PRESBYTERIAN HIGH SCHOOL

ADDITIONAL MATHEMATICS 4049/01

Paper 1

17 August 2022

Wednesday

2 hours 15 min

2022 SECONDARY FOUR EXPRESS PRELIMINARY EXAMINATIONS

MARKING SCHEME

The area of a triangle is given as $1+2\sqrt{5}$ cm². The base of the triangle is given as $3-\sqrt{5}$ cm. Without using a calculator, express the height of the triangle, an cm, in the form $a+b\sqrt{5}$, where a and b are rational numbers.

[3]

Area of triangle =
$$1+2\sqrt{5}$$

$$\frac{1}{2}(3-\sqrt{5})h = 1+2\sqrt{5}$$

$$h = \frac{2+4\sqrt{5}}{3-\sqrt{5}}$$

$$h = \frac{2+4\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$$

$$= \frac{5+2\sqrt{5}+12\sqrt{5}+20}{9-5}$$

$$= \frac{26+14\sqrt{5}}{4}$$

$$= \frac{13}{2} + \frac{1}{2}\sqrt{5}$$
 cm

A1

Find the y-coordinates of the points for which the line x-2y=3 meets the curve xy+6=2x.

[3]

x	c-2y=3	
x	$c = 3 + 2y \dots (1)$	
	cy + 6 = 2x(2)	
S	ubstitute (1) into (2):	
(3	3+2y) $y+6=2(3+2y)$	M1 (substitution method)
3	$3y + 2y^2 + 6 = 6 + 4y$	
2	$2y^2 - y = 0$	
y	v(2y-1)=0	M1 (factorise)
у	$v = 0 or y = \frac{1}{2}$	A1

Express $-x^2 + 8x + 5$ in the form $a(x+b)^2 + c$ and hence state the coordinates of the turning point of the curve $y = -x^2 + 8x + 5$. [4]

$$-x^{2} + 8x + 5$$

$$= -\left[x^{2} - 8x\right] + 5$$

$$= -\left[x^{2} - 8x + \left(\frac{8}{2}\right)^{2} - \left(\frac{8}{2}\right)^{2}\right] + 5$$

$$= -(x - 4)^{2} + 16 + 5$$

$$= -(x - 4)^{2} + 21$$
M1

Coordinates of turning point = (4, 21)

A1, A1

Integrate
$$\frac{4}{2-5x} + \frac{2}{x^3} + e^{4x}$$
 with respect to x. [4]

$$\int \left(\frac{4}{2-5x} + \frac{2}{x^3} + e^{4x}\right) dx$$

$$= -\frac{4}{5} \ln(2-5x) - \frac{1}{x^2} + \frac{1}{4}e^{4x} + c$$
B2 [B1 for showing $\ln(2-5x)$]
B1, B1

Express $\frac{9x^2 - 34x + 27}{(x-1)(x-2)^2}$ as the sum of three partial fractions. [6]

$\frac{9x^2 - 34x + 27}{(x-1)(x-2)^2} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$	M1
$9x^2 - 34x + 27 = A(x-2)^2 + B(x-1)(x-2) + C(x-1)$	M1
Substitute $x = 2$,	
$9(2)^2 - 34(2) + 27 = C(2-1)$	M1 (using substitution
C = -5	method correctly)
Substitute $x = 1$,	
$9(1)^2 - 34(1) + 27 = A(1-2)^2$	
A=2	
Substitute $x = 0$,	
27 = 2(4) + 2B + 5	_
2B=14	A2 (at least 2 out of 3
B=7	correct values for A, B & C)
$\frac{9x^2 - 34x + 27}{(x-1)(x-2)^2} = \frac{2}{x-1} + \frac{7}{x-2} - \frac{5}{(x-2)^2}$	
$(x-1)(x-2)^2$ $x-1$ $x-2$ $(x-2)^2$	A1

Alternative method

$$\frac{9x^2 - 34x + 27}{(x-1)(x-2)^2} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

M1

$$9x^2 - 34x + 27 = A(x-2)^2 + B(x-1)(x-2) + C(x-1)$$

M1

$$9x^{2} - 34x + 27 = A(x^{2} - 4x + 4) + B(x^{2} - 3x + 2) + C(x - 1)$$

$$= Ax^{2} - 4Ax + 4A + Bx^{2} - 3Bx + 2B + Cx - C$$

$$= (A + B)x^{2} + (c - 4A - 3B)x + (4A + 2B - C)$$

Comparing the coefficients on both sides,

$$A+B=9$$
(1)
 $C-4A-3B=-34$ (2)
 $4A+2B-C=27$ (3)

M1 (using the comparing of coefficient method correctly)

$$(2)+(3)$$
: $B=7$

(1):
$$A+7=9$$

$$A = 2$$

(2):
$$C-8-21=-34$$

 $C=-5$

A2 (at least 2 out of 3 correct values for A, B & C)

$$\frac{9x^2 - 34x + 27}{(x-1)(x-2)^2} = \frac{2}{x-1} + \frac{7}{x-2} - \frac{5}{(x-2)^2}$$

