NAME:		(}	CLASS:	

YISHUN TOWN SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2020 SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC MATHEMATICS PAPER 1 (4048/01)

DATE

DURATION:

27 AUGUST 2020

2 h

DAY

Thursday

MADIZO

MARKS:

80

READ THESE INSTRUCTIONS FIRST

Do not turn over the cover page until you are told to do so.

Write your name, class and class index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 80.

	MARK	S
	OBTAINED	FULL
1	AL PORTO DE LA CONTRACTOR DE LA CONTRACT	2
2		3
3	-	2
4		2
5		3
6		4
7		2
8		2
9		3
10		3
11		3
12		2
13		3
14		2
15		3
16		5
17		5
18		5
19		4
20		5
21		8
22		4
23		5
TOTAL		80

This question paper consists of 17 printed pages and 1 blank page.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1 (a	(a)	Write down all the irration	al numb	ers.			
			$\frac{22}{7}$,	$\frac{\sqrt{2}}{2}$,	3 √−8 ,	π,	-0.3

1		Г1	1
Answer	***************************************	Ŀ	1

(b)	Calculate	$\frac{4.23^3 - 3.4 \div 2}{\sqrt{41.35}}$	and write down your answer correct to 1 significant figure.
-----	-----------	--	---

Answer		[1]]
--------	--	-----	---

2 Mrs Tan planned to earn an interest of \$1000 at the end of 5 years by investing her money in a bank. The rate of compound interest was fixed at 1.25% per annum. Find the amount of money she needed to deposit in the bank.

The sine of an obtuse angle is $\frac{5}{13}$.

Without the use of a calculator, find the value for the cosine of the same angle.

Answer [2]

The diagram shows a pentagon.

Three of the interior angles are 100° each.

One of its exterior angle is 50° .

Find the value of x.

Answer	x =	[2	1
7 7 7 6 D 1 V C 1	,,,	 L	1

5 y is inversely proportional to the square root of x. It is given that y = 5 for a certain value of x. Find the value of y when x is increased by 300%.

Answer
$$y = \dots [3]$$

		5	
6	ξ=	$\{\text{integers } x: 0 < x < 15\}$	
		{factors of 15}	
	B = -	{perfect squares}	
	(a)	Draw a Venn diagram to illustrate this information.	
		[2	2]
	(b)	List the elements contained in the set $A \cap B'$.	
		Answer[1]
	(c)	Use one of the symbols below to complete the statement.	
		\emptyset \subset $\not\subset$ $=$ \notin	
		$1 \dots A \cap B$	[]

Box P is 25% heavier than Box Q and Box R is 75% heavier than Box P. Express the weight of Box R as a percentage of the weight of Box Q.

Answer % [2]

NOTE: "Range is due to how some columns were admitted by the Sportland and Same occurated kilom stee. Tot eximple, 43% had lever on admittal and 88% while houstlabled."

SOURCES WORLD HEALTH ORGANISATION UNEVERSITY OF CINA CAPPER COLLECE OF MEDICINE AFP, NATIONAL UNIVERSITY HEALTH SYSTEM TEXT CLAPACHONG YUEN SIN ST PHOTO GAINFYOU STRATS TIMES GRAPHICS

Reference from https://str.sg/JAoU

(a)	Explain why the total percentage of people who displayed Covid-19 symptoms adds up to more than 100%.
(b)	Explain whether it is appropriate to represent the data on a pie chart.
	[1]

9 Solve the equation $\frac{1}{3}x^2 = 3x$.

	7	
10	Given that $\sqrt{3} \times 27^n = 1$, find the value of n .	
		Answer $n =$
11	The CoV (coronavirus) is circular in shape with a diar Express	neter of approximately 0.00014 mm.
	(a) 0.000 14 in standard form,	
	(b) 0.000 14 mm in nanometre. (1 nanometre = 10 ⁻⁹ metre)	Answer[1]
		·
		Answer nm [2]
12	Solve the inequalities $3x-1<2x+3\le 7+5x$.	

Answer[2]

13 Simplify $\left(\frac{-2p^3}{q^{-1}}\right)^2 \div \left(\frac{8q^0}{p^3}\right)^{\frac{1}{3}}$, giving your answer in positive index form.

Answer	***************************************	[3]	
--------	---	-----	--

A group of students recorded the volume of water using a measuring cylinder in an experiment. The mean volume of water recorded was 1.8 cm³ and the standard deviation was 0.28 cm³.

The teacher realized that there was an error in the reading taken by all the students.

All the students recorded a reading of 0.6 cm³ above the correct reading at eye-level.

Explain how the correct mean volume of water and standard deviation was affected by the error.

[2]

15	(a)	Express 1728 as a product of its prime factors in index notation.
		Answer[1]
	(b)	Using your answer in part (a), explain why 1728 is a perfect cube.
		Answer[1]
	(c)	k is a prime number. Find the value of k such that $\frac{1728}{k}$ is a perfect square.
		Answer $k = \dots $ [1]
16		sequence, each term is obtained by adding the same number from the previous term. first four terms in a sequence are 36, p , q , 93.
	(a)	Find the value of p , and q .
		Answer $p = \dots$
		q =[2]
	(b)	Find an expression, in terms of n , for the n th term T_n , of this sequence.
	(c)	Answer $T_n =$
		•••••••••••••••••••••••••••••••••••••••
		[2]

17	The line $3x - 5y = 10$ passes through the point A at (5, 1) and cuts the y-axis at point B.						
	(a)	Write down the gradient of the line.					
			Answer[1]				
	(b)	Find the length of AB .					
			Answer units [2]				
	(c)	C is a point $(0, k)$ and the area of triangle ABC is					
	(-)	Find the possible value(s) of k .					
			Answer k = or				
	- -						

•	A resort has an actual area of 81 km ² . Find the area, in square centimetres, of the resort of	
	Find the area, in square centimetres, of the resort of	
	,,,,,,	on the map.
		·
		<i>Answer</i> cm ² [2]
)	The distance between two schools on the map is 5	54 cm.
	Find the actual distance, in kilometres, between the	ne two schools.
	·	Answer km [2]
:)	The scale on the map can be expressed as $1:n$. Find the value of n .	
		Answer $n =$
		The distance between two schools on the map is Sign the actual distance, in kilometres, between the scale on the map can be expressed as 1: n. Find the value of n.

The diagram shows a lucky draw spinner at a departmental store. The pointer is equally likely to stop at any of the sectors. The sectors show a GRAND prize, \$5 or \$10 prize vouchers to be won or a MISS. Each customer at the store is entitled to 1 spin for every \$50 spent.

(a)	Find the probability that a custome	r wins the grand	prize in a spin.
-----	-------------------------------------	------------------	------------------

	Answer[1]
(b)	Find the probability that a customer wins a \$5 or a \$10 voucher in a spin.
	Answer[1]
(c)	Mrs Singh spends \$120 at the store.

(c) Mrs Singh spends \$120 at the store. Find, as a fraction in its simplest form, the probability that she wins at least a prize.

Answer[2]

20 The graphs of y = a(x+2)(4-x) and $y = -\frac{1}{2}x + \frac{5}{2}$ are drawn on the grid.

(a) Write down the equation of the line of symmetry of the curve.

A	i	F11	т	
Answer	***************************************	l T	ı	

(b) Show that the value of $a = \frac{1}{2}$.

