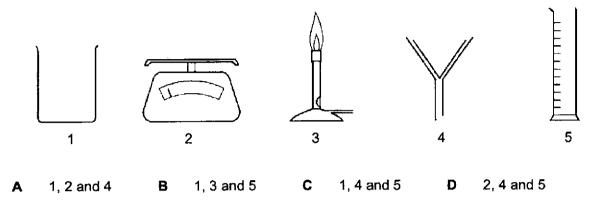
\mathcal{L}	JUNYUAN SECONDARY SCHOOL
引	PRELIMINARY EXAMINATION 2021
الك	SECONDARY FOUR EXPRESS

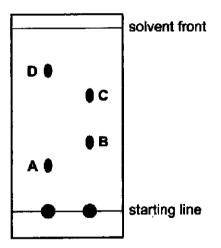
PRELIMINARY EXAMINATION : SECONDARY FOUR EXPRESS	
CANDIDATE NAME	
CLASS 4 E	INDEX NUMBER
CHEMISTRY	6092
PAPER 1 Multiple Choice	xx September 2021
Additional Materials: Multiple Choice Answer Shee READ THESE INSTRUCTIONS FIRST	t
Write your name, class and index number on all the Write in soft pencil. Do not use paper clips, glue or correction fluid.	e work you hand in.
There are forty questions on this paper. Answer possible answers, A, B, C and D. Choose the one you consider correct and record sheet.	
Read the instructions on the Answer Sheet very ca	refully.
Each correct answer will score one mark. A mark v Any rough working should be done in this booklet.	vill not be deducted for a wrong answer.

A copy of the Periodic Table is printed on page 18.


The use of an approved scientific calculator is expected, where appropriate.

This document consists of 18 printed pages.

1 Lead(II) iodide is insoluble in water.


Lead(II) iodide is prepared by adding aqueous lead(II) nitrate to potassium iodide.

Which pieces of apparatus are needed for the preparation and collection of solid lead(II) iodide from 20 cm³ of aqueous lead(II) nitrate?

2 Some substances may be separated using paper chromatography. The diagram shows the results of running two mixtures in a suitable solvent.

Which spot has an Rf value of 0.38?

6092/4E/Prelim/2021

3 Compound X is a crystalline solid at room temperature and pressure. An aqueous solution of X is tested as shown.

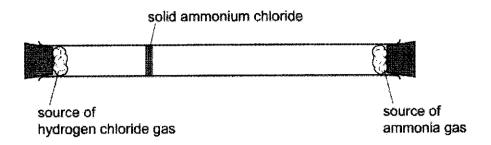
test	test result
acidify with dilute nitric acid, then add aqueous barium nitrate	no visible change
add aqueous ammonia	white precipitate, soluble in excess

What could be the identity of X?

- A ammonium carbonate
- B sodium sulfate
- C calcium nitrate
- D zinc chloride
- 4 Gases are separated from liquid air by fractional distillation.

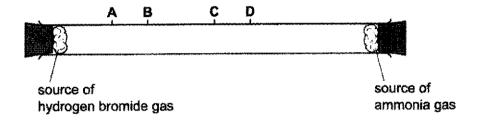
The boiling points of four gases are shown.

Which gas is both monatomic and a liquid at -200 °C?


	gas	boiling point / °C
A	argon	-186
В	helium	-269
С	neon	-246
D	nitrogen	-196

6092/4E/Prelim/2021

5 Hydrogen chloride gas, HCl, reacts with ammonia gas, NH₃, to form solid ammonium chloride.


The apparatus is set up as shown.

After a few minutes, solid ammonium chloride forms where the two gases meet.

The experiment is repeated using hydrogen bromide, HBr, in place of hydrogen chloride.

How far along the tube does the solid ammonium bromide form?

6 The table shows the numbers of particles present in the nuclei of four atoms or ions.

	protons	neutrons	electronic structure
1	18	22	2.8.8
2	19	20	2.8.8
3	19	21	2.8.8.1
4	20	20	2.8.8.2

Which two particles belong to the same element?

A 1 and 2

B 1 and 4

C 2 and 3

D 2 and 4

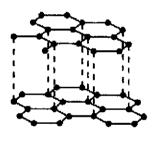
6092/4E/Prelim/2021

PartnerInLearning

403
More papers at www.testpapersfree.com

7 Element X has a proton number of 20 and a nucleon number of 40. X reacts with element Y to form an ionic compound.

Which equation shows the process that takes place when X forms ions?


- A $X + e^{-} \rightarrow X^{+}$
- **B** $X + 2e^{-} \rightarrow X^{2+}$
- C $X \rightarrow X^+ + e^-$
- D $X \to X^{2+} + 2e^{-}$
- 8 A covalent molecule M contains a total of four shared electrons.

What is M?

- A ammonia, NH₃
- B hydrogen chloride, HC/
- C methane, CH₄
- D water, H₂O
- 9 Which pair of statements about diamond and graphite is correct?

diamond

graphite

- A Diamond and graphite are both pure carbon. They are both macromolecules.
- **B** Diamond and graphite can both be used as electrodes. Graphite is also used as a lubricant.
- C Diamond has covalent bonds. Graphite has ionic bonds.
- Diamond is hard with a high melting point. Graphite is soft with a low melting point.
- 10 Which of the following contains the greatest mass of oxygen?
 - A 0.2 mol of aluminium nitrate, Al(NO₃)₃
 - B 0.3 mol of potassium sulfate, K₂SO₄
 - C 0.4 mol of sodium nitrate, NaNO₃
 - D 0.5 mol of magnesium carbonate, MgCO₃

6092/4E/Prelim/2021

Turn over

11	Compound X has a c	omposition by mass	of 63.6 % n	nitrogen and 36.4	% oxygen.
----	--------------------	--------------------	-------------	-------------------	-----------

What is the empirical formula of X?