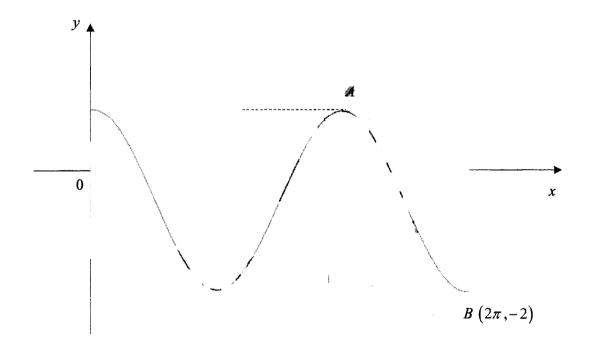
A1

- (a) The expression $ax^3 + 13x^2 + bx 5$ is exactly divisible by x 1 but gives a reminder of 49 when divided by x 2. Find the value of a and of b. [4]
- (b) The cubic polynomial f(x) is such that the coefficient of x^3 is -2 and the roots of the equation f(x) = 0 are -1, 2 and k. Given that f(x) has a reminder of 80 when divided by x+3, find the value of k, given that k is a positive number. [3]

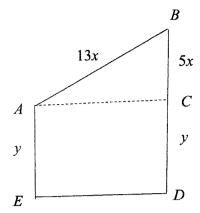
(a)	Let $f(x) = ax^3 + 13x^2 + bx - 5$	
	$f(1) = a(1)^3 + 13(1)^2 + b(1) - 5$ $0 = a + b + 8$ $a + b = -8 \dots (1)$	M1 (equate to 0)
	$f(2) = a(2)^{3} + 13(2)^{2} + b(2) - 5$ $49 = 8a + 52 + 2b - 5$ $8a + 2b = 2$ $4a + b = 1 \dots (2)$	M1 (equate to 49)
	Solving (1) and (2), a = 3, b = -11	A1, A1
(b)	f(x) = -2(x+1)(x-2)(x-k) $80 = -2(-3+1)(-3-2)(-3-k)$ $80 = -20(-3-k)$	M1 M1
	80 = 60 + 20k $k = 1$	A1

The diagram shows the graph of the curve $y = a\cos bx + c$ for $0 \le x \le 2\pi$. The curve has a maximum point at A and a minimum point at B. The coordinates of $A = \left(\frac{4}{3}\pi, 1\right)$ and $B = \left(2\pi, -2\right)$.

- (b) Find the value of a, b and c. [3]
- (c) Find the range of values of k for which $a\cos bx + c = k$ has three solutions. [2]



(a)	Period = $\frac{4}{3}\pi$	B1
(b)	$a = \frac{3}{2}, b = \frac{3}{2}, c = -\frac{1}{2}$	B1, B1, B1
(c)	-2 < k < 1	B2 B1 (either state $-2 < k$ or $k < 1$)



A piece of wire, l cm long, is bent to form the shape as shown in the diagram. ACDE is a rectangle with AE = y cm and $\triangle ABC$ is a right-angled triangle with AB = 13x cm and BC = 5x cm.

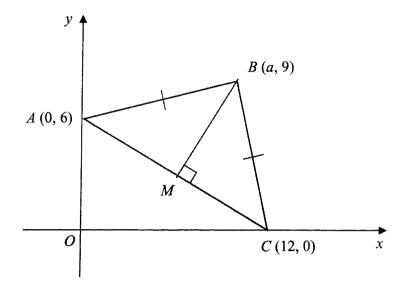
(a) Express
$$l$$
 in terms of x and y . [1]

(b) Given that the area enclosed is 96 cm², show that
$$l = 25x + \frac{16}{x}$$
. [3]

(c) Find the value of x for which I has a stationary value and determine the nature of this stationary value. [3]

(a)	l = 12x + 13x + 5x + y + y $l = 30x + 2y$	B1
(b)	$12xy + \frac{1}{2}(12x)(5x) = 96$ $12xy + 30x^{2} = 96$ $12xy = 96 - 30x^{2}$ $y = \frac{8}{x} - \frac{5x}{2}$	M1
	$l = 30x + 2\left(\frac{8}{x} - \frac{5x}{2}\right)$ $l = 30x + \frac{16}{x} - 5x$ $l = 25x + \frac{16}{x} (shown)$	M1

(c)	$\frac{dl}{dx} = 25 - \frac{16}{x^2}$ $when \frac{dl}{dx} = 0,$ $25 - \frac{16}{x^2} = 0$ $x^2 = \frac{16}{25}$ $x = \frac{4}{5}$	M1
	$\frac{d^2l}{dx^2} = \frac{32}{x^3}$ when $x = \frac{4}{5}$, $\frac{d^2l}{dx^2} = 62.5 > 0$ <i>l</i> is a minimum value.	A1



The diagram shows a triangle ABC, where A is (0,6), B is (a,9) and C is (12,0). AB is equal to BC and M is the midpoint of AC.