Answer

.....[1]

(c) Explain why the equation a(x+2)(4-x)=k does not have solutions for some values of k.

Answer

(d) The points of intersection of the curve and the straight line give the solutions of a quadratic

equation. Find the quadratic equation, giving your answer in the form $x^2 + px + q = 0$.

Answer[2]

In the diagram, AC is a diameter of the circle ABCD. AB and DC are produced to meet at E. Angle $AED = 20^{\circ}$ and angle $CAD = 46^{\circ}$.

- (a) Find, giving reasons for each answer,
 - (i) angle ABC,

Answer°[1]

(ii) angle BCE,

Answer°[1]

(iii) angle BAC,

Answer° [2]

(b)	AC and BD intersect at X . Showing your calculations clearly, explain why X is not the centre the circle.	of
	Answer	
(c)	Determine whether a semicircle can be drawn passing through the points B, C, E .	[3]
	Answer	
		111
		[1]
		[1]
		[1]
		[1]

Construct triangle ABC where AC is 10 cm and angle $BAC = 40^{\circ}$. 22 AB has already been drawn.

[1]

- Construct **(b)**
 - the perpendicular bisector of AB, (i)

[1]

(ii) the angle bisector of angle BAC.

- [1]
- Mark clearly a possible point which is inside triangle ABC, equidistant from A and B, and is nearer to AC than to AB. Label this point P.

[1]

23 The diagram show the speed-time graph of a car's journey between two road junctions. The shaded area represents the distance travelled.
The distance travelled is 1620 m.

(a) Calculate the greatest speed, v m/s of the car.

Answer	 m/s	[2]

(b) Calculate the speed of the car after 32 seconds.

(c) Calculate the deceleration of the car for the last 24 seconds of the journey.

Answer	 m/s ²	[1]

END OF PAPER

BLANK PAGE

				ı		
]					
					CI ACC.	
NAME:		1	1		CLASS:	
14.4141	<u> </u>	. 1	,		,	
)					L

YISHUN TOWN SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2020 SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC MATHEMATICS PAPER 2 (4048/02)

DATE

DURATION:

31 August 2020

2 h 30 min

DAY

Monday

MARKS:

100

READ THESE INSTRUCTIONS FIRST

Do not turn over the cover page until you are told to do so.

Write your name, class and class index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 100.

	MARKS				
	OBTAINED	FULL			
1		8			
2		10			
3		9			
4		12			
5		11			
6		9			
7		Œ			
8		12			
9		10			
10		10			
TOTAL		100			

This question paper consists of 19 printed pages including this cover page and 1 blank page

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of a triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions

1	(a)	Given that	$\frac{5a-3b}{2a}$	$=\frac{4}{3}$	find the value of	$\frac{a}{b}$	•
---	-----	------------	--------------------	----------------	-------------------	---------------	---

		Answer[2]
(b)	(i)	Express $x^2 - 6x + 1$ in the form $(x+a)^2 + b$.
		Answer[1]
	(ii)	Hence solve the equation $x^2 - 6x + 1 = 0$, giving your answers correct to two decimal places.

Answer x = or x = [3]

(c) Given that 4500 workers, each working 8 hours a day, will complete the Thomson Line in 1800 days.If 4800 workers work on the project with each worker working for 10 hours a day, find the number of days it would take to complete the project.

Answer _____ days [2]

2	(a)	Factorise completely	$m^2 - 2mn + n^2$	$-p^2$
4	(a)	racionse completely	m - 2mn + n	_ 1

Answer [2]

(b) Express as a single fraction in its simplest form
$$\frac{7}{2x-3} + \frac{x+1}{6-4x}$$
.

Answer _____[3]

(c) It is given that
$$p = \sqrt{1 + \frac{p^2}{r}}$$
.

(i) Find the values of p when r = 1.125.

Answer
$$p =$$
______ or $p =$ ______ [2]

(ii) Express r in terms of p.

Answer r = [3]

		3				
3	A supermarket sold all of its toilet rolls at a price of x per pack in January. The revenue made from selling the packs of toilet rolls in January was \$5940.					
	(a)	Write down an expression in x , for the number of packets of toilet rolls sold in January.				
		Answer[1]				
		ebruary, the supermarket ordered an additional 600 packs to the number sold in January and them at 50 cents more per pack.				
	(b)	Write down an expression in x , for the total amount of money received in dollars, if all the packs of toilet rolls were sold in February.				
		Answer \$[1]				
	(c)	The supermarket received \$3870 more from the sales of toilet rolls in February as compared to January. Write down an equation in x to represent this information, and show that it reduces to				
		$20x^2 - 119x + 99 = 0.$ Answer				
		[3]				
	(d)	Solve the equation $20x^2 - 119x + 99 = 0$.				
		Answer $x = $ or $x = $ [3]				
	(e)	If each pack of toilet rolls was sold for more than \$1, find the number of packs of toilet rolls sold by the supermarket in February.				
		Answer packets [1]				

4	(a)	Hand sanitisers, hand wash and wipes were sold in two pharmacies.
		The matrix P shows the number of items available for sale in the two pharmacies.

	Hand Sanitisers	Hand Wash	Wipes	
P =	(100	80	150 Pharmacy	4
	60	75	120 Pharmacy I	3

The same supplier producing the products for the two pharmacies charges the hand sanitisers at \$3.50 per bottle, the hand wash at \$3 per bottle and the wipes at \$1.50 per pack.

(i) Represent this information in a 3×1 column matrix Q.

Answer
$$\mathbf{Q} = \begin{bmatrix} 1 \end{bmatrix}$$

(ii) Evaluate the matrix $\mathbf{R} = \mathbf{PQ}$.

Answer
$$\mathbf{R} = [1]$$

(iii) State what the elements of matrix ${\bf R}$ represent.

[1]

All the hand sanitisers, hand wash and wipes were sold out in both pharmacies. Pharmacy A made a profit of 20% and Pharmacy B made a profit of 25%.

(iv) Evaluate the matrix $S = \frac{1}{100} (20 \quad 25) R$.

Answer
$$S = [1]$$

(v) State what matrix S represent.

(b)	The selling price of a laptop is \$2675. A student can buy this laptop at a discounted price of \$2140.						
	(i)	Calculate the percentage discount given for student price.					
		Answer% [2]					
	(ii)	The student price of \$2140 is inclusive of 7% Goods and Services Tax (GST). Calculate the student price of the laptop before GST.					
		Answer[2]					
	(iii)	A student decides to buy this laptop on hire purchase. The cash price of the laptop is \$2140. The student pays a deposit of 10% of the cash price and makes 36 equal monthly payments. At the end of the 36 months, the total hire purchase price of the laptop is \$2500. Calculate the amount of monthly payment.					
		Answer \$[3]					

5 The variables x and y are connected by the equation $y = 2x^3 - 21x^2 + 54x$.

Some corresponding values of x and y are given in the table below.

x	0	0.5	1	2	3	4	4.5	5	6
y	0	22	35	40	27	8	p	-5	0

(a)	Fir	d the	value	of	n
(a)) тш	iu iiic	value	ΟI	ν

Answer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1	1	l
11.00 ,. 0.	P = 2 = = = = = = = = = = 2 = 2 = 2 = 4 = 4		-	ı

- (b) On the grid opposite, plot the points given in the table and join them with a smooth curve. [3]
- (c) Use your graph to estimate the maximum value and the minimum value of y for $0 \le x \le 6$.