A N₂O

B NO

C NO₂

D N₂O₄

12 Calcium carbonate reacts with dilute hydrochloric acid according to the equation shown.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

10 g of calcium carbonate is reacted with 100 cm³ of 1 mol/dm³ hydrochloric acid.

The following statements are made.

- 1 1.20 dm³ of carbon dioxide is formed.
- 2 5.55 g of calcium chloride is formed.
- 3 4.80 g of carbon dioxide is formed.
- 4 No calcium carbonate is left when the reaction is completed.

Which statements about the reaction are correct?

A 1 and 2

B 1 and 4

C 2 and 3

D 3 and 4

13 The reaction for the conversion of bromoethane to ethanol is shown.

In an experiment, 10.90 g of bromoethane is converted to 3.45 g of ethanol.

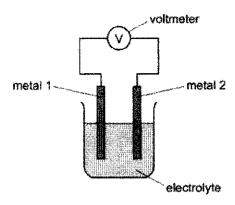
What is the percentage yield of ethanol? [M_r: C₂H₅Br, 109; C₂H₅OH, 46]

A 32 %

B 42 %

C 75 %

D 100 %


14 Concentrated aqueous sodium chloride is electrolysed using inert electrodes.

Which row shows what is likely to happen in this electrolysis and why it happens?

	change occurring	explanation
A	Oxygen is discharged at the anode.	OH (aq) loses electrons more easily than does CF(aq).
В	During electrolysis, the pH of the electrolyte increases.	With the discharge of H⁺(aq) ions, OH⁻(aq) ions remain.
С	Solid sodium is discharged at the cathode.	Na⁺(aq) is present in aqueous solution.
D	The products stay the same if the aqueous sodium chloride is replaced by molten sodium chloride.	Na ⁺ and C <i>I</i> ⁻ are present in both molten and aqueous sodium chloride.

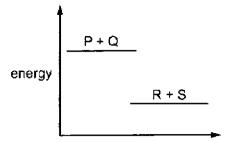
6092/4E/Prelim/2021

15 Pairs of metals are connected together to make a simple cell, as shown.

The table shows the reading on the voltmeter when different metals are used.

		metal 2			
		beryllium	cerium	cobalt	manganese
	beryllium	0.00 V	+0.64 V	-1.57 V	-0.67 V
etal 1	cerium		0.00 V	-2.21 V	-1.30 V
ne H	cobalt	tur et er en		0.00 V	+0.90 V
	manganese	ine de la companya d La companya de la companya de			0.00 V

If metal 2 is more reactive than metal 1, the voltage measured is positive.


What is the order of reactivity?

	most reactive		-	least reactive
Α	cerium	beryllium	cobalt	manganese
В	cerium	beryllium	manganese	cobalt
С	cobalt	manganese	beryllium	cerium
D	cobalt	manganese	cerium	beryllium

6092/4E/Prelim/2021

[Turn over

16 The energy level diagram for the reaction between P and Q to form R and S is shown.

Which row describes the energy changes involved and the type of reaction?

	energy changes involved	type of reaction
A	more energy is given out when the bonds in the products are formed than is absorbed to break the bonds in the reactants	endothermic
В	more energy is given out when the bonds in the products are formed than is absorbed to break the bonds in the reactants	exothermic
С	more energy is absorbed to break the bonds in the reactants than is given out when the bonds in the products are formed	endothermic
D	more energy is absorbed to break the bonds in the reactants than is given out when the bonds in the products are formed	exothermic

17 Nitrogen trifluoride, NF₃, is used in the manufacturing of certain types of solar panels. The equation for the formation of nitrogen trifluoride is shown.

$$N_2 + 3F_2 \rightarrow 2NF_3$$

type of bond	bond energy (kJ/mol)
N≡N	+950
F–F	+150
N-F	+280

Using the table of bond energies, what is the energy change for this reaction?

- A -560 kJ/mol
- B -280 kJ/mol
- C +280 kJ/mol
- D +3080 kJ/mol

6092/4E/Prelim/2021

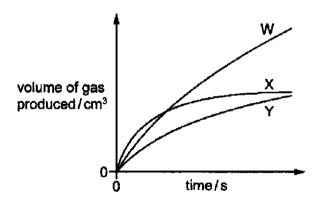
18 Marble chips react with hydrochloric acid in an exothermic reaction.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

When excess marble chips are added to dilute hydrochloric acid, the rate of the reaction starts off fast, then gets slower until the reaction stops.

Why does the reaction rate get slower?

- A The concentration of the hydrochloric acid is decreasing.
- B The concentration of calcium chloride is increasing.
- **C** The calcium carbonate is completely used up.
- D The temperature of the mixture decreases.
- Three experiments are carried out in which the same mass of magnesium is reacted with the same volume of dilute sulfuric acid at room temperature. The magnesium is in excess.


experiment 1 Large pieces of magnesium are used.

experiment 2 Small pieces of magnesium are used.

experiment 3 Large pieces of magnesium are used but the concentration of the acid is

increased.

