (ii)

> Give your answers in minutes and seconds, to the nearest second.

Answer minutes seconds [2]

(b)

Mathematics Paper 1

In the diagram below, a circle passes through the points A, B, C and D. 23 ABCD is a parallelogram and AEC is a straight line.

- Given that AD = 3 cm, AB = 4 cm and AC = 5 cm, explain why (a)
 - $\triangle ABC$ is a right-angled triangle, (i)

Answer
[1]
(ii) AC is the diameter of the circle.
Answer [1]
Given further that $\angle ECB = 70^{\circ}$ and $\angle ABE = 20^{\circ}$, explain why E is the centre of the circle.
Answer

Mathematics Paper 1

24 A shampoo bottle consists of a frustum of a right circular cone with vertical height 7 cm and top radius of 0.9 cm, attached to a cylinder of radius of 3 cm and height of 15 cm.

For Examiner's Use Only

Assuming that the bottle's thickness is negligible, find the total capacity of the shampoo bottle, correct to 1 decimal place.

> Answer $cm^3 [5]$

Mathematics Paper 1

In the diagram below, the co-ordinates of points A and C are (-12,8) and (3,0) respectively. AB is a horizontal line segment. BC makes an angle of θ with the x-axis.

For Examiner's Use Only

(a) Find the length of AC.

Answer [2]

(b) State the equation of AB.

Answer [1]

(c) Write down the value of $\cos \theta$.

Answer [1]

(d) Find the coordinates of B.

Answer (,) [2

End-of-Paper

Name:() C	Class:
------------	--------

GREENDALE SECONDARY SCHOOL End-of-Year Examination 2018

MATHEMATICS

4048/02

Paper 2

1 October 2018

Secondary 3 Express

2 hours 30 minutes

Candidates answer on Writing Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.

Write in dark or blue pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Begin each question on a new page.

If working is needed for any question it must be shown with the answer.

Omission of essential working may result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question required the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of 13 printed pages including this cover page.

Greendale Secondary School 2018

2

Secondary 3 Express
Mathematics Paper 2

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Secondary 3 Express Mathematics Paper 2

Answer all questions.

1 (a) It is given that
$$p = \sqrt{\frac{1-t}{10-5t}}$$
.

(i) Find
$$p$$
 when $t = -3$. [1]

(ii) Express
$$t$$
 in terms of p . [3]

(b) Solve the equation
$$x-1=\frac{6}{2x-1}$$
. [2]

(c) Solve these simultaneous equations.

$$2x = y + 6,$$

 $6x - 2y = 13.$ [3]

(d) Simplify
$$\frac{27p^2-12}{9p^2-21p-18}$$
. [3]

Mathematics Paper 2

2 (a) During the Great Singapore Sale, a retailer made the following offer A:

After the Great Singapore Sale, he changed his offer to B:

Determine whether offer A or B is the better deal for the customer. Show your working clearly.

[3]

- (b) The cash price of a new car is \$78 500.
 - (i) David buys the car on hire purchase. He pays a deposit of one fifth of the cash price. He then makes 36 monthly payments of \$1900.

What is the total amount that David pays for the car?

[2]

(ii) The original value of the car is its cash price of \$78 500.Each year the value of the car decreases by 10% of its value at the start of the year.At the end of two years, David decides to sell the car.

Calculate the overall percentage reduction in the value of the car compared with its original value.

[3]

5

3 The first four terms in a sequence of numbers, $u_1, u_2, u_3, u_4, ...$, are given

$$u_1 = 2^0 + 5 = 6$$

 $u_2 = 2^1 + 7 = 9$

$$u_3 = 2^2 + 9 = 13$$

$$u_4 = 2^3 + 11 = 19$$

- Write down the expression for u_5 and show that $u_5 = 29$. (a) [1]
- Write down the expression for u_6 and evaluate it. (b) [1]
- Find an expression, in terms of n, for the nth term, u_n , of the sequence. (c) [3]
- Evaluate u_{20} . (d) [1]
- Show that $2^{n-1} 2^{n-2} = 2^{n-2}$. (e) (i) [1]
 - Find, and simplify, an expression, in terms of n, for $u_n u_{n-1}$. (ii) [2]

4

The diagram shows two concentric circles with centre O.

A, B and C are points on the larger circle and D is a point on the smaller circle.

ADB is a tangent to the smaller circle.

- (a) Show that triangles ABC and ADO are similar. [3]
 (b) Given that radius of the smaller circle is 5 cm and angle BCO = 60°, show that the radius of the larger circle is 10 cm. [2]
- (c) Find the ratio area of triangle ABC: area of quadrilateral DOCB. [2]

- 5 A cupcake shop sells cupcakes with assorted flavours.
 - (a) Chocolate, Cookies and Cream, and Salted Caramel cupcakes are baked in the ratio 3:7:5 respectively. One week, 200 more Cookies and Cream cupcakes were baked than Chocolate cupcakes.

Work out the total number of cupcakes baked in the week.

[2]

- (b) Jamie and Pearlyn design the cupcakes in the shop.
 - (i) Jamie takes x seconds to design one cupcake.