Answer Maximum
$$y =$$

$$Minimum y =$$
 [2]

(d) By drawing a tangent, find the gradient of the curve at (0.5, 22).

(e) (i) On the same axes, draw the line y = 45 - 6x for $0 \le x \le 6$. [1]

(ii) Write down the x-coordinates of the points where the line intersects the curve.

Answer
$$x =$$
 [2]

6 ABCD is a trapezium.

F is a point on CD such that ABCF is a rhombus and 3AE = 2EF.

(a) Show that triangles ABE and FDE are similar. Give a reason for each statement you make.

Answer

Winker Torra Concadent Cohool

[2]

(b) Given that AB = 8 cm, find CD.

Answer ____ cm [2]

(c) Find the area of triangle ABE if the area of triangle FDE is 54 cm².

(d)	Find	$\frac{\text{area of triangle } ADE}{\text{area of triangle } ABE}.$	
			Answer[1]
(e)	Find	$\frac{\text{area of triangle } ABE}{\text{area of triangle } ADF}$.	

Answer [2]

The diagram shows a cardboard in the shape of a major sector, centre O and radius 15 cm. The total area of the major sector OPRQ is 450 cm².

(a) Calculate reflex angle POQ in radians.

4		radians	LO.
Answer	3	ragians	12
2 4 1 24 7 7 7 0 .		COULTE	L

(b) Calculate the perimeter of the cardboard.

Wishing Torre Consulate Coloral

(c)

OP and OQ is joined together such that the cardboard forms a conical party hat.

(i) Find the height of the hat.

Answer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cm	[3]
--------	---	----	----	---

(ii) Calculate the volume of the cone.

Answer	618114 00 1148000001000000000000000000000000000	cm ³	[2]	Ì
--------	--	-----------------	-----	---

Points A, B, C and D are at sea level. AD = 980 km, AB = 710 km and CD = 1100 km. The bearing of B and C from A are 148° and 140° respectively. The bearing of B and D from C are 300° and 016° respectively.

(a) Show that angle $ACB = 20^{\circ}$.

[2]

(b) Calculate AC.

Wishing Torre Conneders Cabool

Answer _____ km [3]

(c)	Calculate the bearing of A from D .
	Answer° [3]
(d)	A ship travels in a straight line from A to C. Calculate the shortest distance of the ship from B during the journey.
	Answerkm [2]
(e)	A plane is at a height of 900 metres above the sea.
	The angle of depression of C from the plane is 18° . Calculate the horizontal distance, in kilometres, between the plane and C .
	4 mm 10 m
	Answerkm [2]

9	The temperatures of eighteen girls in a class on a particular day are shown in the stem-and-lead
	diagram.

35	4	4	7	7	9	
36	1	2	4	4	5	
35 36 36 37	6	7	7	7	8	9
37	1	x				

Key: 37 | 1 represents 37.1 °C

(a)	Given that the range	is 1.	8 °C, find	the value	of x
-----	----------------------	-------	------------	-----------	--------

Answer x = [1]

(b) The temperatures can be represented on a box-and-whisker plot.

(i) Calculate the values of a, b, c and d.

Answer
$$a =$$

$$b =$$

$$c =$$

$$d =$$
[4]

(ii) Find the interquartile range.

Winker Town Connedent Cohoo!

4nswer	01,440,1747,1447,1447,1440,1440,1441,1441	°C	[l]
1nswer	\$1,44e*:L4L1,200.0124v)}}	°C		L	Γĭ

(c)	(i)	Calculate the mean temperature.
		Answer °C [1]
	(ii)	Find the standard deviation of the temperatures.
		Answer °C [1]
(d)		rmation on the temperatures of eighteen boys in a class on that same particular day is vn below.
		Mean temperature = 36.0 °C Standard Deviation = 0.294 °C
	Mak	te two comments comparing the temperatures of the girls and boys.
	1	
	2	
		[2]

10 Julian owns a fruit stall selling fruit juice.

Vialem Torre Connedam Coloni

The tables below give information related to Julian's stall.

Information on some of the fruits available							
	Volume of	Amount of					
	Juice per fruit	Sugar per fruit					
Type of Fruit	(millilitres)	(grams)					
Apple	75	19					
Orange	75	14					
Pears	90	17					
Pineapple	630	89					
Watermelon	1890	280					

Additional Information
Capacity of a cup – 300 ml
Number of ice cubes used in a cup – 6 cubes
Dimensions of an ice cube – approximate 2 cm × 2 cm × 1.5 cm

(a)	Calculate the volu	me of ice, in cm	, used in each cu	ip of juice sold	at the stall.
-----	--------------------	------------------	-------------------	------------------	---------------

				Answer	۳	 		.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cm ³	[1]
 ·	•		 •	:_ 1		 ::	ماملان			

(b) Estimate the amount of sugar content, in grams, in 1 cup of apple juice with ice.

Answer	######################################	g [2]
A A F D T T T T		0 1	- 4

(c) As part of the fight against diabetes, it is recommended that the amount of sugar intake for each Singaporean should be less than 10 teaspoons a day (1 teaspoon of sugar = 5 grams of sugar).

A study also shows that a typical Singaporean will consume multiple sources of food products that contain sugar within a single day.

Julian plans to introduce a new recipe of mixed fruit juice.

Julian's New Recipe

- 3 types of fruits to be used
- Equal amount of juice from each of the 3 fruits
- One of the 3 fruits used must be of the highest sugar content so that the fruit juice is sweet enough

Determine if Julian's new recipe will be considered as suitable for Singaporeans who wishes to stay healthy and avoid diabetes.

Justify the decision with calculations.

[7]

BLANK PAGE

Wishin Tarm Canandam Calcal

YISHUN TOWN SECONDARY SCHOOL 2020 PRELIMINARY EXAMINATION Secondary Four Express / 5 Normal MATHEMATICS

4048/01

	Ansv	wer Key	
Qn	Answer	Qn	Answer
1(a)	$\frac{\sqrt{2}}{2}$, π	1(b)	10
2	P = \$15604.97	3	$-\frac{12}{13}$
4	x = 110	5	$2\frac{1}{2}$
6(i)	ξ 3 5 1 4 9 2 6 7 8 10 11 12 13 14	6(ii)	$\mathbf{T}' = \{3, 5\}$
6(iii)	E	7	218.75%
8(i)	There are people with more than 1 type of symptoms.	8(ii)	No, since the total percentage does not add up to 100%.
9	x=0 or $x=9$	10	$n = -\frac{1}{6}$
11(a)	1.4 ×10 ⁻⁴	11(b)	140 nm
12	$-\frac{4}{3} \le x < 4$	13	$2p^7q^2$
14	The correct mean volume is 0.6 cm ³ less (1.2 cm ³) and the standard deviation remains unchanged.	15(a)	$1728 = 2^6 \times 3^3$
15(b)	The powers of the bases are multiple of 3. Hence 1728 is a perfect cube.	15(c)	k = 3
16(a)	p = 55 $q = 74$	16(b)	$T_{\rm n}=17+19n$
16(c)	208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer	17(a)	gradient = $\frac{3}{5}$
17(b)	5.83 units	17(c)	k=2 or $k=-6$
18(a)	1296 cm ²	18(b)	13.5 km
18(c)	$n = 25\ 000$	19(a)	$\left \begin{array}{c} \frac{1}{6} \end{array}\right $
19(b)	5 12	19(c)	119 144
20(a)	45 m/s	20(b)	30 m/s
20(c)	$1\frac{7}{8}$	21(a)	x = 1
21(b)	$a = \frac{1}{2}$	21(c)	For $k > 4.5$, the line $y = k$ does not intersect the graph.