Graphs of the results are shown.

Which row is correct?

	experiment 1	experiment 2	experiment 3
Α	w	X	Y
В	×	Y	W
С	Y	W	X
D	Υ	Х	W

6092/4E/Prelim/2021

[Turn over

20 The reaction between magnesium and carbon dioxide is shown in the equation.

Which statement describes what happens in this reaction?

- A Carbon is oxidised.
- B Magnesium is reduced.
- C Neither oxidation nor reduction happens.
- **D** The carbon in carbon dioxide is reduced.
- 21 Gas X turns acidified potassium manganate(VII) from purple to colourless.

Gas Y turns aqueous potassium iodide from colourless to brown.

What do these observations show about gas X and gas Y?

	gas X	gas Y
Α	oxidising agent	oxidising agent
В	oxidising agent	reducing agent
С	reducing agent	oxidising agent
D	reducing agent	reducing agent

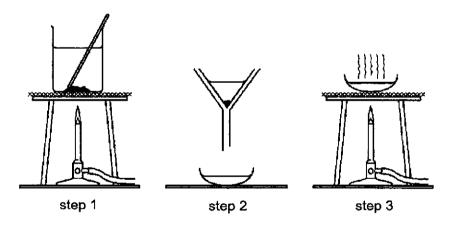
22 An alloy of copper and zinc is added to an excess of dilute hydrochloric acid. The resulting mixture is then filtered.

Which observations are correct?

	filtrate	residue
Α	colourless solution	none
В	colourless solution	red-brown
С	blue solution	grey
D	blue solution	non

6092/4E/Prelim/2021

23 Three chemicals, P, Q and R, were each dissolved in water. The table shows some of the reactions of these solutions.


solution	reaction when solid sodium carbonate is added	reaction when heated with solid ammonium chloride
Р	gas evolved	no reaction
Q	no reaction	gas evolved
R	no reaction	no reaction

The pH of the three solutions was also measured.

What are the likely pH values of these solutions?

	Р	Q	R
Α	2	7	13
В	2	13	7
С	7	2	13
D	13	7	2

24 The diagram shows the steps in the preparation of a salt.

Which salt can be prepared by this method?

- A barium sulfate
- B copper(II) sulfate
- C potassium sulfate
- D sodium sulfate

Three different elements react by losing electrons. The ions formed all have the electronic 25 configuration, 2.8.

Which statement about these elements is correct?

- They are noble gases. Α
- В They are transition elements.
- C They are in the same group.
- They are in the same period. D
- 26 Sodium is a Group I metal.

Which property, that is typical of most metals, is not shown by sodium?

- conductor of electricity Α
- В high melting point
- C malleable
- D shiny
- Palladium is an element with the atomic number of 46. Some of its properties, and the properties 27 of its compounds, can be predicted from its position in the Periodic Table.

Which row is correct?

	predicted property of palladium	predicted property of palladium compounds
Α	Its density is similar to the density of sodium.	Some of them can act as catalysts.
В	Its density is similar to the density of sodium.	They are white in the solid state.
С	It is present in compounds in more than one oxidation state.	Some of them can act as catalysts.
D	It is present in compounds in more than one oxidation state.	They are white in the solid state.

6092/4E/Prelim/2021

28 The metal beryllium does not react with cold water.

It reacts with hydrochloric acid but cannot be extracted from its ore by using carbon.

Where is beryllium placed in the reactivity series?

magnesium

A

zinc

В

iron

C

copper

D

29 Four equations are shown.

1
$$C + O_2 \rightarrow CO_2$$

Which equations represent reactions that take place in the blast furnace where iron is extracted from haematite?

- **A** 1, 2 and 3
- **B** 1, 2 and 4
- C 2, 3 and 4
- D 3 and 4 only

30 Methanol is made by reacting carbon monoxide with hydrogen. The reaction is reversible.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The forward reaction is exothermic.

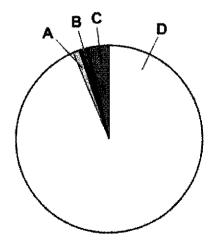
What combination of temperature and pressure gives the highest equilibrium yield of methanol?

	temperature / °C	pressure / atmospheres
A	200	10
В	200	200
С	500	10
D	600	200

6092/4E/Prelim/2021

Turn over

- 31 Which pair of gases could be removed from the atmosphere using calcium carbonate?
 - A CO₂ and O₃
 - B CO and SO₂
 - C CH₄ and NO₂
 - D NO₂ and SO₂
- 32 Oxides of nitrogen, such as NO and NO₂, are formed in the petrol engines of cars.


They are removed from the exhaust gases by reactions in the car's catalytic converter.

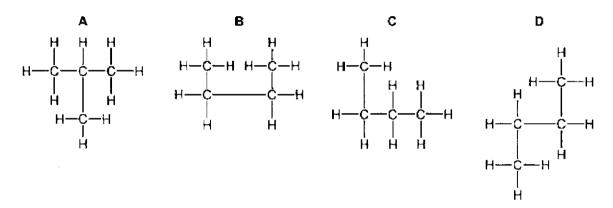
Which row describes how oxides of nitrogen are formed in a petrol engine, and a reaction that happens in the catalytic converter?

	how oxides of nitrogen are formed	a reaction that happens in the catalytic converter
A	by the reaction between nitrogen and oxygen from the air	2NO + 2CO → N ₂ + 2CO ₂
В	by the reaction between nitrogen and oxygen from the air	2NO + 2H ₂ → N ₂ + 2H ₂ O
С	by the reaction between nitrogen compounds in petrol and oxygen from the air	2NO + 2CO → N ₂ + 2CO ₂
D	by the reaction between nitrogen compounds in petrol and oxygen from the air	2NO + 2H ₂ → N ₂ + 2H ₂ O

33 The pie chart represents the composition of natural gas.

Which sector represents methane?