Write an expression, in terms of x, for the number of cupcakes she designs in an hour.

[1]

(ii) Pearlyn takes 50 seconds less than Jamie to design one cupcake.

Write an expression, in terms of x, for the number of cupcakes she designs in one hour.

[1]

(iii) One morning, Jamie and Pearlyn each works for 4 hours. Altogether they design a total of 60 cupcakes.

Write down an equation in x to represent this information and show that it reduces to

$$x^2 - 530x + 12000 = 0. ag{3}$$

- (iv) Solve the equation $x^2 530x + 12000 = 0$. [3]
- (v) Find the number of cupcakes Pearlyn designs in one hour. [2]

Mathematics Paper 2

6 In the diagram, O is the centre of a circle of radius 4 cm and BC is the diameter.

CD is an arc of a circle with centre B and that the length of arc AC = 7cm.

- (a) Show that $\angle AOC = \frac{7}{4} \text{ rad}$. [1]
- (b) Calculate angle ABC in radians. [1]
- (c) Show that AD = 2.872cm when rounded off to 3 decimal places. [3]
- (d) Hence, calculate the perimeter of the shaded region. [2]

7 The number of fish caught by a group of students in their fishing trip is recorded in the table below.

Number of fish	0	1	2	3	4	5
Number of students	10	12	7	x	3	2

(i) If the mode is 3, write down the minimum value of x. [1]

(ii) If the median is 2.5, write down the value of x.

[1]

(iii) If 44% of the students caught at most 1 fish, find the value of x. [2]

If another student who caught 15 fish is added to the group of students, would the mean or the median be a better measure of average? Give a reason for your answer.

[1]

(b) Bag P contains 40 marbles of which x are green, 20 are yellow and the rest are blue.

Bag Q contains 60 marbles of which 15 are green, 2x are yellow and the rest are blue.

If the probability of selecting a blue marble from bag P is $\frac{1}{8}$, (i) show that the value of x is 15.

[2]

(ii) Find the probability of selecting a blue marble from bag Q. [2]

(iii) If the marbles from bag P and bag Q are put into bag R, find the probability of selecting a yellow marble from bag R.

[2]

A slope, PQ, is inclined at 10° to the level ground QR.

A pole, AB, stands on the slope such that AB is perpendicular to the line EB and EB is parallel to QR where BD and AB are 12 m and 15 m respectively.

- (a) Show that AD = 17.5 m, correct to 3 significant figures. [3]
- (b) A bird stood at D and observed the top of the pole A. Find the angle of elevation of A from the bird. [3]
- (c) Given that the area of $\triangle ACD$ is 142 m², find the distance BC. [2]
- (d) A piece of rope is used to attach the point A to a point along slope CD. Find the shortest possible length of the rope. [2]
- (e) The diagram below shows the top view of the surface of the slope. Z is a point on the same surface as B, C and D.
 If CZ is 23 m and the bearing of Z from D is 155°, find the bearing of C from Z.

9 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$y = \frac{x^3}{2} - 5x - 3$$
.

Some corresponding values of x and y are given in the table below.

х	– 3	-2	-1	0	1	2	3	4
y	- 1.5	p	1.5	-3	-7.5	- 9	- 4.5	9

(a) Find the value of p.

[1]

(b) Using a scale of 2cm to represent 1 unit, draw a horizontal x-axis for $-3 \le x \le 4$.

Using a scale of 1cm to represent 2 units, draw a vertical y-axis for $-10 \le y \le 10$.

On your axes, plot the points given in the table and join them with a smooth curve.

[3]

(c) The equation $\frac{x^3}{2} - 5x = 10$ has only one solution.

Explain how this can be seen from your graph.

[2]

(d) By drawing a tangent, find the gradient of the curve at (1,-7.5).

[2] [1]

(e) (i) On the same axes, draw the line y = 3 - 2x for $-3 \le x \le 4$.

(ii) Write down the x-coordinate of the point where this line intersects the curve.

[1]

(iii) This value of x is a solution of the equation $x^3 + Ax + B = 0$.

Find the value of A and of B.

[2]

[1]

End-of-Year Examination 2018

10 Below are some information about LED light bulb.

In this question, the case of the LED bulb can be modelled as a hollow cylinder with a hollow hemispherical top and a solid cylindrical base.

- (a) Calculate the surface area of the base of the LED light bulb.
- (b) Calculate the volume of the LED light bulb. [3]

Question 10 continues on next page

10 The case of the LED light bulbs is made from tinted plastics, Polyfluorenes. A manufacturer estimates that he can manufacture 16 000 LED light bulbs using 1 kg of Polyfluorenes plastics.

Useful information

Polyfluorenes plastics have a density of 0.00092 g/mm³. Thickness of the case of LED light bulb is 0.5 mm

Explain if the manufacturer is accurate in his estimate, assuming the (c) thickness of the connecting leads is negligible.