		20	
21(d)	$x^2 - 3x - 3 = 0$	22(a)(i)	90°
22(a)(ii)	70°	22(a)(iii)	30°
22(b)	angle $XDA \neq$ angle CAD , hence $AX \neq DX$. AX and DX are not the radii of the circle. (Triangle AXD is not an isosceles triangle.)	22(c)	angle $CBE = 90^{\circ}$ (rt angle in semicircle) Therefore a circle can be drawn passing through the points B , C , E .
23(a)	(b)(B) (2) C (C) (C) (C) (C) (C) (C) (C) (C) (C)	23(b)	Shaded region (Bottom left region)

YISHUN TOWN SECONDARY SCHOOL 2020 PRELIMINARY EXAMINATION Secondary Four Express / 5 Normal MATHEMATICS

4048/02

Answer Key					
Qn	Answer	Qn	Answer		
1a	9 7	1bi	$(x-3)^2-8$		
1bii	5.83, 0.17	1c	1350		
2a	(m-n-p)(m-n+p)	2b	$\frac{13-x}{2(2x-3)}$		
2ci	3 or -3	2cii	$r = \frac{p^2}{p^2 - 1}$		
3a	$\frac{5940}{x}$	3b	$\left(\frac{5940}{x} + 600\right)(x + 0.5)$		
3d	4.95, 1	3e	1800		
4ai	$ \begin{pmatrix} 3.5 \\ 3 \\ 1.5 \end{pmatrix} $	4aii	$\begin{pmatrix} 815 \\ 615 \end{pmatrix}$		
4aiii	The elements represents total cost price of hand sanitizers, hand soap and wipes for each pharmacy respectively.	4aiv	(316.75)		
4av	The matrix represents the total amount of profit made by both pharmacies.	4bi	20%		
4bii	S2000	4biii	\$63.50		
5a	0	5c	Maximum: 41, Minimum: -6		
5d	34	5eii	1.2, 3		

6a	$\angle ABE = \angle FDE$ (alt. $\angle s$, // lines)	6b	20
	$\angle BAE = \angle DFE$ (alt. $\angle s$, // lines)		
	$\angle BEA = \angle DEF$ (vert. opp. \angle s)		
	By Angle-Angle Similarity Test, triangle ABE and triangle FDE are similar.		·
6c	24	6d	$\frac{3}{2}$
6e	$\frac{4}{15}$	7a	4
7b	90	7ci	11.6
7cii	1100	8b	975
8c	251.5	8d	98.8
8e	2.77	9a	2
9bi	a = 35.4, b = 35.9, c = 36.45, d = 36.7	9bii	0.8
9ci	36.4 °C	9cii	0.537 °C
9d	1. The temperatures of the girls are higher than the boys as the mean temperature of the girls is greater than the mean temperature of the boys.	10a	36
	2. The temperatures of the girls are less consistent compared to the boys, since the standard deviation of temperatures is higher.		

10b	66.88
10c	Amount of sugar per ml of Apple: 0.25333g Orange: 0.18667g
	Pear: 0.18889g Pineapple: 0.14127g Watermelon: 0.14815g
	Amount of fruit juice used for each fruits = $\frac{264}{3}$ = 88 ml Fruits to use: Pineapple, Watermelon and Apple
	Amount of sugar in the mixed fruit juice = $88 \times (0.14815 + 0.14127 + 0.25333)$ = $47.762g$ Number of teaspoons = $47.762 \div 5 = 9.5524$
	As long as Julian uses the fruit with the highest sugar content, his mixed fruit juice will NOT be deemed as healthy. This is because a person may take in sugar in other meals and his mixed fruit juice almost took up 1 day's intake even when he is using two other fruits of the lowest sugar content.

YISHUN TOWN SECONDARY SCHOOL

MARKING SCHEME

Exam : 2020 YTSS 4E/5N Prelim

Date

: 27 August (Thur)

Subject

: Sec 4E/5N Maths

Paper No.: 1

Qn	Key Steps / Solution	Marks	Remarks
1(a)	$\frac{\sqrt{2}}{2}$, π	B1	
(b)	10	A1	
2	$P\left(1 + \frac{1.25}{100}\right)^5 - P = \1000	M1	
	$P\left(\left(1 + \frac{1.25}{100}\right)^5 - 1\right) = \1000	M1	
	P = \$15604.97	A1	
3	$-\frac{12}{13}$	M1 B1	for 12 using Pythagoras' Thm
4	$x + 100 \times 3 + (180 - 50) = 3 \times 180$	M1	
7	x = 110	A1	
5	$y = \frac{k}{\sqrt{x}}$ where k is a constant. When $y = 5$ $5 = \frac{k}{\sqrt{x}}$	M1	
	New $x = 4x$ $y = \frac{k}{\sqrt{4x}}$	M1	
	$y = \frac{k}{2\sqrt{x}}$ $= \frac{5}{2}$ $= 2\frac{1}{2}$	A1	

Qn	Key Steps / Solution	Marks	Remarks
6(i)	$\xi A B$	B1	for set A and B
	$\begin{bmatrix} 3 & 5 & 1 & 4 & 9 \\ 2 & 6 & 7 & 8 & 10 & 11 & 12 & 13 & 14 \end{bmatrix}$	B1	for outside
	$A \cap B' = \{3, 5\}$	A1	
(ii)	$A \cap B = \{3, 3\}$		
(iii)	€	A1	
7	$P: Q: \mathbf{R}$ = 1.25x: x:1.75×1.25x	M1	
X	Percentage = $\frac{1.75 \times 1.25x}{x} \times 100\%$		
	= 218.75%	A1	
8(i)	There are people with more than 1 type of symptoms.	B1	
(ii)	No, since the total percentage does not add up to 100%.	B1	
9	$\frac{1}{3}x^2 = 3x$		
	$x^2 - 9x = 0$		
	x(x-9)=0	M1 A1+1	
10	$x = 0$ or $x = 9$ $\frac{1}{3^{\frac{1}{2}}} \times 3^{3n} = 3^{0}$	M1	for converting to base 3
	$\begin{vmatrix} \frac{1}{2} + 3n = 0 \end{vmatrix}$	М1	for equating
	$3n = -\frac{1}{2}$		
	$n = -\frac{1}{6}$	A1	
11(a)	$0.000\ 14 = 1.4 \times 10^{-4}$	A1	
(b)	$0.000 \ 14 \ \text{mm} = 1.4 \times 10^{-7} \ \text{m}$		
A CONTRACTOR OF THE CONTRACTOR	$0.000 14 \text{ mm} = 1.4 \times 10^{-9} \text{ m}$ $= 1.4 \times 10^{2} \times 10^{-9} \text{ m}$	M1	
	= 140 nm	A1	
12	$3x-1 < 2x+3$ and $2x+3 \le 7+5x$	M1	Either vertical or horizontal marking
	$x < 4 \qquad -4 \le 3x$ $x \ge -\frac{4}{3}$		marnik
, and a second	$-\frac{4}{3} \le x < 4$	A1	

