

TAMPINES SECONDARY SCHOOL

Secondary Four Express / Five Normal Academic Preliminary Examination 2024

NAME					
CLASS			REGISTER NUMBER		
ADDITION	AL MATHEM	ATICS	4049/01		
Paper 1			28 August 2024		
		2	hours 15 minutes		
Candidates a	inswer on the Qi	uestion Paper.			
READ THESE	INSTRUCTION	IS FIRST			
Write in dark bl You may use a	ue or black pen. n HB pencil for an	ter number on all the work you hand in. y diagrams or graphs. glue or correction fluid.	For Examiner's Use		
Answer all the d Give non-exact angles in degre	numerical answer	rs correct to 3 significant figures, or 1 deci rent level of accuracy is specified in the qu	imal place in the case of uestion.		
The use of an a You are remind	pproved scientific ed of the need for	calculator is expected, where appropriate clear presentation in your answers.	∋ .		
The number of	marks is given in l	brackets [] at the end of each question o	r part question.		
The total numbe	er of marks for this	s paper is 90 .			
	This o	document consists of 22 printed pages	[Turn over		

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{n(n-1)...(n-r+1)}{r!}$.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

1 The equation of a curve is $y = \frac{2x^2}{x+1}$ where $x \ne -1$. Determine the range of values of x for which y is a decreasing function. [4]

- 2 A missile, TP-1 was launched such that its height, h_1 metres above the ground was given by $h_1(x) = -20x^2 + 120x + 3$, where x metres was the horizontal distance of the missile from the launched position.
 - (a) Express $-20x^2 + 120x + 3$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [2]

Another missile, TP-2 was launched from the same position as TP-1. The height of TP-2, h_2 metres above the ground was given by $h_2(x) = -\frac{49}{10}(x-6)^2 + 183$.

(b) Find $h_1(0)$ and $h_2(0)$ and hence interpret the meaning of your answers. [2]

(c) The missile that could reach a greater height and travel a distance further away from its launched position was acquired. Determine if missile TP-1 or TP-2 was acquired.

Show your working clearly.

[3]

3 A cuboid with volume $(2x+1)^2$ cm³ has a rectangular base with dimensions x^2 cm and (2x-1) cm. Find an expression for the height of the cuboid, leaving your answer in partial fractions. [6]

4 (a) (i) Find in ascending powers of x, the simplified first three terms in the expansion of $(2 + qx)^6$. [3]

(ii) Given that the first two non-zero terms in the expansion of $(2 + px)(2 + qx)^6$, where q > 0, are 128 and $-168x^2$, find the values of p and q. [4]

(b) Find the term independent of x in $\left(x^3 - \frac{2}{x}\right)^{12}$.

- 5 A function f(x) is defined for all real values of x such that $f''(x) = 18e^{-3x}$. The gradient of the curve y = f(x) at x = 0 is 2 and the curve passes through $\left(1, \frac{2}{e^3}\right)$.
 - (a) Find the exact value of the x-coordinate of the stationary point of the curve and determine its nature.

- 6 A graph has the equation $y = x^2 + (6 2m)x + m + 5$ where m is a constant.
 - (a) Given that the graph cuts the x-axis at A and B and the point (4, 0) is the midpoint of AB, find the value of m.

(b) If m = 8, find the range of values of p such that the graph of $y = x^2 + (6 - 2m)x + m + 5 + p$ lies above the x-axis. [2]

7 The number of insects present in a colony t weeks after observation began, can be modelled by the equation $m = ab^{\frac{t}{3}}$. Measurements of m and t are shown in the table below.

t	2	4	6	8	10
m	920	1108	1333	1605	1930

(a) Plot $\lg m$ against t and draw a straight line graph to illustrate the information.

[2]

(b) Use your graph to estimate the values of a and b.

[3]

The number of insects present in another colony t hours after observation began, can be modelled by the equation $\lg m^{40} = t + 120$.

(c) By drawing a suitable straight line on your graph estimate the time taken for the two colonies to have the same number of insects. [2]

8

In the diagram, A, B, C and D lie on the circumference of the circle such that BD is the diameter of the circle. BD and AC intersect at F. DE is a tangent to the circle at D and AD = CD.

(a) Show that AC is parallel to DE.

(b) Prove that triangle ABD is similar to triangle CBD.

9 The height, y metres of the water level near a beach can be modelled by the equation $y = a - b\cos(pt)$, where t is the number of hours after midnight, and p is the radians per hour.