[6]

End - of - Paper

Greendale Secondary School Secondary 3 Express Mathematics End-of-Year Examination Paper 1/2018 Marking Scheme

Q.		Solution	Marks	Remarks
1	(a)	6x-5(5x-6)		Insert own bracket and
		=6x-25x+30		did expansion
		=-19x+30	B 1	
1	(b)	$16pq^2 - 12p^2q$		Left out some factors
		=4pq(4q-3p)	B1	like q.
2		9b+6a-4ac-6bc	-	Missed out operation
		=3(3b+2a)-2c(2a+3b)	M1	(minus) in the second
		=(2a+3b)(3-2c)	Al	step.Took out factor by
				stating:
				$(3b+2a)^2(3-2c)$
3		x = 0.6m	M1	Poor understanding of the meaning of
		y = 1.2n	TALE	percentages.
		$\frac{x}{y} = \frac{p}{100} \left(\frac{m}{n} \right)$		
		$\frac{0.6m}{1.2n} = \frac{p}{100} \left(\frac{m}{n}\right)$		
		p = 50	A1	
4		$(a+b)^2-(a-b)^2$	3	A handful of students
		$= a^2 + 2ab + b^2 - (a^2 - 2ab + b^2)$		used guess and check and no marks were
		=4ab	M1	awarded as question
				states all values of a
		4ab is a multiple of 4, hence $(a+b)^2 - (a-b)^2$ is a	Al	and b. • Final statement was
		multiple of 4 for all values of a and b .		missing.
				Statement was
				wrongly stated. (eg: a
				and b are multiple of 4)
5		$mean = \frac{4x + 8}{}$	M1	Quite well done.
		5		
		$8 = \frac{4x+8}{5}$		
		5 $40 = 4x + 8$		
		4x = 32		
		x = 8	A1 (or B2)	

Secondary 3 Express Mathematics Paper 1

Q.	10.014	Solution	Marks	Remarks
6		Area = 32		Assume right angled
		$\frac{1}{2}(8)(9)\sin ABC = 32$		triangle which is incorrect.
İ				• Rounding off error.
		$\sin ABC = \frac{8}{9}$		
		$\angle ABC = \sin^{-1}\frac{8}{9}$		
		$\angle ABC \approx 62.7^{\circ}, 117.3^{\circ}$	B1 / B1	
7	(0)	(9, 2), 190		Quite well done.
'	(a)	$\frac{(8-2)\times180}{8} = 135^{\circ}$	M1	Quito Non dono.
		$\angle a = 360 - 135 - 60$		
		$=165^{\circ} (\angle sum of)$	A1	
		,		
	(b)	$(n-2)\times 180 = 165n$ $ext \angle = 180 - 165 = 15^{\circ}$	M1	
		$\begin{vmatrix} 180n - 360 = 165n \\ 15n - 360 \end{vmatrix} n = \frac{360}{15} = 24 \text{ sides}$		
		13h - 300	A1	
	~ 	n = 24	AI	
8		The new students from 2009 to 2014 are not shown.	B1	
		Student intake from 2009 to 2014 could be very low,		
		hence it may not show an overall increasing trend from 2005 to 2015.	B 1	
9		x 3		Very badly done.
		$\frac{1}{(x-3)^2}$ $\frac{1}{3-x}$		Poor understanding followbre compositily
		x 3		of algebra especially in changing the
		$=\frac{x^{2}}{(x-3)^{2}}+\frac{x}{x-3}$		signs of the algebra.
		x+3(x-3)	M1	Some students are still making
		$=\frac{x+3(x-3)}{\left(x-3\right)^2}$		mistakes like
		-4x-9	A1	$(x-3)^2 = x^2 - 9$
		$=\frac{4x-9}{\left(x-3\right)^2}$	711	
10	(a)	$\angle OAC = 90^{\circ} \left(rad \perp \tan \right)$	B1	
·	(b)	$\angle AOB = 90 + 35 = 125 (ext \angle of \Delta)$	M1	Most are able to find
		$\angle OAB = \frac{180 - 125}{2}$		∠AOB. • Those who skipped
i		_		steps made mistake
		$=27.5^{\circ} (base \angle s \ isos\Delta)$	A1	in find $\angle OAB$.
	(c)	$\angle ADB = \frac{125}{2}$		
		2005 - 2		

Q.		Solution	Marks	Remarks
11	а	$x^{2} + 10x + 21 = (x+5)^{2} - 4$	B1	Problem with completing the square.
	b	Minimum value of -4.	B1 (ecf provided (a) is reasonable)	Most students do not understand the meaning of minimum value.
	С	Equation of line of symmetry $x = -5$	B1	A handful of students missed out "x" in the equation.
12		Before trip A1 = S1.055 A793.8388626 = S837.50	M1	A small group of students found difference in exchange rate instead.
		After trip $A\$1 = S\1.075 $A\$779.0697674 = S\837.50	M1	
		Loss in Australian dollars $= A$793.8388626 - A779.0697674		
		= A\$14.77 (nearest cents)	A1	
13	a	$8000 \left(1 + \frac{2.4}{100}\right)^{5} - 8000$ $\approx $1007.20 (2dp)$	$\begin{array}{c c} M1 \\ 8000 \left(1 + \frac{2.4}{100}\right)^5 \\ M1 \ (8000) \end{array}$	Students forget to subtract \$8000.
······	ъ	Total amount in bank = \$8000 + \$1007.20 = \$9007.20	A1	
		Cost of watch = \$9007.20×25% = \$2251.80	B1	
14		PD is the common length. (S) $\angle ADP = \angle CDP \text{ (diagonal of rhombus bisect angle) (A)}$ $AD = CD \text{ (sides of a rhombus) (S)}$ $\therefore \triangle APD \equiv \triangle CPD \text{ (SAS)}$	M1 (Any 2 proves)	 Most use SSS test. Use the wrong angle to prove.