6092/4E/Prelim/2021


PartnerInLearning

34 When a molecule of a saturated hydrocarbon is cracked, it forms two molecules, X and Y.

Which row is correct?

	x	Y
Α	H₂O	C _n H _{2n}
В	H₂O	C _n H _{2n+2}
С	H ₂	C _n H _{2n}
D	H ₂	C _n H _{2n+2}

35 Which diagram shows a branched-chain isomer of butane?

- 36 Which organic compound requires the least number of moles of oxygen for the complete combustion of one mole of the compound?
 - A C₃H₇OH
- B C₃H₇COOH
- C C₃H₈
- D C₄H₈

37 Chlorine reacts with methane.

Which row is correct?

	chemical equation	conditions required
A	Cl ₂ + CH ₄ → CH ₂ Cl ₂ + H ₂	methane and chlorine gases are mixed in the presence of ultraviolet light
В	Cl ₂ + CH ₄ → CH ₂ Cl ₂ + H ₂	methane is bubbled into concentrated aqueous chlorine
С	Cl ₂ + CH ₄ → CH ₃ Cl + HCl	methane and chlorine gases are mixed in the presence of ultraviolet light
D	Cl ₂ + CH ₄ → CH ₃ Cl + HCl	methane is bubbled into concentrated aqueous chlorine

6092/4E/Prelim/2021

Turn over

38 Fats are essential components of the human diet.

The diagram shows a fat molecule.

Which description of this fat molecule is correct?

- A saturated carboxylic acid
- B saturated ester
- C unsaturated carboxylic acid
- D unsaturated ester
- 39 Which partial structure is correct for the product of polymerization of butane, CH₂=CHCH₂CH₃?

D

6092/4E/Prelim/2021

40 Ethanoic acid is reacted with propanol.

What is the name and structure of the ester produced?

	name	structure
A	propyl ethanoate	1 — C — I — I — I — I — I — I — I — I — I
В	ethyl propanoate	H H H H H H H H H H H H H H H H H H H
С	propyl ethanoate	H—C—C H H H H—C—C H H H H O—C—C—H H H H
D	ethyl propanoate	H O H H H H H H H H H H H H H H H H H H

End of Paper

The Periodic Table of Elements

	_		_	_						_				_		_												
	ا ا	7	윤	Pelcin	4	<u>۽</u>	ž	DROF	20	18	Ā	argon	₽	96	호	aypto	8	35	×	хөлоп	131	98	쥰	radou	1			
	= 					o.	ıL	fluorine	19	17	õ	chlorine	35.5	32	ፙ	bromine	80	23	-	euipai	127	8	₹	astatine	1			
1	5					8	0	oxygen	16	16	Ø	sulfur	32	ষ্ঠ	Se	selenium	79	25	e H	tellurium	128	3	ď	polonium	1	116		livermorium -
	>						z	nitrogen	14	5	۵	shosphorus	ਨ	33	As	arsenic	75	51	क्र	antimony	122	8	쥽	bismuth	506			
2	_					8	ပ	carbon	12	14	ত	silicon	88	32	ဗ္ဗ	mainemen	73	20	က	Ę	119	83	<u>6</u>	lead	207	114	ũ	flerovium -
	= =					2	മ	poron	11	13	₹	aluminium	27	31	යී	gallium	70	49	s	majiru	115	æ	≃	thallium	204			
	_					<u> </u>					-			S	2	zinc	65	48	8	cadmium	112	8	Ŷ	mercury	201	112	5	copernicium -
														82	<u>ನ</u>	copper	84	47	₽	silver	108	92	₹	pjog	187	111	-	sentgenium o
9														88	Z	nickel	8	46	P	palladium	108	78	₫.	platinum	195	110	ජ	emistadtium <mark>ir</mark>
Group														22	රි	cobalt	ස	45	듄	-hodium	103	111	=	iridium	192	109	¥	meltnerlum d
		<u>-</u>	I	hydroden	-									5 8	æ	5	Š	44	2	ruthenium	101	92	ő	osmium	190	108	£	haseium
			_			3								22	툳	กลกฎลภะลอ	lS.	43	ဠ	bechnetium	1	75	22	феліит	86	107	듑	bohriuth
						mber	<u> </u>		Mass					24	ర	chromium r	25	42	₽	nolybdenum	96	74	≯	tungsten	<u>\$</u>	106	Š	seaborgium -
					Key	proton (atomic) number	тіс symb	өшеп	relative atomic mass					Γ												105		
						proton (ato		relativ					22	F	thanium	48	\$	Þ	Zirconium	91	7.5	Ï	hafnium	178	2	ř	Sutherfordium —
						L				ı				21	8	acandium	45	39	>	yttrium	68	57 - 71	anthanoids			89 103	actinoids	
=	=					4	Be	benyllium	.	12	Š	nagnesium	24	_				_		_	_	$\overline{}$		barium	137	88		mojnu I
-	_					_				7				19	-							F				ı		francium