A low tide is observed at midnight and the duration between successive low tides is 12 hours.

(a) Show that
$$p = \frac{\pi}{6}$$
.

The greatest and least heights of the water level are 8 metres and 4 metres respectively.

(b) State the value of
$$a$$
 and of b for $a > 0$ and $b > 0$. [2]

[3]

(c) Hence sketch the graph of $y = a - b\cos(pt)$ for $0 \le t \le 12$.

(d) People have been advised to stay away from the beach when the height of the water level is 6 metres or higher. Determine the periods from midnight to 23 00 when the people must stay away.

[2]

- 10 A particle is at 3 metres past a fixed point O. It starts to move in a straight line such that t seconds later, its velocity v m/s is given by $v = t^2 6t + 5$. The particle comes to an instantaneous rest first at point A then at point B.
 - (a) Find an expression, in terms of t, for the distance of the particle from O at t seconds.

[2]

(b) Find the total distance travelled by the particle in the first 5 seconds.

[5]

(c) Point C is where the particle has zero acceleration. Determine if point C is nearer to its initial starting position or point B.

11 The trapezium ABCD is such that AD is parallel to BC and A is (2, 0). The equation of BC is y = 11 - 3x and 2BC = AD.

(a) Find the equation of AD.

[2]

(b) Find the equation of the perpendicular bisector of AD.

(c) The perpendicular bisector found in part (b) passes through the point C. Find the coordinates of C. [2]

(d) Show that B has coordinates $\left(\frac{7}{2}, \frac{1}{2}\right)$. [1]

(e) Hence find the area of trapezium ABCD. [2]

12

The diagram shows part of the curve $y=2-\frac{3}{4x-5}$ for $x>\frac{5}{4}$.

(a) Determine if the curve has a stationary point.

21

The tangent to the curve at P cuts the x-axis at $Q\left(\frac{5}{4},0\right)$. The normal to the curve at P is parallel to $y=-\frac{3}{4}x+10$.

(b) Find the coordinates of P.

- (c) The normal to the curve at P cuts the x-axis at R. Find the area of triangle PQR.
- [3]

BLANK PAGE

Tampines Secondary School

Sec 4&5 Express Additional Math Paper 1 2024 Marking Scheme

No.	Answers.	Marks
1	$y = \frac{2x^2}{x+1}$	
	$\frac{dy}{dx} = \frac{(x+1)(4x) - (2x^2)(1)}{(x+1)^2}$	M1
	` '	
	$=\frac{2x^2+4x}{(x+1)^2}$	A1
	(3,12)	
	Decreasing function $\rightarrow \frac{dy}{dx} < 0$	
	Decreasing function $\Rightarrow \frac{dy}{dx} < 0$ Since $(x+1)^2 > 0$, $2x^2 + 4x < 0$ 2x(x+2) < 0	M1
	2x(x+2) < 0	1411
	$\therefore -2 < x < 0$	A1
2(-)	20-2 120- (2 - 20/2 (2))	
2(a)	$\begin{aligned} -20x^2 + 120x + 3 &= -20(x^2 - 6x) + 3 \\ &= -20[(x - 3)^2 - 3^2] + 3 \end{aligned}$	M1
	$=-20(x-3)^2+183$	Al
(b)	$h_1(0) = 3$ $h_2(0) = 6.6$	B1
(0)	$\Pi_2(0) = 0.0$	PI
	TP-1 was fired from a height of 3 metres above ground while TP-2	
	was fired from a height of 6.6 metres above ground.	B1
(c)	From TP-1's max pt (3, 183) and TP-2's max pt (6, 183), they both reach the same height.	B1
	TP-1: $h = 0 \rightarrow x = 6.02 \text{ m}$ TP-2: $h = 0 \rightarrow x = 12.1 \text{ m} > 6.02 \text{ m}$	M1
	11^{-2} . $n - 0 \rightarrow x - 12.1 \text{ m} > 0.02 \text{ m}$	
E	Since TP-2 could reach a further distance from the launched position,	
	compared to TP-1, TP-2 should be acquired.	B1
3	$(2x+1)^2$	M1
	Height = $\frac{(2x+1)^2}{x^2(2x-1)}$	
	$=\frac{4x^2+4x+1}{x^2(2x-1)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{2x-1}$	
	· · ·	A1
	$4x^2 + 4x + 1 = Ax(2x - 1) + B(2x - 1) + Cx^2$	
	Let x = 0, B = -1	M1: either sub mtd or
•	Let $x = \frac{1}{2}$, $4 = \frac{1}{4}C \implies C = 16$	compare coeff
	Compare coeff of x^2 , $4 = 2A + 16 \rightarrow A = -6$	
	Compare coeff of x^2 , $4 = 2A + 16 \rightarrow A = -6$	
	$\therefore \text{Height} = \frac{16}{2x-1} - \frac{6}{x} - \frac{1}{x^2}$	A3
	$2x-1 x x^2$	