(a) Find the coordinates of M. [1]

(b) Find the equation of the perpendicular bisector of AC. [4]

(c) Find the value of a. [2]

(d) Calculate the area of the triangle ABC. [2]

Coordinates of $M = (6,3)$	B1
Gradient of $AC = -\frac{1}{2}$	M1
Gradient of $BM = 2$	M1
Equation of perpendicular bisector of AC y-3=2(x-6) y=2x-9	M1 A1
9 = 2a - 9	M1
2a=18	
<i>a</i> = 9	A1

Area of triangle ABC $= \frac{1}{2} \begin{vmatrix} 0 & 12 & 9 & 0 \\ 6 & 0 & 9 & 6 \end{vmatrix}$	
$= \frac{1}{2} \Big[(0+108+54) - (72+0+0) \Big]$	M1
$=\frac{1}{2}(90)$ $=45 units^2$	A1

(a) Prove the identity
$$\frac{1-\cos 2A}{1+\cos 2A} = \tan^2 A$$
. [3]

(b) Hence solve the equation
$$\frac{1-\cos 2A}{1+\cos 2A} = 2\tan A$$
 for $0^{\circ} < A < 360^{\circ}$. [4]

(a)
$$LHS = \frac{1 - \cos 2A}{1 + \cos 2A}$$

$$= \frac{1 - (1 - 2\sin^2 A)}{1 + (2\cos^2 A - 1)}$$

$$= \frac{2\sin^2 A}{2\cos^2 A}$$

$$= \tan^2 A = RHS$$
M1

(b)
$$\frac{1 - \cos 2A}{1 + \cos 2A} = 2\tan A$$

$$\tan^2 A = 2\tan A = 0$$

$$\tan A (\tan A - 2) = 0$$

$$\tan A = 0 \text{ or } \tan A - 2 = 0$$

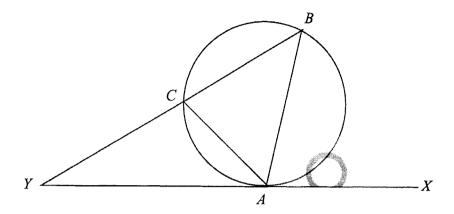
$$A = 180^\circ$$
A1

$$\tan A = 2$$

$$A \text{ lies in the first \& third quadrants}$$

$$A = 63.43^\circ, 180^\circ + 63.43^\circ$$

$$= 63.4^\circ, 243.4^\circ$$
A1, A1



The diagram shows a triangle ABC inscribed in a circle. XY is a tangent to the circle at point A and AC bisects angle BAY.

- (a) Prove that triangle ABC is isosceles. [2]
- (b) Prove that triangle AYC is similar to triangle BYA. [3]
- (c) Hence, show that $AY^2 = CY \times BY$ [2]

(a)	Let $\angle CAY = \angle CAB = \theta$ $\angle CBA = \angle CAY = \theta$ (Alternate Segment Theorem) Since $\angle CAB = \angle CBA = \theta$, $\triangle ABC$ is isosceles.	B1 AG1
(b)	In $\triangle AYC$ and $\triangle BYA$, $\angle BYA = \angle AYC$ (common angle) $\angle ABY = \angle CAY = \theta$ (Alternate Segment Theorem) So $\triangle AYC$ is similar to $\triangle BYA$ (AA Similarity)	B1 B1 AG1
(c)	Since $\triangle AYC$ and $\triangle BYA$ are similar, $\frac{AY}{CY} = \frac{BY}{AY}$ $AY^2 = CY \times BY$	B1 AG1

- (a) Given that $3^{x+1} \times 2^{2x+1} = 2^{x+2}$, evaluate 6^x . [4]
- (b) Express y in terms of x if $\log_2 y = \log_8 x \log_2 4$. [4]

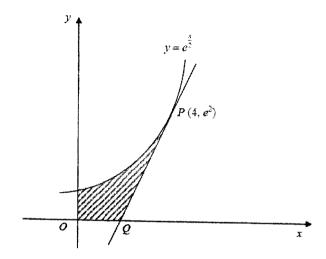
$3^{x+1} \times 2^{2x+1} = 2^{x+2}$	
$3^{x+1} \times \frac{2^{2x+1}}{2^{x+2}} = 1$	
$3^{x+1} \times 2^{2x+1-(x+2)} = 1$	M1 (apply quotient rule)
$3^{x+1} \times 2^{x-1} = 1$ $(3^x)3 \times \frac{2^x}{2} = 1$	M1 (correct expansion)
$3^x \times 2^x = \frac{2}{3}$	$M1 (3^x \times 2^x = 6^x)$
$6^x = \frac{2}{3}$	A1
$\log_2 y = \log_8 x - \log_2 4$	
$= \frac{\log_2 x}{\log_2 8} - \log_2 4$	M1 (change of base law)
$=\frac{\log_2 x}{\log_2 2^3} - \log_2 4$	
$=\frac{\log_2 x}{3} - \log_2 4$	M1 (apply power law)
$3\log_2 y = \log_2 x - 3\log_2 4$	
$\log_2 y^3 = \log_2 x - \log_2 4^3$	
$\log_2 y^3 = \log_2 \frac{x}{64}$	M1 (apply quotient law)
$y^3 = \frac{x}{64}$	
$y = \frac{1}{4}x^{\frac{1}{3}}$	A1

A curve has the equation $y = (x-3)\sqrt{2x+3}$, where $x > -\frac{3}{2}$.