				Th. 121. 8.2
Q. 15	(6)	Solution (CERT COLUMN)	Marks B1	Remarks
13	(a)	$\angle FED = \angle ABD = 60^{\circ} (alt \angle)$		
	(b)	$\angle DAB = 180^{\circ} - 60^{\circ} - 100^{\circ} = 20^{\circ} (\angle s \text{ in } a \Delta)$	M1	Fail to know which is reflex angle.
		reflex $\angle DAB = 360^{\circ} - 20^{\circ} = 340^{\circ} (\angle s \text{ in a pt})$	A1	reflex angle.
		((((((((((((((((((((
	(c)	Not possible.	B1	Use congruent triangle
		$\angle FED$ is not equal to $\angle DAB$ and also not twice of		which is not enough to
		$\angle FDB$. They do not satisfy the property of angle at	B1	prove points are on circumference.
		centre is twice the angle at circumference. OR $\angle FED$ is not equal to $\angle DAB$ as it does not form angles	Б	circumference.
		in the same segment. OR		
		$\angle DFE$ and $\angle DEF$ are not equal which means		
		$DF \neq DE$ so DF and DE cannot be radius of the circle.		
				T. C. 1
16	(a)	Volume of water in tank		Use wrong formula.
		$=\pi(15)^2(10)$	B1	
		$= 2250\pi$		
	(b)	Volume of 250 spherical marbles		• Fail to recognise as a
	(0)			3D solid.
		$=250\times\frac{4}{3}\pi(0.7)^3$		Use area of circle to
			3.61	find volume of
	- Andreas	$=114\frac{1}{3}\pi$	M1	sphere.
		$114\frac{1}{3}\pi + 2250\pi = \pi (15)^2 (h)$	M1(ecf)	
		3		
		$2364\frac{1}{3} = 225h$		
		-	A1	
		$h \approx 10.5 \ cm \left(3sf\right)$		
				Students is mared the
17	(a)	(i) $y = 2^x$	E1 $(y = -\frac{2}{x^2})$	Students ignored the points given or failed to
	-		9-2-	consider the points.
			$B1 (y=2^x)$	1
		(1, 2)		
			-	and the second s
		o(last) ne d	x	
		, **		
	(b)	From the graphs above, there is no intersection of the		• Students substituted
		curves, hence there will be <u>NO solution</u> for $2^x + \frac{2}{x^2} = 0$.	B1	values instead.
		x ²	DI	Determine if there is solution by checking
				if it cuts the x-axis or
				y-axis.

Greendale S	econdary	School
End-of-Year	Examina	ion 2018

	Solution .	Marks	Remarks
(a)	$2^4 \times 3^2 = 144$	B1	
(b)	$2^2 \times 3^3 = 108$	B1	Failed to get the smallest number
(c)	$2^4 \times 3^3 \times 5 \times 5 p = q^3$		Most managed to get q
	$2^4 \times 3^3 \times 5 \times \left(2^2 \times 5^2\right) = q^3$		but not p .
	$\therefore 5p = 100$		
	p=20	B1	
	$\therefore q = 60$	B1	
(a)	25:55		Failed to reduce to
	5:11	B1	integer.
(bi)	Distance = $\frac{88.50}{0.25}$ = 354 km	B1	
(bii)	Total Fare Collected		Students added the
<u> </u>	=354×0.55		amount spent on petrol
	=\$194.70	B1	as well.
(c)	A = kd		
	150 = 5000k		
	$k = \frac{3}{100}$		
	$A = \frac{3}{100} d / d = 33 \frac{1}{3} A / A = 0.03 d$	B1	
(a)	1:40,000		Conversion of units are
(4)			very weak.
		D1	}
(b)	1:40 000	BI	Those who got (a)
	1 cm : 0.4 km		wrong, will get (b)
	$1 cm^2 : 0.16 km^2$	7.41	wrong.
	$0.68 cm^2 \cdot 0.1088 km^2$	IVII	
		A1	
	Actual area is 0.1088 km ²	Al	
	(a) (b) (c) (a) (bi) (bii)	(a) $2^4 \times 3^2 = 144$ (b) $2^2 \times 3^3 = 108$ (c) $2^4 \times 3^3 \times 5 \times 5p = q^3$ $2^4 \times 3^3 \times 5 \times (2^2 \times 5^2) = q^3$ $\therefore 5p = 100$ p = 20 $\therefore q = 60$ (a) $25:55$ 5:11 (bi) Distance $= \frac{88.50}{0.25} = 354 \text{ km}$ (bii) Total Fare Collected $= 354 \times 0.55$ = \$194.70 (c) $A = kd$ 150 = 5000k $k = \frac{3}{100}$ $A = \frac{3}{100} d / d = 33\frac{1}{3} A / A = 0.03d$ (a) $1:40000$ 1cm:0.4km 10.5cm:4.2km Distance on map $= 10.5cm$ (b) $1:40000$ 1cm:0.4km	(a) $2^4 \times 3^2 = 144$ B1 (b) $2^2 \times 3^3 = 108$ B1 (c) $2^4 \times 3^3 \times 5 \times 5p = q^3$ $2^4 \times 3^3 \times 5 \times (2^2 \times 5^2) = q^3$ $\therefore 5p = 100$ p = 20 $\therefore q = 60$ B1 (a) $25:55$ 5:11 B1 (bi) Distance $= \frac{88.50}{0.25} = 354 \text{ km}$ B1 (bii) Total Fare Collected $= 354 \times 0.55$ = \$194.70 B1 (c) $A = kd$ 150 = 5000k $k = \frac{3}{100}$ $A = \frac{3}{100} d / d = 33\frac{1}{3} A / A = 0.03d$ B1 (a) $1:40000$ 1cm:0.4km 10.5cm:4.2km Distance on map = $10.5cm$ (b) $1:40000$ 1cm:0.4km $1cm^2:0.16km^2$ $0.68cm^2:0.1088km^2$