inthanolds	52		9	8		62	ន	3	92	99	67	88	69	2	7
	La	ඊ	PN id	Z	Æ	Ë	교	8	£	፭	운	山	Ë	۾	3
	Parthanum		pratecodymium	neodymium		samarium	europium	gadollníum	terbium	dysprosium	holmium	erbium	thullum	ytterblum	Literium
	139		141	4		150	152	157	159	163	165	167	169	173	175
actinoids	68		16	23		26	8	96	65	86	66	100	5	5	103
	Ac		Ба	>		₽	Am	క్	ð	ប៊	Ę,	Ę	Σ	2	۲
	actinium		protactinium	uranium		plutonium	ameridium	curium	berkelium	californium .	einsteinium	fermium	mendelevium	nobelium	lawrencium
	1		231	238		ı	ŀ	1	1	ı	1	ı	1	L	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

J	JUNYUAN SECONDARY SCHOOL Secondary Four Express Preliminary Examination 2021		
CANDIDATE NAME			

	<u> </u>	A	
CLASS		INDEX NUMBER	

CHEMISTRY

6092 / 02

Paper 2

23 Aug 2021

1 hour 45 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams, graphs or rough workings. Do not use staples, paper clips, highlighters, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

Section A

Answer all the questions in the spaces provided.

Section B

Answer all **three** questions, the last question is in the form either/or.

Write your answers in the spaces provided.

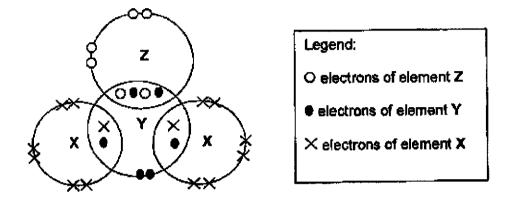
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed in page 21.

For Examiner's Use		
Section A		
Section B		
Total	80	

This document consists of 21 printed pages and 1 blank page.


2

Section A

Answer all questions in this section in the spaces provided.

The total mark for this section is 50.

A1 The bonding in compound YZX₂, formed between atoms Y, Z, and X, is shown below.

a }	State the Groups that elements X and Z belong to in the Periodic Table.
	Element X:[1]
	Element Z:[1]
b)	Element Z has the smallest atomic radius in its Group. Identify element Z.
	[1]
(c)	Element Y has 16 protons. State the period in which element Y is found in the Periodic Table.
	[1]
d)	Aluminium forms a compound with element X. Write the chemical formula of this compound.
	[1]
(e)	Another element, V, has 1 more proton than element X. State a property that element V is likely to have.
	[1]
	[Total: 6]

[3]

A2 (a) In order to make computer processing easier, a system using proton (atomic) numbers rather than names or formulae has been developed. The following examples illustrate this code system.

name	formula	code	
sodium chloride	NaC <i>l</i>	11,17	
iron(II) bromide	FeBr ₂	26, 35(2)	
aluminium oxide	Al ₂ O ₃	13(2), 8(3)	

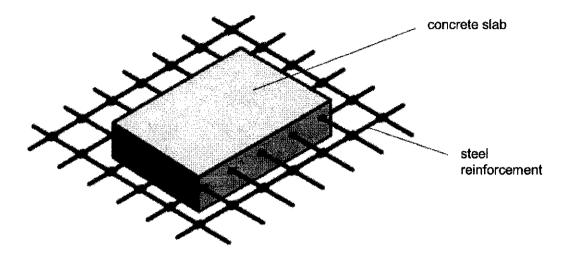
Use this system to complete the table below.

name	formula	code
	KF	
		29,6,8(3)
nitrogen dioxide		

(b) A sample of chlorine gas was found to consist of isotopes C*l*-35 and C*l*-37. A calculation of the relative atomic mass of chlorine was found to be 36.5.

(i) Define isotopes.

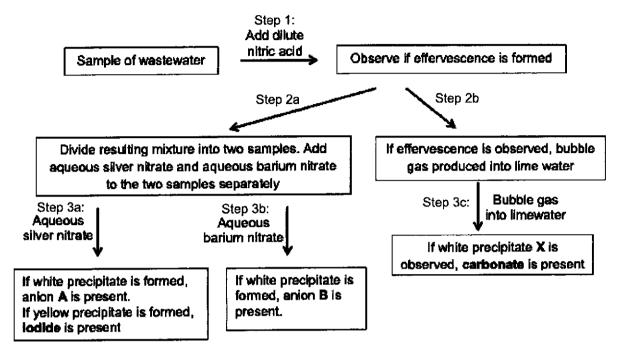
[1]


(ii) For the two chlorine isotopes, compare and contrast:

• the relative abundance,
• and the atomic structure.

[3]

A3	cem som	crete is an excellent building material that is commonly used in Singapore. It is made from ent, sand and water. Concrete is slightly porous. When rainwater soaks through concrete, e of the uncombined calcium oxide in the cement, dissolves to form aqueous calcium oxide.
	(a)	Write a balanced chemical equation, with state symbols for this reaction.
		[2]
		diagram below shows the cross-section of a cracked concrete beam after a rainfall. Over, air diffuses through the cracks to create a zone of reaction.
		compressive force
	i	nside of a pH = 13
		zone of reaction with air
	\$	surface of a beam Air
	(b)	Explain why the pH in a wet concrete beam is high.
		[1]
	(c)	Explain why there will be a chemical reaction when air diffuses into a wet concrete beam.