Qn	Key Steps / Solution	Marks	Remarks
13	$\left(\frac{-2p^3}{q^{-1}}\right)^2 \div \left(\frac{8q^0}{p^3}\right)^{\frac{1}{3}} = \frac{4p^6}{q^{-2}} \times \frac{p}{2}$	M1 + 1	for each fraction
	$=2p^{7}q^{2}$	A1	
14	The correct mean volume is 0.6 cm ³ less (1.2 cm ³) and the standard deviation remains unchanged.	B2	
15(a)	$1728 = 2^6 \times 3^3$	A1	
(b)	The powers of the bases are multiple of 3. Hence 1728 is a perfect cube.	B1	
(c)	k=3	B1	
16 (a)	$constant = \frac{93 - 36}{3}$ $= 19$		
	$p = 55 \qquad q = 74$	B1 + 1	
(b)	$T_n = 36 + 19(n-1)$		
	=17+19n	A1	
(c)	17 + 19n = 225 $19n = 208$		
	n = 10.94 208 is not a multiple of 19 / 208 is not exactly divisible by 19 /	M1	
	n is not a positive integer	В1	
17 (a)	$gradient = \frac{3}{5}$	A1	
	B is at $(0,-2)$	A1	
	$AB = \sqrt{(5-0)^2 + (1-(-2))^2} = 5.83 \text{ units}$	B1	
(c)	$\frac{1}{2} \times b \times 5 = 10$		
	b = 4 k = -2 + 4 = 2 or $k = -2 - 4 = -6$	A2	10.00
18 (a)	Area of garden on the map = $\frac{324}{20.25} \times 81$	M1	
	$= 1296 \text{ cm}^2$	A1	

Qn	Key Steps / Solution	Marks	Remarks
(b)	324 cm ² : 20.25 km ²	M1	for taking linear scale
	18 cm : 4.5 km	ļ	
	Actual distance between two schools = $\frac{4.5}{18} \times 54$		
	= 13.5 km	A1	
		M1	for linear scale
(c)	1 cm : 0.25 km		
	1:25 000	A1	•
	$n = 25\ 000$		
10 (a)	n. 1 . 1	Al	
15 (4)	$P(\text{wins a grand prize}) = \frac{1}{6}$		
(b)	$P(\text{wins a voucher}) = \frac{5}{12}$		
(2)	14	A1	
(c)	P(wins at least a prize) = 1 - P(Miss, Miss)		
(0)	$=1-\frac{5}{12}\left(\frac{5}{12}\right)$	M1	
	$-1-\frac{1}{12}(\overline{12})$		
	_ 119		
	$=\frac{119}{144}$	A1	
	Alternative		ļ
	P(Miss, Win) + P(Win, Miss) + P(Win, Win)		
	$= \frac{7}{12} \left(\frac{5}{12}\right) + \frac{5}{12} \left(\frac{7}{12}\right) + \frac{7}{12} \left(\frac{7}{12}\right) = \frac{119}{144}$		
20 (a)	x = 1	A1	
	8a = 4	į	
(b)			
	$a = \frac{1}{2}$	A1	
(c)	For $k > 4.5$, the line $y = k$ does not intersect the graph.	B1	
(d)	$\left \frac{1}{2}(x+2)(4-x)\right = -\frac{1}{2}x + \frac{5}{2}$	į	
	$\begin{vmatrix} \frac{1}{2}(x+2)(4-x) = -\frac{1}{2}x + \frac{5}{2} \\ (x+2)(4-x) = -x+5 \\ 4x-x^2+8-2x = -x+5 \end{vmatrix}$	M1	
	(x+2)(+x) = x+3		
	$4x - x^2 + 8 - 2x = -x + 5$ $x^2 - 3x - 3 = 0$	A1	
,	x -5x - 5 - 0		

L			

Qn	Key Steps / Solution	Marks	Remarks
21(a)(i)	angle $ABC = 90^{\circ}$ (rt angle in semicircle)	A1	
(ii)	angle $BCE = 180^{\circ} - 90^{\circ} - 20^{\circ}$ (angle sum of triangle) = 70°	A1	
(iii)	angle $BCD = 180^{\circ} - 70^{\circ}$ (adj angles on str line) = 110°	M1	or 90° + 20° (ext angles)
	angle $BAC = 180^{\circ} - 110^{\circ} - 46^{\circ}$ (angles in opp seg) = 24°	Al	
(b)	angle $BDC = 24^{\circ}$ (angles in the same seg)	M1	or angle $DXC = 60^{\circ} + 46^{\circ}$ = 106°
	angle $XDA = 90^{\circ} - 24^{\circ}$ (rt angle in semicircle) = 66° angle $XDA \neq$ angle CAD , hence $AX \neq DX$. AX and DX are not the radii of the circle. (Triangle AXD is not an isosceles triangle.) Hence X is not the centre of the circle.	M1 B1	(ext angles) Since angle $DXC \neq$ 2× angle DAC Angle at centre \neq 2 angle at circumference, X is not the centre of the circle. (B1)
(c)	angle CBE = 90° (rt angle in semicircle)	A1	
	Therefore a semicircle can be drawn passing through the points B, C, E .		
22(a)	(b)(i) (a) C (b)(ii)	B1 B1 B1	for point C
(b)(i) (ii) (c)	Anywhere on perpendicular bisector and top left region	B 1	

Qn	Key Steps / Solution	Marks	Remarks
23(a)	$\frac{1}{2} \times 72 \times v = 1620$	M1	
	$v = \frac{1620}{36}$ $v = 45$		
	Greatest speed = 45 m/s	A1	
(b)	$\frac{\text{speed}}{32} = \frac{45}{48}$ $\text{speed} = \frac{45}{48} \times 32$ $= 30 \text{ m/s}$	M1	
	= 30 m/s	AI	
(c)	deceleration = $\frac{45}{24}$ = 1.875 m/s2 or $1\frac{7}{8}$	A1 Mu	ıst be exact

YISHUN TOWN SECONDARY SCHOOL

MARKING SCHEME

Exam

: 2020 YTSS 4E/5N MYE

Date

: 31 August (Monday)

Subject

: Sec 4E/5N Maths

Paper No.: 2

Qª	Key Steps / Solution	Marks	Remarks
1a	$\frac{5a-3b}{2a} = \frac{4}{3}$		
	$2a \qquad 3$ $15a - 9b = 8a$	3.51	
	7a = 9b	M1	
	$\frac{a}{b} = \frac{9}{7}$	4	
	\overline{b} $\overline{7}$	A 1	
1bi	$(x-3)^2-8$	B 1	
1bii	$(x-3)^2-8=0$		No mark awarded if solve
	$(x-3)^2 = 8$		using methods other than
	$(x-3)^2 - 8 = 0$ $(x-3)^2 = 8$ $x-3 = \pm \sqrt{8}$	M1	complete square
	x = 5.83 or $x = 0.17$	A1A 1	
1c	Number of days needed for 4500 workers at 10 hours	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
IC	$=\frac{8\times1800}{10}=1440$	M1	
	10		
	Number of days needed for 4800 workers at 10 hours	4	
	$=\frac{1440\times4500}{4800}=1350$	A1	
	OR Table		
	Number of days needed for 4800 workers at 8 hours		
	$=\frac{1800\times4500}{4800}=1687.5$		
	1000	M1	
	Number of days needed for 4800 workers at 10 hours		
	$=\frac{1687.5\times8}{10}=1350$	A1	
2a	$m^2 - 2mn + n^2 - p^2 = (m-n)^2 - p^2$	M1	
	= (m-n-p)(m-n+p)	A1	
2b	$\frac{7}{2x-3} + \frac{x+1}{6-4x} = \frac{7}{2x-3} + \frac{x+1}{2(3-2x)}$		
		M1	change of sign
	$=\frac{14}{2(2x-3)}-\frac{x+1}{2(2x-3)}$	M1	for common denominator
			-
	$=\frac{13-x}{2(2x-3)}$	A 1	