0.		Solution	Marks	Remarks
21		Let the length of square $ABCD$ be x		Failed to understand
		Area square $ABCD = x^2$		that they should use
		Area of $\triangle PBQ = \frac{1}{2} \left(\frac{1}{3} x \right) \left(\frac{2}{3} x \right) = \frac{1}{9} x^2$		area.
		$P(\text{point outside }\Delta PBQ)$		
		$\frac{x^2-9}{9}x^2$	M1	
		$=\frac{x^2 - \frac{1}{9}x^2}{x^2}$	IVII	
		$=\frac{8}{9}x^2$		
		$=\frac{9}{1.2}$		
		$\frac{-\frac{1}{x^2}}{x^2}$		
		$=\frac{8}{9}$	A1	
22	(a)	North.	B1 (needs to show	Do not know how to construct bearing.
		†	construction to	constituet ocaring.
		P	get J)	
			Q	
	(bi)	240° ±1°	B1 (ecf)	Wests in conversion of
	(bii)	$dis \tan ce = 8.2 \times 4 = 32.8 \ km$		Weak in conversion of time especially from
		$time = \frac{32.8}{85} \approx 0.385882352$	B1(ecf)	minutes to seconds.
		= 23 minutes 9 seconds	B1(ecf)	
		25 IMMAROS 7 BOOMAS		
			:	

Q.		Solution	Marks a	Remarks
23	(a)	$AC^2 = 5^2 = 25$		Presentation is an
		$AB^2 + BC^2 = 4^2 + 3^2 = 25$		issue, state
		By Converse of Pythagoras Theorem, $\triangle ABC$ is a right-		Pythagoras Theorem
		angled triangle.	B 1	straight from the
			D1	beginning. • Students tend to
				assume is true first
				before proving.
	(b)	$\angle ABC = 90^{\circ} (\angle \text{ in semi circle})$		
		Hence AC is the diameter of the circle	B1	
	(c)	$\angle BEC = 180 - 70 - 70$		Prove diameter need
		= 40°		not means E is the
		$\angle BAC = 180 - 90 - 70$	M1	centre of the circle.
		= 20°	IVII	
		Since $\angle BEC = 2\angle BAC$, the angle at the centre is twice		
		the angle at the circumference, E is the centre of the	A1	
		circle.		
		OR		
		$\angle CBE = 90 - 70 = 20^{\circ}$		
		Base radius of isosceles triangle, $BE = EC$ (radius)		
24		$\frac{0.9}{3} = \frac{h-7}{h}$		Most students
				cannot get height.
		0.9h = 3h - 21		
		2.1h = 21		
		h=10		
		Volume of cylinder = $\pi (3)^2 (15)$	M1	
		$=135\pi \ cm^3$	M1	
		Volume of frustum of cone = $\frac{1}{3}\pi(3)^2(10) - \frac{1}{3}\pi(0.9)^2(3)$	M1 (ecf)	
		$=29\frac{19}{100}\pi \ cm^{3}$	M1 (ecf)	
	· i	Total volume = $135\pi + 29\frac{19}{100}\pi$		
		$\approx 515.8 cm^3 (1 dp)$	A1	
25	, (-))	
25	(a)	Length = $\sqrt{(-12-3)^2 + (8-0)^2}$	M1	Made careless mistake in calculating length.
		=17 units	A1	
	(b)	y = 8	B1	
	(c)	$\cos\theta = -\frac{3}{5}$	B1	
	(d)	B(-3,8)	B1/B1	

Greendale Secondary School Secondary 3 Express Mathematics End-of-Year Examination Paper 2/2018 **Marking Scheme**