To strengthen concrete and prevent cracks, steel reinforcement is often used as seen in the diagram below.

Source: <u>http://www.ashireporter.org/HomeInspection/Articles/Commercial-Inspection-CONCRETE-101/1068#crack-pattern.gif</u>

c)	In terms of its structure, explain why steel is able to act as a reinforcement against compressive forces.
	[2]
d)	Some modern structures, especially those situated near the sea, use fiberglass reinforcement instead of steel. Why is this so?
	[1]
	[Total: 8]

A student wishes to identify the anions that are present in a sample of wastewater. **A4** The following flowchart shows how he can identify the anions that are present:

(a)	For anions A and B, write ionic equations for the formation of white precipitates described above. (Use the actual chemical symbols of the ions involved.)
	[2]
(b)	A student noticed that the test for the anion, nitrate, has been missed out in the flowchart above. He suggests that after observing if there is effervescence (i.e step 1), the resulting mixture should be divided into three samples to include a test for nitrate.
	Explain why this will not give conclusive results.

	[2]

(c) The wastewater contains only aluminium and calcium cations. Draw a flowchart that would enable him to confirm the identity of both ions, using aqueous sodium hydroxide and aqueous ammonia.


[3]

[Total: 7]

A5 Hydrogen has many industrial uses. One possible way to manufacture hydrogen involves the reaction between methane and steam.

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$$

The diagram shows the energy profile diagram for this reaction.

(a) State	one	industrial	lice of	hvdrogen.
١a	, State	UNE	muusman	use or	nvuluuen.

[1]

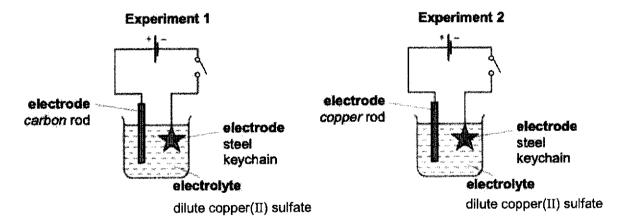
(b) What do the arrows, X and Y, represent in the diagram?

X:

Y:[2]

(c) A student wrote the following statement:

> "In the reaction between methane and steam, the amount of energy released for bond forming is smaller than the amount of energy absorbed for bond breaking."


Do you agree with the student? Explain your answer with reference to the energy profile diagram.	į
If a catalyst can be found for this reaction, draw on the diagram above, how the energy	_

(d) profile will be change.

[1]

[Total: 6]

A student set up two experiments for electroplating steel keychains with copper. She closed both A6 circuits for a period of time.

Complete the table of information about the experiments. (a)

experiment	electrodes	ionic equation, for reaction at each electrode
4	carbon rod	
1	steel keychain	
2	copper rod	
2	steel keychain	

[3]

(b)	Describe and explain the observations seen in the electrolyte in each experiment.
	Experiment 1:
	Experiment 2:
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	[4]
(c)	The student repeated Experiment 2 with another keychain. However, she left the keychain in the setup without closing the switch for days.
	Describe and explain one change she would observe of the keychain.
	[3]
	[Total: 10]

6092/02/O/4E/Prelim/21

More papers at www 426 stpapers free.com

A7 Ketones are a homologous series of organic compounds.

The table shows the names, formulae and boiling points of some ketones.

name	structural formula	boiling point / °C
2-propanone	CH ₃ -C-CH ₃	56
2-butanone	CH ₃ -C-CH ₂ -CH ₃	80
3-pentanone	CH ₃ -CH ₂ -C-CH ₂ -CH ₃	
3-hexanone	O CH ₃ CH ₂ —C—CH ₂ CH ₂ CH ₃	123

(a)	Deduce the general formula and function	onal group of the ketone homologous series.
	general formula	functional group
(h)	Predict the boiling point of 3-pentanon	e.

w,	Tredictifie boiling point of 5-peritations.
	[1]

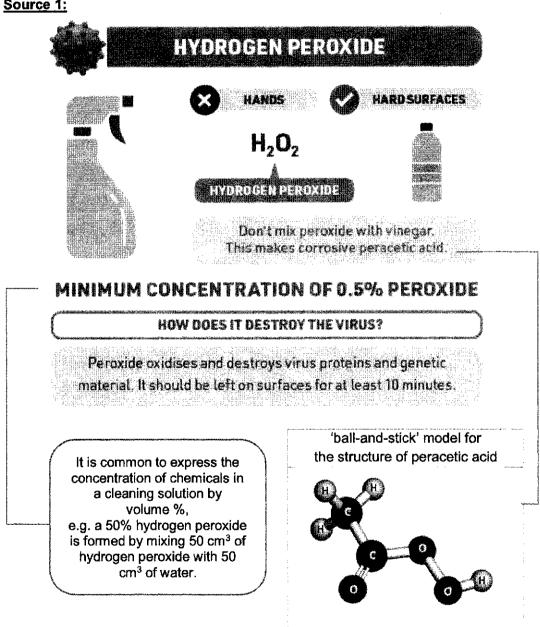
(d) 2-propanone, propanal (an aldehyde) and 2-propanol are all compounds of carbon, hydrogen and oxygen.