- (a) Show that $\frac{dy}{dx}$ can be expressed in the form $\frac{kx}{\sqrt{2x+3}}$ and state the value of k. [4]
- (b) Find the equation of the tangent when x = 11. [3]
- (c) Find the rate of change of x at the instant when x = 11, given that y is increasing at a rate of 5 units per second at this instant. [2]

(-)	/	
(a)	$y = (x-3)\sqrt{2x+3}$	
	$\frac{dy}{dx} = \left(2x+3\right)^{\frac{1}{2}} + \frac{1}{2}(x-3)(2)\left(2x+3\right)^{-\frac{1}{2}}$	M1, M1
	dx 2	,
	r-3	
	$= \sqrt{2x+3} + \frac{x-3}{\sqrt{2x+3}}$	
	$=\frac{2x+3+x-3}{\sqrt{2x+3}}$	MDI
		1 W /1
	$=\frac{3x}{\sqrt{2x+3}}$	
	$\sqrt{2x+3}$	
	k=3	A1
	K - 3	
(b)	When $x = 11$, $y = (11-3)\sqrt{2(11)+3} = 40$	
	i i i	M1
	$\frac{dy}{dx} = \frac{3(11)}{\sqrt{2(11)+3}} = \frac{33}{5}$	M1
	V =() · -	
	33	
	$y = \frac{33}{5}x + c$	
	$40 = \frac{33}{5}(11) + c$	
	c = -32.6	
	Equation of tangent is $y = 6.6x - 32.6$	A1
	,	
L		

(c)	$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	
	$5 = \frac{33}{5} \times \frac{dx}{dt}$ $\frac{dx}{dt} = \frac{25}{33} \text{ units / s}$	M1 A1



The diagram shows part of the curve $y = e^{\frac{x}{2}}$. The tangent to the curve at $P(4, e^2)$ meets the x-axis at Q.

(a) Find the coordinates of Q.

[5]

(b) Find the area of the shaded region bounded by the curve, the coordinate axes and the tangent to the curve at P, leaving your answer in terms of e. [5]

(a)	$y = e^{\frac{x}{2}}$	
	$y = e^{\frac{x}{2}}$ $\frac{dy}{dx} = \frac{1}{2}e^{\frac{x}{2}}$	M1
	At $P(4,e^2)$, $\frac{dy}{dx} = \frac{1}{2}e^{\frac{4}{2}} = \frac{1}{2}e^2$	M1
	Let $Q = (x, 0)$	
	Gradient of $PQ = \frac{e^2 - 0}{4 - x}$	M1
	$\frac{1}{2}e^2 = \frac{e^2}{4-x}$	
	4-x=2	
	x = 2	M1
	Coordinates of $Q = (2, 0)$	A1

(b)	Area of shaded region	
	$=\int_{0}^{4}e^{\frac{x}{2}}dx-\frac{1}{2}(4-2)e^{2}$	M1, M1
	$= \left[2e^{\frac{x}{2}}\right]_0^4 - e^2$	M1 (integrate correctly)
	$ = \left[2e^2 - 2e^0\right] - e^2 $ $= e^2 - 2$	M1 (correct substitution)
	$=e^2-2$	A1

Name:	Index No.:	Class:

PRESBYTERIAN HIGH SCHOOL

ADDITIONAL MATHEMATICS Paper 2

4049/02

18 August 2022

Thursday

2 hours 15 minutes

PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL

2022 SECONDARY FOUR EXPRESS / FIVE NORMAL PRELIMINARY EXAMINATIONS

MARK SCHEME

Show that the equation $2e^x + 9 = 18e^{-x}$ has only one solution and find its value correct to 2 significant figures.

[5]

$$2e^{x} + 9 = 18e^{-x}$$
Let $u = e^{x}$

$$2u + 9 = \frac{18}{u}$$

$$2u^{2} + 9u - 18 = 0$$

$$(2u - 3)(u + 6) = 0$$
M1 (factorisation, o.e.)
$$e^{x} = \frac{3}{2} \quad or \quad e^{x} = -6 \text{ (rejected)}$$
M1 (seen rejected)
$$x = \ln \frac{3}{2}$$
M1 (In both sides)
$$x = 0.4054 \approx 0.41 \text{ (2sf)}$$

A1

The equation has only one solution x = 0.41. (shown)