Q.		Solution	Marks	Remarks
1	(ai)	$p = \sqrt{\frac{1-t}{10-5t}}$		
		$p = \sqrt{\frac{1 - (-3)}{10 - 5(-3)}}$		
		$p = \frac{2}{5}$ or 0.4	B1	
1	(aii)	$p = \sqrt{\frac{1-t}{10-5t}}$		
		$p^{2} = \frac{1-t}{10-5t}$ $p^{2}(10-5t) = 1-t$	M1	
		$\begin{vmatrix} p & (10^{-5}t) - 1^{-t}t \\ 10p^2 - 5p^2t = 1 - t \end{vmatrix}$		
		$-5p^2t + t = 1 - 10p^2$	M1	
		$t(-5p^2+1)=1-10p^2$		
	de desse desse de la constanta	$t = \frac{1 - 10p^2}{-5p^2 + 1}$	A1	
	- African - Afri	$=\frac{1-10p^2}{1-5p^2}$		
1	(b)	$x-1=\frac{6}{2x-1}$		
		(x-1)(2x-1)=6	M1	
		$2x^2 - 3x + 1 - 6 = 0$		
		$ 2x^2 - 3x - 5 = 0 (5x - 2)(x + 1) = 0 $		
		(3x-2)(x+1)=0 x=2.5 or x=-1	A1	

Secondary 3 Express Mathematics Paper 2

Greendale Secondary School End-of-Year Examination 2018

1	(c)	2x = y + 6	M1 –
		$2x - y = 6 \rightarrow (1)$	Attempt to
		$6x - 2y = 13 \rightarrow (2)$	make one unknown the
		$(1) \times 2: 4x - 2y = 12 \rightarrow (3)$	subject.
		(2)-(3):	
		2x = 1	
		$x = \frac{1}{2}$	A1
		Sub $x = \frac{1}{2}$ into (1)	
		$2\left(\frac{1}{2}\right) - y = 6$	
		y = -5	A1
1	(d)	$\frac{27p^2 - 12}{9p^2 - 21p - 18}$	
		$3(9p^2-4)$	
		$=\frac{3(9p^2-4)}{3(3p^2-7p-6)}$	M1
		$=\frac{(3p-2)(3p+2)}{(p-3)(3p+2)}$	
		l e e e e e e e e e e e e e e e e e e e	M1
		$=\frac{3p-2}{p-3}$	
			A1
	<u></u>	Total	12 marks

Q.		Solution	Marks	Remarks
2	(a)	During GSS Offer A:		
		% of original price paid = $\frac{2}{3} \times 100\% = 66\frac{2}{3}\%$	M1	
		After GSS Offer B:	:	
		% of original price paid = $\frac{1.5}{2} \times 100\% = 75\%$	M1	
		Hence Offer A is better because the percentage of original price paid is lower.	A1	
2	(bi)	Deposit		
		$=\frac{1}{5}\times\$78500$		
		=\$15700	M1	
		Total instalments = 36×\$1900		
		=\$68400		
		Total amount paid = \$15700 + \$68400		
		=\$84100	A1	
2	(bii)	Price after 1st year		
		$=\frac{90}{100}\times\$78500$		
		= \$70650	M1	
		Price after 2 nd year		
		$=\frac{90}{100}\times\$70650$	M1(ecf)	
		= \$63585		1
		% reduction		
		$=\frac{\$78500 - \$63585}{\$78500} \times 100\%$		
		=19%	A1	
		Total	8 marks	

Q.		Solution	Marks	Remarks
3	(a)	$u_5 = 2^4 + 13$	D1	
		= 29 (Shown)	B1	
3	(b)	$u_6 = 2^5 + 15$	D1	
		= 47	B1	
3	(c)	$u_n = 2^{n-1} + [2n+3]$	M1, M1	
		$=2^{n-1}+2n+3$	A1	
3	(d)	$u_{20} = 2^{20-1} + 2(20) + 3$		
		$=2^{19}+40+3$		
		= 524331	B1	
3	(ei)	$2^{n-1} - 2^{n-2} = 2^{n-2} \times 2 - 2^{n-2} \times 1$		
		$=2^{n-2}\times(2-1)$		
		$=2^{n-2}$	B1	
3	(eii)	$u_n - u_{n-1}$	N. 61	
		$= (2^{n-1} + 2n - 1) - [2^{n-1-1} + 2(n-1) - 1]$	M1	
		$=2^{n-1}+2n-1-2^{n-2}-2n+2+1$		
		$=2^{n-1}-2^{n-2}+2$		
		$=2^{n-2}+2$	A1	
		Total	9 marks	