Ne	Answers.	Marks
4a(i)	$(2+qx)^6 = 64 + 192qx + 240q^2x^2 + \dots$	B3
(ii)	$(2+px)(2+qx)^6 = (2+px)(64+192qx+240q^2x^2+\ldots)$	
	Term in x: $384q + 64p = 0$ $\Rightarrow p = -6q$	M1
	Term in x^2 : $480q^2x^2 + 192pqx^2 = -168$	M1
	$480q^2 + 192(-6q)q = -168$	
	$-480q^2 = -168$ 1 1 (minimum as 0)	
	$q = \frac{1}{2} \text{ or } q = -\frac{1}{2} \text{ (rej since } q > 0\text{)}$	A1
	p=-3	A1
(b)	$T_{r+1} = {}^{12}C_r (x^3)^{12-r} (-2)^r (x^{-1})^r$	M1
	36 - 3r - r = 0 $r = 9$	M1
	Term = ${}^{12}C_9 (-2)^9$ = -112 640	A1
5(a)	$f'(x) = \frac{18e^{-3x}}{-3} + c$ $= -6e^{-3x} + c$	M1
	When $x = 0$, $f'(x) = 2$, $-6e^{-3(0)} + c = 2$ c = 8	M1: subt $x = 0 & f'(x) = 2$
	Stationary point, $f'(x) = -6e^{-3x} + 8 = 0$ $6e^{-3x} = 8$ $e^{-3x} = \frac{4}{3}$	M1
	$x = -\frac{1}{3}\ln\frac{4}{3}$	A1
	When $x = -\frac{1}{3} \ln \frac{4}{3}$, $f''(x) = 18e^{-3x}$ = 24 > 0 \Rightarrow point is minimum	M1 A1
(b)	$f'(x) = -6e^{-3x} + 8$ $f(x) = \frac{-6e^{-3x}}{-3} + 8x + d$ $= 2e^{-3x} + 8x + d$	M1
	Subt $\left(1, \frac{2}{e^3}\right)$, $\frac{2}{e^3} = 2e^{-3} + 8 + d \implies d = -8$	
	Hence eqn of curve is $f(x) = 2e^{-3x} + 8x - 8$	A1

No.	Answers	Marks
6(a)	$\frac{dy}{dx} = 2x + 6 - 2m$	M1
	At $x = 4$, $\frac{dy}{dx} = 0$ $\Rightarrow 14 - 2m = 0$ m = 7	M1 A1
	OR $y = (x+3-m)^2 - (3-m)^2 + m + 5$	OR M1(complete the sq)
	Min pt is at $x = 4$ \Rightarrow $(3 - m) = 4$ m = 7	M1 A1
(b)	When $m = 8$, $y = x^2 - 10x + 13 + p$	
	Lies above x-axis, discriminant < 0 $\rightarrow (-10)^2 - 4(13 + p) < 0$ 48 - 4p < 0	B1
	p > 12	B1
8(a)	$\angle EDC = \angle DAC$ (alt seg thm) $\angle DAC = \angle DCA$ ($AD = CD$, isos triangle)	B1 B1
	$\therefore \angle EDC = \angle DCA$ Hence AC is parallel to DE (alt angles)	B1
(b)	$\angle BCD = \angle BAD$ (angles in semicircle)	B1
	Let $\angle EDC = x$ $\angle EDC = \angle CBD = x$ (alt seg thm) $\angle DCA = \angle DAC = x$ (shown in part (a)) $\angle DAC = \angle ADM = x$ (alt angle, AD parallel DE) $\angle ADM = \angle ABD = x$ (alt seg thm) $\therefore \angle ABD = \angle CBD$	A 1
	By AA, triangle ABD is similar to triangle CBD.	Al
9(a)	Period = $\frac{2\pi}{p}$ $12 = \frac{2\pi}{p}$	
	$p = \frac{\pi}{6} \text{ (shown)}$	A1
(b)	a = 6 $b = 2$	B2