- 2 A polynomial f(x) is defined as $x^3 13x^2 + 49x 57$.
 - (a) Show that x = 3 is a root of the equation f(x) = 0. [1]
 - (b) It is given that the two other roots of f(x) = 0 are $x_1 = a + b\sqrt{c}$ and $x_2 = a b\sqrt{c}$, where a, b and c are positive integers. Find the exact values of x_1 and x_2 . [4]
 - (c) Express $x_1^3 x_2^3$ in the form $d\sqrt{c}$, where d is a positive integer. [3]
 - (a) When x = 3, $(3)^3 - 13(3)^2 + 49(3) - 57 = 0$ Hence x = 3 is a solution of the equation. (shown)
 - (b) From (a), x 3 is a factor of f(x). $(x-3)(x^2-10x+19) = 0$ $x = \frac{-(-10)\pm\sqrt{(-10)^2-4(1)(19)}}{2(1)}$ $x = \frac{10\pm\sqrt{24}}{2}$ $x = \frac{10\pm2\sqrt{6}}{2}$ $x_1 = 5+\sqrt{6} \quad \text{or} \quad x_2 = 5-\sqrt{6}$ A1
 - (c) $x_1^3 x_2^3$ $= (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2)$ $= \left[5 + \sqrt{6} - (5 - \sqrt{6})\right] \left[(5 + \sqrt{6})^2 + (5 + \sqrt{6})(5 - \sqrt{6}) + (5 - \sqrt{6})^2\right]$ M1 $= 2\sqrt{6} \left[(25 + 10\sqrt{6} + 6) + (25 - 6) + (25 - 10\sqrt{6} + 6)\right]$ M1 (attempt to simplify) $= 2\sqrt{6} \left[81\right]$ $= 162\sqrt{6}$ A1

- The equation of a curve is $y^2 + mx^2 = m$, where m is a positive constant.
 - (a) Find the largest integer value of m for which the line x y = 3 does not meet the curve. [5]
 - (b) If the line x y = 3 is a tangent to the curve at point P, deduce the value of the constant m. Hence find the coordinates of P. [3]
 - $x y = 3 \Rightarrow y = x 3$ (a) Sub. into the curve, $(x-3)^2 + mx^2 = m$ M1 (equate line to curve) $x^2 - 6x + 9 + mx^2 = m$ $(m+1)x^2-6x+9-m=0$ M1 (reduce to quadratic) Since the line does not meet the curve, $(-6)^2 - 4(m+1)(9-m) < 0$ M1 (apply D < 0) $36 - 4\left(-m^2 + 8m + 9\right) < 0$ $4m^2 - 32m < 0$ 4m(m-8) < 00 < m < 8M1 (solving quadratic inequality) Largest integer m = 7A1
 - (b) Since the line is tangent to the curve, 4m(m-8) = 0 $m = 0 \text{ (rejected)} \quad or \quad m = 8$ B1 (seen m = 8)

 When m = 8, $(8+1)x^2 - 6x + 9 - 8 = 0$ $9x^2 - 6x + 1 = 0$ $(3x-1)^2 = 0$ $x = \frac{1}{3}$ $y = \frac{1}{3} - 3 = -\frac{8}{3}$ $\therefore P = \left(\frac{1}{3}, -\frac{8}{3}\right)$ A1

- 4 It is given that $\left(x + \frac{k}{x^2}\right)^n$ is a binomial expansion, where k and n are positive constants.
 - (a) Write down the first 4 terms in the expansion of $\left(x + \frac{k}{x^2}\right)^5$, in terms of k, in descending powers of x. [2]
 - (b) Hence or otherwise, find the value(s) of k if the coefficient of x^2 in the expansion of $\left(5x^3+3\right)\left(x+\frac{k}{x^2}\right)^5$ is 5. [3]
 - (c) By considering the general term in the binomial expansion of $\left(x + \frac{k}{x^2}\right)^n$, show that for the term independent of x, the value of the constant n is a multiple of 3. [3]

(a)
$$\left(x + \frac{k}{x^2}\right)^5 = x^5 + {5 \choose 1}x^4 \left(\frac{k}{x^2}\right) + {5 \choose 2}x^3 \left(\frac{k}{x^2}\right)^2 + {5 \choose 3}x^2 \left(\frac{k}{x^2}\right)^3 + \dots$$
 MI
$$\left(x + \frac{k}{x^2}\right)^5 = x^5 + 5kx^2 + \frac{10k^2}{x} + \frac{10k^3}{x^4} + \dots$$
 A1

(b)
$$(5x^3+3)\left(x+\frac{k}{x^2}\right)^5 = (5x^3+3)\left[x^5+5kx^2+\frac{10k^2}{x}+\frac{10k^3}{x^4}+\dots\right]$$

 $(5x^3)\left(\frac{10k^2}{x}\right)+3(5kx^2)=5x^2$ M1 (equating coefficients of x^2)
 $10k^2+3k-1=0$
 $(2k+1)(5k-1)=0$ M1 (solving for k)
 $k=-\frac{1}{2}$ (rejected) or $k=\frac{1}{5}$ A1

(c) General term =
$$\binom{n}{r} x^{n-r} \left(\frac{k}{x^2}\right)^r$$
 M1 (substitution into general term)
$$= \binom{n}{r} k^r x^{n-3r}$$

For the term independent of x,

let n-3r=0

 $\therefore n = 3r$

M1 (equate power to zero)

Since n = 3r, where r is an integer, hence the value of n is a multiple of 3. AG1

5 (a) Given that
$$y = \frac{\ln 2x}{5x}$$
, show that $\frac{dy}{dx} = \frac{1 - \ln 2x}{5x^2}$. [4]