State	with	reas	ons,	which	n of th	nese t	hree (comp	ounds	are i	somer	s of ea	ich oth	er.	
					******	•••••			•••••						
				· · · · · · ·	•••••	******	- * * * * * * *				•••••				
															1.7

[Total: 6]

[2]

11


SECTION B

Answer all three questions from this section.

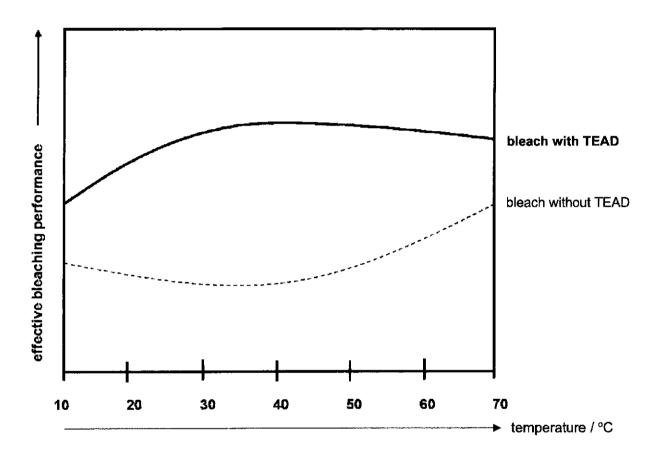
The last question is in the form of either/or and only one of the alternatives should be attempted. The total mark for this section is 30.

B8 Hydrogen peroxide is a common chemical found in the laboratories and in solutions used in our daily lives. The following sources of information illustrate how hydrogen peroxide can be used in managing the spread of the coronavirus and also as a bleaching agent.

Source 1:

Adapted from info source: https://www.compoundchem.com/2020/03/31/destroy-coronavirus/

6092/02/O/4E/Prelim/21


PartnerInLearning

More papers at ww428stpapersfree.com

Source 2:

Hydrogen peroxide is often found in bleaching solutions as it exhibits strong bleaching properties upon its decomposition into oxygen gas and water. A compound called TEAD is then added to the bleach solution to improve bleaching performance.

The graph below shows the performance of a hydrogen peroxide containing bleach solution, at different temperatures, with and without TEAD.

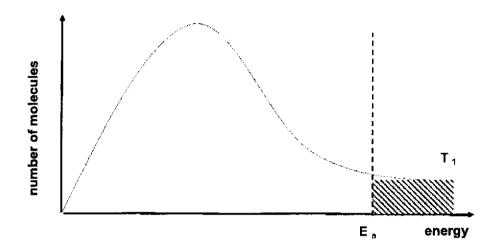
(a) Draw a "dot-and-cross" diagram to show the bonding in hydrogen peroxide. You are required to show only the outermost electrons.

[2]

(b)	A bo	ttle of hydrogen peroxide solution of concentration 1.0 mol/dm ³ is found in the lab.
	(i)	Find the concentration of the hydrogen peroxide in g/dm 3 . [Mr of H $_2$ O $_2$ = 34]
		[1]
	(ii)	Using your answer in b(i) and given that the density of hydrogen peroxide liquid is 1.45 g/cm³, show, using calculations, whether the bottle of hydrogen peroxide solution meets the minimum concentration required for disinfecting surfaces.
		[2]
(c)	Base	ed on the structure of peracetic acid, predict two properties that it will have.

(d)		cribe the trend in the bleaching performance between the bleaches using TEAD and but using TEAD with respect to temperature.

	*****	[2]


(e) The graph below shows the distribution of energy of the particles in the bleach at a given temperature T₁.

Unshaded portion below the curve:

- represents colliding particles with energy less than Ea.

Shaded portion below the curve:

- represents colliding particles with energy equal or more than Ea.

On the diagram itself, draw another vertical dotted line to mark the new Ea when a (i) suitable catalyst is added and the temperature remains at T1. Label the new Ea as E_a(catalyst).

[1]

Shade the new portion below the curve that represent effective collisions among (ii) particles after the catalyst is added.

[1]

(iii)	What does your answer in (e)(ii) suggest about the effect of adding a catalyst?							
		. .						
		.[1]						

[Total: 12]

Mercury, Venus and Earth are the three inner planets in the solar system with Mercury closest to the sun. Venus is both the closest planet to Earth and the planet closest in size to Earth. With an average surface temperature of 462 °C, Venus is by far the hottest planet in the Solar System. Table 9.1 below shows the atmospheric composition on Venus.

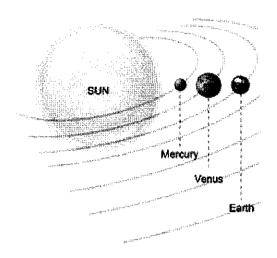
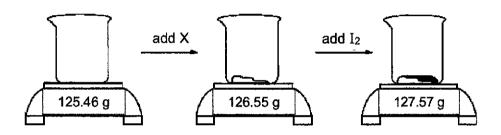


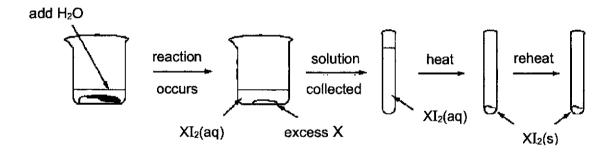
Table 9.1: percentage composition of the atmosphere on Venus

gas	percentage composition
carbon dioxide	96.5
nitrogen	3.5
sulfur dioxide	0.0150
argon	0.0070
water vapour	0.0020
carbon monoxide	0.0017
helium	0.0012
neon	0.0007

(a)	Describe how the percentage composition of the atmosphere on Venus differs from that on Earth, with respect to carbon dioxide and nitrogen.
	[2]
(b)	Suggest why Venus has a much higher temperature than Mercury despite being further away from the Sun.
	[2]

(d)	Suggest one property of metal that need to be taken into consideration when make a space probe to land on Venus. Explain your answer.	using it to
		[2]
(e)	Describe a test to show that the atmosphere on Venus contains sulfur dioxide.	
		[2]
		[Total: 8]


EITHER


B10 A student conducted an experiment to determine the molar mass of an unknown metal, X. The student mixes solid iodine with an excess of metal X. When water is added to the mixture, a reaction occurs between iodine and the metal to form a water-soluble compound, XI₂.