Q.		Solution	Marks	Remarks
4	(a)	$\angle DAO = \angle BAC$ (shared angle)	M1	
		$\angle ADO = 90^{\circ} \text{ (radius } \bot \text{ tangent)}$		
		$\angle ABC = 90^{\circ} \ (\angle \text{ in semicircle})$		
		$\therefore \angle ADO = \angle ABC$	M1	
		Since 2 corresponding angles are equal, the third angle is also equal, therefore $\triangle ABC$ is similar to $\triangle ADO$.	A1	
4	(b)	$\angle DAO = 180^{\circ} - 90^{\circ} - 60^{\circ} \ (\angle \text{ sum of } \Delta)$		
		= 30°		
		$\sin 30^\circ = \frac{5}{AO}$	M1	
		$AO = \frac{5}{\sin 30^{\circ}}$		
		AO = 10 cm (Shown)	A1	
4	(c)	$\frac{\text{Area of } \Delta ADO}{\text{Area of } \Delta ABC} = \left(\frac{10}{20}\right)^2$		
		<u>_</u> <u>1</u>		
		4	M1	
		Area of $\triangle ABC$: Area of $DOCB$	A 1	
		4:3	A1	
		Total	7 marks	

Q.		Solution	Marks	Remarks
5	(a)	$4u \rightarrow 200$	3.44	
		$15u \rightarrow \frac{15 \times 200}{4}$	M1	
		-	A1	
5		= 750 3600		
	(bi)	$\frac{3000}{x}$	B1	
5	(I-11)	3600	B 1	
	(bii)	$\overline{x-50}$	В1	
5	(biii)	$4\left(\frac{3600}{x} + \frac{3600}{x - 50}\right) = 60$	M1	
ļ		,	1411	
		$\frac{3600}{x} + \frac{3600}{x - 50} = 15$		
			3.51	
		3600(x-50) + 3600(x) = 15x(x-50)	M1	
		$3600x - 180000 + 3600x = 15x^2 - 750x$		
		$7200x - 180000 = 15x^2 - 750x$		-
		$15x^2 - 7950x + 180000 = 0$		
		$x^2 - 530x + 12000 = 0$	A1	
5	(biv)	$x^2 - 530x + 12000 = 0$	1	
		$-(-530)+\sqrt{(-530)^2-4(1)(12000)}$		
		$x = \frac{-(-530) \pm \sqrt{(-530)^2 - 4(1)(12000)}}{2(1)}$	М1	
		x = 506.2985 or x = 23.7014		
		x = 506 or x = 23.7	A1, A1	- The state of the
5	(bv)	Number of cupcakes Pearlyn's bake		
	` ′	<u>3600</u>	3.61	
		506.2985 – 50	M1	
		= 7.8895	A1	
		≈ 7 TT 4.1		
1		Total	12 marks	

Q.		Solution	Marks	Remarks
6	(a)	$r\theta = 7$		
		$\theta = \frac{7}{4}$ rad or 1.75 rad		
		$\angle AOC = \frac{7}{4}$ rad or 1.75rad (Shown)	B1	
6	(b)	$\angle ABC = \frac{7}{4} \div 2(\angle \text{ at centre} = 2 \angle s \text{ at circumference})$		
		$=\frac{7}{8}$ rad	B1	
6	(c)	$\angle AOB$		
		$=\pi-\frac{7}{8}-\frac{7}{8}$		
			M1	
		=1.3916rad		
		Using sine rule,		
		$\frac{AB}{\sin(1.3916)} = \frac{4}{\sin(\frac{7}{8})}$		
		$\therefore AB = 5.12798 \text{cm}$	M1 (ecf)	
		Length of AD		
		=8-5.12798		
		= 2.87201cm	A1	
	(1)	=2.872cm		
6	(d)	Arc length of CD		
		$=8\left(\frac{7}{8}\right)$		
		= 7cm	M1	
		Perimeter of shaded region		
		=7+7+2.872		
		=16.872cm		
		≈16.9cm	Al	
		Tota	d 7 marks	

Secondary 3 Express Mathematics Paper 2

Greendale Secondary School
End-of-Year Examination 2018

Q.		Solution	Marks	Remarks
7	(ai)	x = 13	B1	
7	(aii)	x-1+3+2=28		
		x = 24	B1	
7	(aiii)	$x = 24$ $44\% \rightarrow 22$		
		22×56		
		$56\% \to \frac{22 \times 56}{44}$		
		= 28	M1	
		7+x+3+2=28		
		x = 16	A1	
7	(aiv)	Median		
		The student who caught 15 fish is an outlier to the set of		
		data. This outlier data will cause the mean to	D 1	
		inflate/increase a lot and not reflect the average accurately.	B1	
7	(bi)	P(blue from bag P)		
		$=\frac{40-20-x}{40}$	1	
		$=\frac{20-x}{40}$		
			3.51	
		$\frac{20-x}{40} = \frac{1}{8}$	M1	
		$\begin{array}{c} 40 & 8 \\ 20 - x = 5 \end{array}$		
			A1	
	6 10	x = 15 (Shown)		
7	(bii)	P(blue from bag Q)	ļ	
		$=\frac{60-15-2(15)}{60}$	M1	
		$=\frac{1}{4}$		
			Al	
7	(biii)	P(select a yellow marble)		
		$=\frac{20+2(15)}{}$	M1	
		60 + 40		
		$=\frac{1}{-}$		
		$=\frac{1}{2}$	A1	
		Total	11 marks	