(b) Hence find the value of
$$\int_{1}^{2} \frac{\ln 2x}{r^{2}} dx$$
. [4]

$$y = \frac{\ln 2x}{5x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5x\left(\frac{1}{2x}\right)(2) - \ln 2x \left(5\right)}{\left(5x\right)^2}$$

M2 (quotient rule & chain rule)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5 - 5\ln 2x}{25x^2}$$

M1 (simplifying)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \ln 2x}{5x^2} \text{ (shown)}$$

AG1

(b)
$$\int_{1}^{2} \frac{1 - \ln 2x}{5x^{2}} \, dx = \left[\frac{\ln 2x}{5x} \right]_{1}^{2}$$

M1 (reverse part (a))

$$\int_{1}^{2} \frac{1 - \ln 2x}{x^{2}} \, \mathrm{d}x = \left[\frac{\ln 2x}{x} \right]_{1}^{2}$$

$$\int_{1}^{2} \frac{1}{x^{2}} dx - \int_{1}^{2} \frac{\ln 2x}{x^{2}} dx = \left[\frac{\ln 2x}{x} \right]_{1}^{2}$$

M1 (separate into two integrals)

$$\int_{1}^{2} \frac{\ln 2x}{x^{2}} dx = \int_{1}^{2} \frac{1}{x^{2}} dx - \left[\frac{\ln 2x}{x} \right]_{1}^{2}$$

$$\int_{1}^{2} \frac{\ln 2x}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{2} - \left[\frac{\ln 2x}{x} \right]_{1}^{2}$$

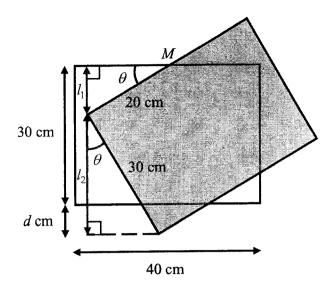
M1 (integration of $1/x^2$)

$$\int_{1}^{2} \frac{\ln 2x}{x^{2}} dx = \left[-\frac{1}{2} - (-1) \right] - \left[\frac{\ln 4}{2} - \ln 2 \right]$$

$$\int_{1}^{2} \frac{\ln 2x}{x^2} \, \mathrm{d}x = \frac{1}{2}$$

A1

6



The diagram shows a rectangular picture frame 40 cm by 30 cm hung on the wall. The picture frame is rotated through an angle θ about the midpoint, M of the top edge.

(a) Show that the vertical displacement, d cm, of the picture frame below its original bottom edge is given by

$$d = 20\sin\theta + 30\cos\theta - 30. \tag{2}$$

- **(b)** Express d in the form $R\sin(\theta+\alpha)-30$, where R>0 and $0^{\circ} \le \alpha \le 90^{\circ}$. [4]
- (c) Find the value of d and the corresponding value of θ that will give the greatest vertical displacement of the picture frame below its original bottom edge. [3]
- (a) $l_1 = \frac{1}{2} (40) \sin \theta = 20 \sin \theta$ and $l_2 = 30 \cos \theta$ M1 (identify and find the lengths) $d + 30 = 20 \sin \theta + 30 \cos \theta$ $d = 20 \sin \theta + 30 \cos \theta 30 \text{ (shown)}$ AG1
- (b) Let $20 \sin \theta + 30 \cos \theta 30 = R \sin(\theta + \alpha) 30$ $R = \sqrt{20^2 + 30^2} = \sqrt{1300} = 10\sqrt{13} \qquad \text{M1 (finding } R)$ $\alpha = \tan^{-1} \left(\frac{30}{20}\right) = 56.309^{\circ} \approx 56.3^{\circ} \qquad \text{M1 (finding } \alpha)$ $\therefore d = 10\sqrt{13} \sin(\theta + 56.3^{\circ}) 30 \qquad \text{A2 (deduct 1 mark for each incorrect value)}$

BP~647

(c) The greatest vertical displacement occurs when $\sin(\theta + 56.3^{\circ}) = 1$.

$$d = 10\sqrt{13} - 30 = 6.0555 \approx 6.06$$
 B1

$$\theta + 56.3^{\circ} = 90^{\circ}$$

$$\therefore \theta = 33.7^{\circ}$$

- A particle moves in a straight line such that its velocity, v m/s, is given by $v = \frac{1}{2} 2e^{-\frac{t}{2}}$, where t is the time in seconds after leaving a fixed point O.
 - (a) State the value that v approaches as t becomes very large. Justify your answer. [2]
 - (b) Find the initial acceleration of the particle. [2]
 - (c) Find the value of t when the particle is instantaneously at rest. [2]
 - (d) Find the total distance travelled by the particle in the interval $0 \le t \le 10$. [4]
 - (a) The value of v approaches $\frac{1}{2}$. B1

 As t becomes very large, $2e^{-\frac{t}{2}}$ approaches zero, so $v \approx \frac{1}{2}$. B1
 - **(b)** $a = -2e^{-\frac{t}{2}} \left(-\frac{1}{2}\right) = e^{-\frac{t}{2}}$ M1 (find dv/dt)