2ci $p^{2} = 1 + \frac{p^{2}}{1.125}$ $p^{2} - \frac{p^{2}}{1.125} = 1$ $\frac{1}{9}p^{2} = 1$ $p^{2} = 9$ $p = 3 \text{ or } -3$ Al Both 3, -3 2cii $p = \sqrt{1 + \frac{p^{2}}{r}}$ $p^{2} = 1 + \frac{p^{2}}{r}$ $p^{2} = 1 + \frac{p^{2}}{r}$ $p^{2} = 1 - \frac{p^{2}}{r}$ $p^{2} = 1 - \frac{p^{2}}{r^{2} - 1}$ OR $p^{2} - 1 = \frac{p^{2}}{r}$ $r = \frac{p^{2}}{p^{2} - 1}$ OR $p^{2} - 1 = \frac{p^{2}}{r}$ $r = \frac{p^{2}}{p^{2} - 1}$ Al Removing Square root MI Removing Square root MI Make reciprocal $r = \frac{p^{2}}{p^{2} - 1}$ Al Make reciprocal $r = \frac{p^{2}}{p^{2} - 1}$ Al Both 3, -3 MI Factorise r MI Permoving Square root MI Make reciprocal $r = \frac{p^{2}}{p^{2} - 1}$ Al Make reciprocal $r = \frac{p^{2}}{p^{2} - 1}$ Al Dethat 3, -3 Al Dethat 3, -3 Al Dethat 3, -3 Al Dethat 3, -3 Al Dethat 5, -3 Al Dethat 5, -3 Al Dethat 5, -3 Al Dethat 7, -3 A				<u> </u>
$\frac{1}{9}p^2 = 1$ $p^2 = 9$ $p = 3 \text{ or } -3$ 2cii $p = \sqrt{1 + \frac{p^2}{r}}$ $p^2 - r = p^2$ $r(p^2 - 1) = p^2$ $r = \frac{p^2}{p^2 - 1}$ OR $p^2 - 1 = \frac{p^2}{r}$ $p^2 - 1 = \frac{p^2}{r}$ M1 Removing Square root M1 Removing Square root M1 Removing Square root M1 Make reciprocal M2 M3 M4 M4 M5 M6 M6 M7 M6 M7 M7 M8 M8 M8 M8 M8 M9 M1 M9 M8 M9 M9 M9 M9 M9 M9 M1 M9 M9 M9 M1 M9 M9 M1 M9 M1 M9 M1 M1 M1 M9 M1 M1 M1 M1 M1 M1 M1 M2 M1 M1 M2 M1 M1 M1 M1 M1 M1 M2 M1	2ci	$p^2 = 1 + \frac{p^2}{1.125}$	M1	
$\frac{1}{9}p^2 = 1$ $p^2 = 9$ $p = 3 \text{ or } -3$ 2cii $p = \sqrt{1 + \frac{p^2}{r}}$ $p^2 - r = p^2$ $r(p^2 - 1) = p^2$ $r = \frac{p^2}{p^2 - 1}$ OR $p^2 - 1 = \frac{p^2}{r}$ $p^2 - 1 = \frac{p^2}{r}$ M1 Removing Square root M1 Removing Square root M1 Removing Square root M1 Make reciprocal M2 M3 M4 M4 M5 M6 M6 M7 M6 M7 M7 M8 M8 M8 M8 M8 M9 M1 M9 M8 M9 M9 M9 M9 M9 M9 M1 M9 M9 M9 M1 M9 M9 M1 M9 M1 M9 M1 M1 M1 M9 M1 M1 M1 M1 M1 M1 M1 M2 M1 M1 M2 M1 M1 M1 M1 M1 M1 M2 M1		$p^2 - \frac{p^2}{1.125} = 1$		
$\begin{array}{c} p^2 = 9 \\ p = 3 \text{ or } -3 \end{array} \hspace{2cm} \text{A1} \hspace{2cm} \text{Both 3, } -3 \end{array}$		$\frac{1}{\alpha}p^2 = 1$		
2cii $p = 3 \text{ or } -3$ Al Both 3, -3 2cii $p = \sqrt{1 + \frac{p^2}{r}}$ $p^2 = 1 + \frac{p^2}{r}$ $p^2 = 1 + \frac{p^2}{r}$ $p^2 = r = p^2$ $p^2 = r = p^2$ $p^2 = 1 + \frac{p^2}{r}$ M1 Factorise p^2 $p^2 = 1 = \frac{p^2}{p^2 - 1}$ OR $p^2 - 1 = \frac{p^2}{r}$ M1 Removing Square root $p^2 = \frac{p^2}{p^2 - 1}$ M1 Make reciprocal $p^2 = \frac{p^2}{p^2 - 1}$ M1 Make reciprocal $p^2 = \frac{p^2}{p^2 - 1}$ M2 Removing Square root M3 Removing Square root M4 Make reciprocal $p^2 = \frac{p^2}{p^2 - 1}$ M5 Porm equation $p^2 = \frac{p^2}{p^2 - 1}$ M6 Porm equation $p^2 = \frac{p^2}{p^2 - 1}$ M7 Form equation $p^2 = \frac{p^2}{p^2 - 1}$ $p^2 = \frac{p^2}{p^2 - 1}$ M8 Removing Square root M9 Removing Square root M1 Expansion $p^2 = \frac{p^2}{p^2 - 1}$ M1 Expansion $p^2 = \frac{p^2}{p^2 - 1}$ $p^2 = \frac{p^2}{p^2 - 1}$ $p^2 = \frac{p^2}{p^2 - 1}$ Also accept use of complete square as method		$ _{m^2-\Omega}$		
OR $p^{2}-1 = \frac{p^{2}}{r}$ $\frac{r}{p^{2}} = \frac{1}{p^{2}-1}$ M1 Make reciprocal $r = \frac{p^{2}}{p^{2}-1}$ A1 3a $\frac{5940}{x}$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5) = 5940 + 3870$ M1 Form equation $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ A1 Correct steps to final answer 3c $x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ Also accept use of complete square as method		p = 3 or -3	A1	Both 3, -3
OR $p^{2}-1 = \frac{p^{2}}{r}$ $\frac{r}{p^{2}} = \frac{1}{p^{2}-1}$ M1 Make reciprocal $r = \frac{p^{2}}{p^{2}-1}$ A1 3a $\frac{5940}{x}$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5) = 5940 + 3870$ M1 Form equation $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ A1 Correct steps to final answer 3c $x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ Also accept use of complete square as method	2cii	$p = \sqrt{1 + \frac{p^2}{r}}$		
OR $p^{2}-1 = \frac{p^{2}}{r}$ $\frac{r}{p^{2}} = \frac{1}{p^{2}-1}$ M1 Make reciprocal $r = \frac{p^{2}}{p^{2}-1}$ A1 3a $\frac{5940}{x}$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5) = 5940 + 3870$ M1 Form equation $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ A1 Correct steps to final answer 3c $x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ Also accept use of complete square as method		$p^2 = 1 + \frac{p^2}{r}$	M1	Removing Square root
OR $p^{2}-1 = \frac{p^{2}}{r}$ $\frac{r}{p^{2}} = \frac{1}{p^{2}-1}$ M1 Make reciprocal $r = \frac{p^{2}}{p^{2}-1}$ A1 3a $\frac{5940}{x}$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x+0.5) = 5940 + 3870$ M1 Form equation $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ A1 Correct steps to final answer 3c $x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ Also accept use of complete square as method		$\begin{vmatrix} p^2r - r = p^2 \\ r(p^2 - 1) = p^2 \end{vmatrix}$	M1	Factorise r
$p^{2}-1 = \frac{p^{2}}{r}$ $\frac{r}{p^{2}} = \frac{1}{p^{2}-1}$ $r = \frac{p^{2}}{p^{2}-1}$ $3a \frac{5940}{x}$ $3b \$\left(\frac{5940}{x} + 600\right)(x+0.5)$ $\left(\frac{5940}{x} + 600\right)(x+0.5) = 5940 + 3870$ $5940 + \frac{2970}{x} + 600x + 300 = 9810$ $\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ $3c x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ $x = 4.95 x = 1$ M1 Removing Square root M1 Form equation M1 Expansion A1 Correct steps to final answer		$r = \frac{p^2}{p^2 - 1}$	A1	
$r = \frac{p^2}{p^2 - 1}$ 3a $\frac{5940}{x}$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5) = 5940 + 3870$ $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ $600x^2 - 3570x + 2970 = 0$ $20x^2 - 119x + 99 = 0$ A1 Correct steps to final answer $x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$ Also accept use of complete square as method A1A1		OR ,		
$r = \frac{p^2}{p^2 - 1}$ 3a $\frac{5940}{x}$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5) = 5940 + 3870$ $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ $600x^2 - 3570x + 2970 = 0$ $20x^2 - 119x + 99 = 0$ A1 Correct steps to final answer $x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$ Also accept use of complete square as method A1A1		$p^2 - 1 = \frac{p^2}{r}$	M1	Removing Square root
3a $\frac{5940}{x}$ B1 3b $\$\left(\frac{5940}{x} + 600\right)(x + 0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5) = 5940 + 3870$ M1 Form equation $5940 + \frac{2970}{x} + 600x + 300 = 9810$ M1 Expansion $\frac{2970}{x} + 600x - 3570 = 0$ A1 Correct steps to final answer $3c$ $x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$ Also accept use of complete square as method $x = 4.95$ A1 A1A1		$\frac{r}{p^2} = \frac{1}{p^2 - 1}$	M1	Make reciprocal
3b $\$\left(\frac{5940}{x} + 600\right)(x + 0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5) = 5940 + 3870$ $5940 + \frac{2970}{x} + 600x + 300 = 9810$ $\frac{2970}{x} + 600x - 3570 = 0$ $600x^2 - 3570x + 2970 = 0$ $20x^2 - 119x + 99 = 0$ A1 Correct steps to final answer 3c $x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$ Also accept use of complete square as method A1A1		$r = \frac{p^2}{p^2 - 1}$	A1	
3b $\$\left(\frac{5940}{x} + 600\right)(x + 0.5)$ B1 $\left(\frac{5940}{x} + 600\right)(x + 0.5) = 5940 + 3870$ $5940 + \frac{2970}{x} + 600x + 300 = 9810$ $\frac{2970}{x} + 600x - 3570 = 0$ $600x^2 - 3570x + 2970 = 0$ $20x^2 - 119x + 99 = 0$ A1 Correct steps to final answer 3c $x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$ $x = 4.95$ Also accept use of complete square as method A1A1	3a		B1	
$5940 + \frac{2970}{x} + 600x + 300 = 9810$ $\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ Al Correct steps to final answer $x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ $x = 4.95$ Also accept use of complete square as method $x = 4.95$ Also accept use of complete square as method	3b		B1	
$\frac{2970}{x} + 600x - 3570 = 0$ $600x^{2} - 3570x + 2970 = 0$ $20x^{2} - 119x + 99 = 0$ A1 Correct steps to final answer $x = \frac{-(-119) \pm \sqrt{(-119)^{2} - 4(20)(99)}}{40}$ $x = 4.95$ $x = 1$ Also accept use of complete square as method A1A1		$\left(\frac{5940}{x} + 600\right)(x+0.5) = 5940 + 3870$	M1	Form equation
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WANTED THE PARTY OF THE PARTY O		M1	Expansion
$20x^{2}-119x+99=0$ A1 Correct steps to final answer $x = \frac{-(-119)\pm\sqrt{(-119)^{2}-4(20)(99)}}{40}$ $x = 4.95$ Also accept use of complete square as method A1A1		X		
$x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$ $x = 4.95$ $x = 1$ Also accept use of complete square as method A1A1			11	Commant atoms to Eural and
x = 4.95 x = 1 A1A1			Al	
x = 4.95 x = 1 A1A1	3c	$x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$	M1	
		la contraction of the contractio	A1A1	
$\begin{vmatrix} 3d & = \frac{5940}{4.95} + 600 = 1800 \end{vmatrix}$ B1	3d	$=\frac{5940}{4.95}+600=1800$	B1	