No.	Answers	
(c)		G1: Shape
		G1: period
		G1: max & min points
į		
	2 3 4 5 6 7 0 9 10 11 12	
(d)	03 00 to 09 00 or 3 a.m. to 9 a.m.	B1
	15 00 to 21 00 or 3 p.m. to 9 p.m.	B1
10(a)	$s = \int t^2 - 6t + 5 dt$	
	$=\frac{t^3}{3} - \frac{6t^2}{2} + 5t + c$	M 1
	When $t = 0$, $s = 3$: $s = \frac{t^3}{3} - 3t^2 + 5t + 3$	A 1
(b)	When $v = 0$, $t^2 - 6t + 5 = 0$ t = 5 or $t = 1$	M1
	When $t = 0$, $s = 3$	A1
	When $t=1$, $s=\frac{16}{3}$	M1: for $t = 1$ or 5
	When $t = 5$, $s = -\frac{16}{3}$	
	$Total dist = \left(\frac{16}{3} - 3\right) + \frac{16}{3} \times 2$	 M1
		Al
	= 13 m	
(c)	a=2t-6	M1
	At $a = 0$, $t = 3$, $s = 0$	M1
	Hence it is nearer to its initial starting position which is 3 m away	
	compared to point B which is $\frac{16}{3}$ m away.	A1
11(a)	Grad = -3	B1
	Eqn: $0 = -3(2) + c$ $\Rightarrow c = 6$ Equation of AD is $y = -3x + 6$	B1

No.	Answers	Marks
(b)	D(0, 6) Midpoint of AD is (1, 3)	M1
	Grad of bisector = $\frac{1}{3}$	B1
	Eqn: $3 = \frac{1}{3}(1) + d \implies d = \frac{8}{3}$;
	Equation of perpendicular bisector is $y = \frac{1}{3}x + \frac{8}{3}$	A1
(c)	$11 - 3x = \frac{1}{3}x + \frac{8}{3}$	MI
	$11 - \frac{8}{3} = \frac{1}{3}x + 3x$ $x - \frac{5}{3}$	
	$x = \frac{5}{2}$ $y = \frac{7}{2}$ $\therefore C\left(\frac{5}{2}, \frac{7}{2}\right)$	A1
(d)	$BC = \frac{1}{2}AD$	
	$B\left(\frac{5}{2}+1,\frac{7}{2}-3\right) = B\left(\frac{7}{2},\frac{1}{2}\right) \text{(shown)}$	A1
(e)	$A_{rec} = \frac{1}{2} \begin{vmatrix} 2 & \frac{7}{2} & \frac{5}{2} & 0 & 2 \end{vmatrix}$	
	Area = $\frac{1}{2} \begin{vmatrix} 2 & \frac{7}{2} & \frac{5}{2} & 0 & 2 \\ 0 & \frac{1}{2} & \frac{7}{2} & 6 & 0 \end{vmatrix}$	M 1
	= 7.5 sq units	AI
12(a)	$\frac{dy}{dx} = \frac{12}{(4x-5)^2}$	M1
	For curve to have stationary point, $\frac{dy}{dx} = 0$.	
	In this case, $\frac{dy}{dx} = \frac{12}{(4x-5)^2} \neq 0$ since $12 \neq 0$.	A1
	Hence this curve does not have a stationary point.	В1
(b)	$\frac{dy}{dx} = \frac{12}{(4x-5)^2} = \frac{4}{3}$ $(4x-5)^2 = 9$	MI
	$x = 2 \text{ or } \frac{1}{2} \text{ (rej since } x > \frac{5}{4} \text{)}$	M1
	$y=1$ $\therefore P(2,1)$	Ai

No.		Ausy	vers			
(c)	Eq of normal:	M1				
	When $y = 0, x = \frac{10}{3}$					M1
	Area = $\frac{1}{2} \times \left(\frac{10}{3} - \frac{5}{4}\right) \times \frac{25}{3} = \frac{1}{3} \times \frac{34}{3} \times \frac$					A1
	$=\frac{25}{24}$ or 1.04	sq units				Al
7(a)	t 2	4	6	8	10	
	lg m 2.96	3.04	3.12	3.21	3.29	
(b)	$\lg m = \lg a + \frac{\lg b}{3}t$					M1
	$\lg a = 2.87 \implies a = 2$	741 [accept 1	724, 733, 7	50]		A1
	$grad = \frac{\lg b}{3} = \frac{3.04 - 2}{4 - 2}$ $b = 1.32$	96				A1
(c)						G1 (correct line drawn on grid) A1
	$\therefore t = 7.5 \text{ weeks}$		-			