Q.		Solution	Marks	Remarks
8	(a)	$\angle ABD = 90^{\circ} - 10^{\circ} = 80^{\circ}$ (alternate angles)	M1	
		$AD^2 = 12^2 + 15^2 - 2(12)(15)\cos 80^\circ$	M1	
		$AD = \sqrt{306.487}$		
		=17.50677		
		=17.5m	A1	
8	(b)	Let F be a point on AB such that DF is perpendicular to AB .		
		Ab.		
		$DF = 12\sin 80^{\circ}$		
		=11.8177 m	M1	
		$\cos \angle ADF = \frac{DF}{AD}$		
		$\cos \angle ADF = \frac{11.8177}{\sqrt{306.487}}$	M1 (ecf)	
		$\sqrt{306.487}$		
		∠ <i>ADF</i> = 47.543°		
		= 47.5°	A1	
	a)	OR		
8	(b)	$\frac{\sin \angle ADB}{15} = \frac{\sin 80^{\circ}}{17.5} \qquad \frac{\sin \angle ADB}{15} = \frac{\sin 80^{\circ}}{17.5067}$		
		$\angle ADB = \sin^{-1} \left(\frac{15 \sin 80^{\circ}}{17.5} \right) \qquad \angle ADB = \sin^{-1} \left(\frac{15 \sin 80^{\circ}}{17.5067} \right)$	M1	
		= 57.5778 = 57.5433		
		$\angle ADF = 57.5778 - 10$ $\angle ADF = 57.5433 - 10$	M1 (ecf)	
		= 47.5778 = 47.5433		
		= 47.6° = 47.5°	Al	
8	(c)	$\frac{1}{2}(AD)(DC)\sin \angle ADC = 142$		
		1		
		$= 47.6^{\circ} = 47.5^{\circ}$ $\frac{1}{2}(AD)(DC)\sin \angle ADC = 142$ $\frac{1}{2}(17.5)(12 + BC)\sin(47.5778^{\circ} + 10^{\circ}) = 142$	M1 (ecf)	
		BC = 7.22541		
		=7.23m	A1	

8	(d)	Let G be a point on CD such that AG is perpendicular to		or use Area of
		CD.		Triangle
		$\sin \angle ADC = \frac{AG}{\sqrt{306.487}}$	N (1	
		$\sqrt{306.487}$	M1	
		$AG = \sqrt{306.487} \sin(47.543^{\circ} + 10^{\circ})$		
		=14.7721		
		=14.8m	A1	
8	(e)	$\sin \angle DZC = \sin \angle ZDC$		
		$\frac{DC}{DC}$ 23		
		$\sin \angle DZC = \sin 25^{\circ}$	M1	
		19.22542 23		
		∠DZC = 20.687°		
		Bearing of C from Z		ļ
		= 360° - 25° - 20.687°		
		=314.3°	Al	
	1	Total	12 marks	

Q.		Solution	Marks	Remarks
Q .	(a)	p = 3	B1	
9	(b)		Correct Scale - B1 Correct Plot - B1 Correct Curve - B1	
9	(c)	$\frac{x^3}{2} - 5x = 10$ $\frac{x^3}{2} - 5x - 3 = 7$ The line $y = 7$ cuts the curve $y = \frac{x^3}{2} - 5x - 3$ at only one point.	B1	
9	(d)	Gradient = -3.5	Draw tangent - B1 Gradient -B1	
9	(ei)	Draw the line correctly. Refer to graph at (b)	B1	
9	(eii)	From the graph, $x = 3.1 \text{ to } 3.3$	B1	
9	(eii)	$\frac{x^{3}}{2} - 5x - 3 = 3 - 2x$ $x^{3} - 10x - 6 = 6 - 4x$ $x^{3} - 6x - 12 = 0$ $\therefore A = -6, B = -12$	B1, B1	
		Total	12 marks	

Q.		Solution	Marks	Remarks
10	(a)	Base Area		
		$=\pi\left(\frac{5.9}{2}\right)^2$		
		= 27.3397mm ²	B1	
10	(b)	Vol of cylinder and hemisphere $(5.9)^2$ $(5.8)^2$ $(5.8)^3$	M1 – Award if any	
		$=\pi\left(\frac{5.9}{2}\right)^{2}(1)+\pi(2.5)^{2}(6.19)+\frac{1}{2}\times\frac{4}{3}\pi(2.5)^{3}$	one of the substitution is	
			correct. M2 –	
			All	
		= 27.3397+121.54+32.72	substitutions are correct	
		=181.604mm ³	A1	
10	(c)	Vol of space in LED		
		$=\pi(2)^{2}(6.19)+\frac{1}{2}\times\frac{4}{3}\pi(2)^{3}$	M1, M1	
		= 77.78+16.755		
		$= 94.540mm^3$		
		Vol of material for 1 LED case	_	
		=181.604 94.540	M1(ecf)	
		$= 87.0631mm^3$		
1		Mass of 16000 LED		
		$=16000\times87.0631\times0.00092$	M1(ecf)	
		=1282.112g		
		=1.28kg	M1(ecf)	
		Manufacturer is not accurate. He needs more than 1kg of	A1	
		Polyfluorenes	(award based	
			on their	
			calculation)	
		Total	10 marks	