4ai	(3.5) (3.5) (3.50)	B1	
	$\begin{pmatrix} 3.5 \\ 3 \\ 1.5 \end{pmatrix}$ or $\begin{pmatrix} 3.5 \\ 3.0 \\ 1.5 \end{pmatrix}$ or $\begin{pmatrix} 3.50 \\ 3.00 \\ 1.50 \end{pmatrix}$	Б	
4aii		B1	
1 6 1 1 1 5	815 represents the total cost price of hand sanitizers, hand soap and wipes for Pharmacy A. 815 represents the total cost price of hand sanitizers, hand soap and wipes for Pharmacy B. OR The elements represents total cost price of hand sanitizers, hand soap and wipes for each pharmacy respectively.	B1	
4aiv	$\frac{1}{100}$ (20 25) $\binom{815}{615}$ = (163+153.75) = (316.75)	B1	
	The matrix represents the total amount of profit made by both pharmacies.	B1	
4bi _J	Percentage discount = $\frac{2675 - 2140}{2675} \times 100\%$	Ml	
	= 20%	A 1	
4bii]	Price before GST = $\frac{\$2140}{107} \times 100$ $= \$2000$	M1 A1	
= = I	Deposit = 0.1×\$2140 = \$214 Amount paid by hire purchase less deposit = 2500 - \$214 = 2286 Monthly payment = 2286 ÷ 36	M1 M1	Deposit Amt less deposit
l	= \$63.50	D1	
Sa	Refer to graph	P2 C1	All points marked as shown in table. P1 if 1 point to 2 points not marked or error in marking. Zero if > 2 errors. Smooth Curve passing through all points
	Maximum: 41 (Must be read from student's graph) Minimum: -6 (Must be read from student's graph)	B1	Accept 40 to 41.5 Reject answers <40 Accept -5 to -6.5
5d	$\frac{39-(5)}{10} = 34.0$	B1	Reject answers > -5 Tangent line