 When t = 0, initial acceleration $= e^{-\frac{0}{2}} = 1 \text{ m/s}^2$ A1
 - (c) At instantaneous rest,

$$v = \frac{1}{2} - 2e^{-\frac{t}{2}} = 0$$
 M1 (equate v to zero)

$$e^{-\frac{t}{2}} = \frac{1}{4}$$

$$-\frac{t}{2} = \ln \frac{1}{4}$$

$$t = -2 \ln \frac{1}{4} = \ln 16$$

$$\therefore t = 2.7725 \approx 2.77 \text{ s} \text{ (3sf)}$$
 A1 (Accept 4ln2)

(d)
$$s = \frac{1}{2}t - \frac{2e^{-\frac{t}{2}}}{-\frac{1}{2}} = \frac{1}{2}t + 4e^{-\frac{t}{2}} + c$$
 M1 (correct antiderivative)
$$0 = \frac{1}{2}(0) + 4e^{-\frac{0}{2}} + c \Rightarrow c = -4$$
 M1 (attempt to find arbitrary constant)
$$\Rightarrow s = \frac{1}{2}t + 4e^{-\frac{t}{2}} - 4$$
When $t = \ln 16$, $s = \frac{1}{2}\ln 16 + 4e^{-\frac{\ln 16}{2}} - 4 = -1.6137 \text{ m}$
When $t = 10$, $s = \frac{1}{2}(10) + 4e^{-\frac{10}{2}} - 4 = 1.0269 \text{ m}$
M1 (attempt to find either one)

Total distance travelled

$$=(1.6137)+(1.6137+1.0269)=4.2543\approx4.25 \text{ m}(3\text{sf})$$
 A1

[2]

(d)

8 The value of a car, \$V, after t years following 2014 can be modelled by the formula $V = ab^t$, where a and b are constants. The table shows the value of the car in the years following 2014.

Year	2016	2018	2020	2022
t (years)	2	4	6	8
V(\$)	52100	43800	37100	31600

(a)	Given that $\lg V$ is the variable for the vertical axis, express the formula in a form suitable for drawing a straight line graph.	[2]
(b)	Draw a straight line graph to show that the model is reasonable.	[4]
Use the	e graph in part (b) to estimate, correct to 3 significant figures,	
(c)	the value of the constants a and b ,	[3]

(a)
$$V = ab^t$$

 $\lg V = \lg \left(ab^t\right)$
 $\lg V = \lg a + \lg b^t$ M1 (seen product law)
 $\lg V = (\lg b)t + \lg a$ A1

the value of the car in the year 2024.

(b) Label axes

B1 (correct axes with at least 1 point)

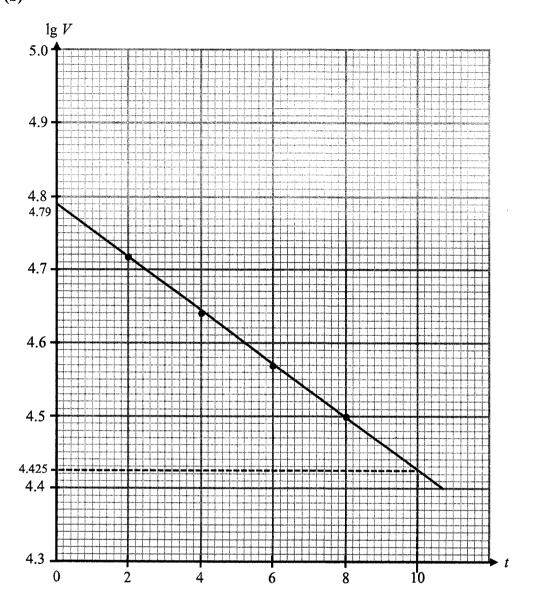
All correct points

P2 (deduct 1 mark if any point is wrong)

Best fit line

C1

(b)



(c) From the
$$\lg V$$
 versus t graph, $\lg a = 4.79$

$$\therefore a = 10^{4.79} = 61659 \approx 61700 \text{ (3sf)}$$

B1 (Accept
$$4.78 \le \lg a \le 4.8$$
)

$$\lg b = \frac{4.5 - 4.72}{8 - 2} = -\frac{11}{300} = -0.036666$$

M1 (Accept
$$-0.03 \le \lg b \le -0.04$$
)

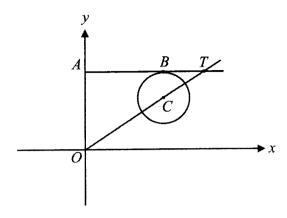
$$\therefore b = 10^{-\frac{11}{300}} = 0.91903 \approx 0.919 \text{ (3sf)}$$

(d) From the
$$\lg V$$
 versus t graph, when $t = 10$, $\lg V = 4.425$

M1 (Accept
$$4.415 \le \lg V \le 4.435$$
)

$$\therefore V = 10^{4.425} = 26607 \approx 26600 \text{ (3sf)}$$

9



- (a) The equation of circle with centre C is given by $x^2 + y^2 6x 4y + 12 = 0$. Find the radius of the circle and the coordinates of its centre C. [3]
- (b) AB is a horizontal tangent to the circle at point B. Given that the line OC produced meets the line AB produced at point T, find the coordinates of T. [3]
- (c) Show that triangle AOT and triangle BCT are similar. [3]
- (d) Find the ratio OC: CT. [1]
- (e) Find the angle ATO in degrees. [1]