5ei	Refer to graph	B1	Straight line $y = 30 - 5x$ drawn from $x = 0$ to $x = 6$
5eii	x = 1.2, x = 3	B 1	1.2 Accept (1.1 to 1.3)
		B1	x=3

	J		
ба	$\angle ABE = \angle FDE$ (alt. $\angle s$, // lines) $\angle BAE = \angle DFE$ (alt. $\angle s$, // lines)	[M1]	For any 1 set of correct angles with correct reason
47	$\angle BEA = \angle DEF$ (vert. opp. \angle s) Hence by Angle-Angle Similarity Test, triangle ABE and triangle FDE are similar.	[A1]	For any 2nd set of correct angles with correct reasons and conclusion
6b	$\frac{AE}{EF} = \frac{2}{3}$	**************************************	
	$\frac{DF}{AB} = \frac{3}{2}$ $DF = \frac{3}{2} \times 8 = 12$	M1	For $\frac{3}{2} \times 8$
MARIA	$DF = \frac{12}{2} \times 8 = 12$ $CD = 12 + 8 = 20$	A 1	
бс	$\frac{\text{Area of triangle } ABE}{\text{Area of triangle } FDE} = \left(\frac{2}{3}\right)^2$	M1	
	Area of triangle $ABE = \frac{4}{9} \times 54 = 24$	Al	
6d	area of triangle ADE area of triangle ABE		
	$= \frac{\frac{1}{2}(\bot \text{ from } A \text{ to } DE)DE}{\frac{1}{2}(\bot \text{ from } A \text{ to } BE)BE}$ $= \frac{DE}{BE} = \frac{FE}{AE} \text{ (Since } \triangle ABE \text{ and } \triangle FDE \text{ are similar)}$		and the other company of the executive o
	$= \frac{1}{BE} = \frac{1}{AE} \text{ (Since AABE and AFDE are similar)}$ $= \frac{3}{2}$	B1	
бе	Area $\triangle ADE$: Area $\triangle ABE$: Area $\triangle FDE$ 3: 2 4: 9		
	6 : 4 : 9	M1	
	$\frac{\text{area of triangle } ABE}{\text{area of triangle } ADF} = \frac{4}{9+6} = \frac{4}{15}$	A 1	
7a	$\frac{1}{2}(15)^2 (\text{reflex } \angle POQ) = 450$	M1	
	$\frac{1}{2}(15)^2 \left(\text{reflex } \angle POQ\right) = 450$ $\text{reflex } \angle POQ = \frac{450 \times 2}{15^2} = 4$	A1	
7b	= (15)(4) + 15 + 15 $= 90$	M1 A1	

7ci	Base circumference = $15(4) = 60 \text{ cm}$	M1	Circumference
	$Radius = \frac{60}{2\pi} \text{ cm}$		Radius
	Height = $\sqrt{15^2 - \left(\frac{60}{2\pi}\right)^2} = 11.56766 = 11.6$	A1	
7cii	$=\frac{1}{3}\pi\left(\frac{60}{2\pi}\right)^2(11.56766)$	M1	
	=1104.630 =1100 (3 sig. fig.)	A1	
8a	North 980 1100 710 North North 1100 710 North 2 300°		
	$x = 180^{\circ} - 140^{\circ} = 40^{\circ}$	M1	40° seen or implied in
	$\angle ACB = 360^{\circ} - 300^{\circ} - 40^{\circ} = 20^{\circ}$	A1	diagram or working
8b	$\angle BAC = 148^{\circ} - 140^{\circ} = 8^{\circ}$ $\angle ABC = 180^{\circ} - 8^{\circ} - 20^{\circ} = 152^{\circ}$ $\frac{AC}{\sin 152^{\circ}} = \frac{710}{\sin 20^{\circ}}$ $AC = \frac{710\sin 152^{\circ}}{\sin 20^{\circ}} = 974.57654 = 975 \text{ (3 s.f.)}$	M1 M1 A1	152° seen or implied in diagram or working Use of Sine Rule
8c	$y = 16^{\circ}$ $\cos \angle ADC = \frac{980^{2} + 1100^{2} - (974.57654)^{2}}{2(980)(1100)}$ $\angle ADC = 55.5184^{\circ}$	M 1	or $\frac{\sin \angle ADC}{974.57654} = \frac{\sin (16^\circ + 40^\circ)}{980}$
NAME OF THE PROPERTY OF THE PR	Bearing of A from D = $180^{\circ} + 16^{\circ} + 55.5184^{\circ}$ = $251.5184 = 251.5^{\circ}$ (1 d.p.)	M1 A1	$180^{\circ} + 16^{\circ} + \text{their } \angle ADC$
8d	Shortest distance from $B = 710 \sin 8^{\circ}$ = 98.8 (3 s.f.)	M1 A1	

8e	Horizontal distance $=\frac{900}{}$	M1	
	tan 18°		
	= 2769.91518 m		
	= 2.77 km (3 s.f.)	A1	
9a	$35.4 ^{\circ}\text{C} + 1.8 ^{\circ}\text{C} = 37.2 ^{\circ}\text{C}$		
	x = 2	B1	
9bi	a = 35.4	B1	
	b = 35.9	B1	
	c = 36.45	B1	
	d = 36.7	B1	
9bii	36.7 - 35.9 = 0.8	B1	
9ci	Mean temperature = 36.3555 °C = 36.4 °C	B1	
9cii	Standard deviation = 0.537 °C	B1	
9d	1. The temperatures of the girls are higher than the	B1	
, u	boys as the mean temperature of the girls is greater		
	than the mean temperature of the boys.		
	2. The temperatures of the girls are less consistent	B1	
	compared to the boys, since the standard deviation of		
	temperatures is higher.		
	OR		
	The temperatures of the boys are less varied/are less widely spread as compared to the temperatures		
	of the girls.		
10a	Amount of ice used in one cup		
•	$= 2 \times 2 \times 1.5 \times 6$ $= 36 \text{ cm}^3$	B1	
10b	Amount of juice used with ice	M1	
100	=300-36=264 ml	1411	
	Amount of sugar 1 cup of apple juice	A1	
	$=\frac{19}{75} \times 264 = 66.88 \text{ g}$		
	/3		

10c	Amount of sugar per ml of			U: Per Unit quantity
	Apple: Orange: Pear: Pineapple: Watermelon:	0.25333g 0.18667g 0.18889g 0.14127g 0.14815g	U2	2m for per unit qty of 5 fruits 1m for per unit qty of 1 fruit only (but < 5 fruits)
	Amount of fruit juice $= \frac{264}{3} = 88 \text{ ml}$	used for each fruits	E1	E: Determine the Equal portion of fruits used
The second formation of the second se	Fruits to use: Pineapp	ole, Watermelon and Apple	F1	F: Determine the Fruits used (Given if observed 0.14815, 0.14127 and 0.25333 used)
	Amount of sugar in t = 88 × (0.14815 + 0. = 47.762g	_	S1	S: Determine the total amount of sugar in grams
	Number of teaspoons	$s = 47.762 \div 5 = 9.5524$	T1	T: Determine amount of teaspoon or amount of sugar
	mixed fruit juice alm his new recipe will N	e in sugar in other meals and his ost took up 1 day's intake hence OT be suitable for Singaporeans lthy and avoid diabetes.	A 1	for 10 teaspoon. A: Answer with appropriate reason