(a) Method 1

$$x^{2} + y^{2} - 6x - 4y + 12 = 0$$

 $(x-3)^{2} - 9 + (y-2)^{2} - 4 + 12 = 0$ M1 (complete the square, o.e.)
 $(x-3)^{2} + (y-2)^{2} = 1$
Centre, $P = (3, 2)$ A1

A1

B1, B1

Method 2

Radius = 1 unit

$$x^{2} + y^{2} - 6x - 4y + 12 = 0$$

 $g = -3, f = -2, c = 12$
Centre, $P = (3, 2)$

Radius = 1 unit A1

(b) Equation of line
$$AT$$
: $y = 3$

Equation of line OT:
$$y = \frac{2}{3}x$$
 M1

Solving simultaneously:
$$\frac{2}{3}x = 3$$
 M1 $\Rightarrow x = 4.5$

$$T = (4.5, 3)$$

(c)
$$\angle BTC = \angle ATO$$
 (common angle) M1

$$\angle TAO = 90^{\circ}$$
 (given)
 $\angle TBC = 90^{\circ}$ (tangent \perp radius) M1

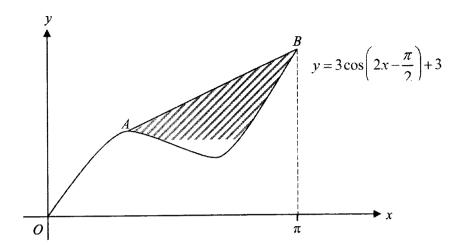
Triangle AOT and triangle BCT are similar. (AA similarity)

(d)
$$OC: CT = 2:1$$
 B1

(e)
$$\tan \angle ATO = \frac{3}{4.5}$$

 $\angle ATO = \tan^{-1} \left(\frac{3}{4.5}\right) = 33.69 \approx 33.7^{\circ} \text{ (1dp)}$ B1

10



The diagram shows the curve $y = 3\cos\left(2x - \frac{\pi}{2}\right) + 3x$ for $0 \le x \le \pi$ radians.

The point A is the maximum point of the curve and AB is a straight line.

- (a) Show that the coordinates of A are $\left(\frac{\pi}{3}, \frac{3\sqrt{3}}{2} + \pi\right)$ and coordinates of B are $(\pi, 3\pi)$. [5]
- (b) Hence find the area of the shaded region, leaving your answers in terms of π . [7]

(a)
$$y = 3\cos\left(2x - \frac{\pi}{2}\right) + 3x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -6\sin\left(2x - \frac{\pi}{2}\right) + 3$$

For turning point, $-6\sin\left(2x-\frac{\pi}{2}\right)+3=0$

$$\sin\left(2x-\frac{\pi}{2}\right)=\frac{1}{2}$$

$$\alpha = \frac{\pi}{6}$$

$$2x - \frac{\pi}{2} = \frac{\pi}{6}$$

$$x = \frac{\pi}{3}$$

When $x = \frac{\pi}{3}$, $y = \frac{3\sqrt{3}}{2} + \pi$

$$\Rightarrow A = \left(\frac{\pi}{3}, \frac{3\sqrt{3}}{2} + \pi\right)$$

AG1

M1 (correct dy/dx)

M1 (equate dy/dx to zero)

M1 (attempt to find reference angle)

When
$$x = \pi$$
, $y = 3\pi$
=> $B = (\pi, 3\pi)$

AG1

(b)

Area under the curve =
$$\int_{\frac{\pi}{3}}^{\pi} \left[3\cos\left(2x - \frac{\pi}{2}\right) + 3x \right] dx$$

$$= \left[\frac{3}{2} \sin\left(2x - \frac{\pi}{2}\right) + \frac{3}{2}x^2 \right]_{\frac{\pi}{3}}^{\pi}$$

$$= \left[\frac{3}{2} \sin\left(2\pi - \frac{\pi}{2}\right) + \frac{3}{2}\pi^2 \right] - \left[\frac{3}{2} \sin\left(\frac{2\pi}{3} - \frac{\pi}{2}\right) + \frac{3}{2}\left(\frac{\pi}{3}\right)^2 \right]$$
M1 (substitution of limits)
$$= \left(\frac{4}{3}\pi^2 - \frac{9}{4} \right) \text{units}^2$$
A1

Area of trapezium =
$$\frac{1}{2} \left(\frac{3\sqrt{3}}{2} + \pi + 3\pi \right) \left(\frac{2\pi}{3} \right)$$
 MI (find area of trapezium)
= $\left(\frac{\sqrt{3}}{2} \pi + \frac{4}{3} \pi^2 \right)$ unit² AI

Area of shaded region =
$$\left(\frac{\sqrt{3}}{2}\pi + \frac{4}{3}\pi^2\right) - \left(\frac{4}{3}\pi^2 - \frac{9}{4}\right)$$
 M1 (attempt to find shaded area)
= $\left(\frac{\sqrt{3}}{2}\pi + \frac{9}{4}\right)$ unsts²