The equation can be represented below:

$$X + I_2 \rightarrow XI_2$$

The reaction proceeds until all of the iodine is used up. The XI_2 solution is collected and heated to remove the water and the product is dried and weighed to a constant mass. The experimental steps are represented in the diagram and the results are tabulated below.

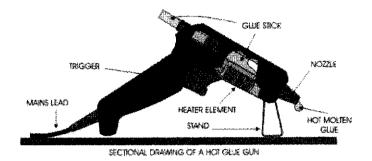
mass of beaker / g	125.46
mass of beaker + metal X / g	126.55
mass of beaker + metal X + I_2 / g	127.57
mass of XI ₂ only (first weighing) / g	1.28
mass of XI ₂ only (second weighing) / g	1.28

(a) Calculate the number of moles of I2 used.

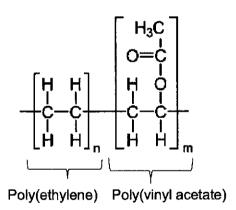
(b)

metal X.

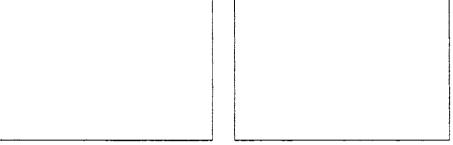
Calculate, to the nearest whole number, the molar mass of the unknown metal, X. Identify


	Molar mass of X is
	Metal X is[4]
(c)	The student hypothesized that
	"the compound formed in the reaction, XI ₂ , is ionic."
	Briefly suggest how the student could test out this hypothesis in the laboratory.
	[2]
(d)	The student also predicted that chlorine gas will react with metal X more vigorously than solid iodine at room temperature.
	With reference to the trends observed in the Periodic Table, justify if this prediction would be true.
	[2]
	[Total: 10]

6092/02/O/4E/Prelim/21


PartnerInLearning

OR


B10 Hot glue, a form of thermoplastic adhesive in solid cylindrical sticks are melted in the electric glue gun with a continuous-duty heating element. The glue is sticky when hot, and solidifies within a minute.

The glue is a polymer known as ethylene vinyl acetate (also known as EVA). EVA is a polymer made up of two different polymers joined together. It is a copolymer of poly(ethylene) and poly(vinyl acetate). The structural formula of EVA is as shown below.

- (a) Draw the full structural formula of the monomer used to form
 - (i) poly(ethylene),
 - (ii) poly(vinyl acetate).

monomer of poly(ethylene)

monomer of poly(vinyl acetate)

[2]

6092/02/O/4E/Prelim/21

(b)	A sa foun	mple of EVA polymer made with 20% by mass of vinyl acetate was analysed and to have an average relative molecular mass of 12040.
	How	many carbon atoms are present in an average chain?
	Show	v your working clearly.
		[4]
(c)	(i)	Two organic molecules, ${\bf M}$ and ${\bf N}$ can be used to synthesize the monomer of poly(vinyl acetate).
		Draw the full structural formula of these organic molecules, M and N.
		[2]
	(ii)	State the conditions needed for the reaction between organic molecules, M and N to occur.
		[1]
	(iii)	Zinc granules were added into two beakers, each containing one of the molecules, M and N . Only one of the beakers showed a reaction.
		Describe what was observed for the beaker which showed a reaction when zinc was added.
		[1]
		[Total: 10]

6092/02/O/4E/Prelim/21

The Periodic Table of Elements

	0	운 운	hellum 4	N 10	20 20	2	Ą	argon 40	36	궃	knypton 84	%	×	131	86	돈	radon -				
	=			οш	fluorine 19	17	ర	chlorine 35.5	35	ă	bromine 80	53		iodine 127	85	₹	astatine 				-
	- IX			80	0xygen 16	16	တ	Sulfer 32	34	Se	selenium 79	25	e H	tellurium 128	28	Ъ	роголічт	116	 ≥	ivermorium	- I
	>			۲Z	nitrogen 14	15	<u>a</u>	phosphorus 31	33	As	arsenic 75	51	හි	antimony 122	83	Ö	bismuth	2			
	2			ပ	carbon 12	14	S	silicon 28	32	ge	germanium 73	20	S	119 119	82	<u>a</u>	lead 207	114	正	fierovium	1
,	=			5 B	porcn 11	13	₹	aluminium 27	34	g	gallium 70	49		indium 115	<u>ھ</u>	Þ	thallium 204				
						L			30	Zu	92 92 92	48	පි	cadmlum 112	80	한	mercury 201	112	ర్	copernicium	ı
									53	ತ	9.00 Pepe	47	Ag	108 408	79	Αn	90ld 197	111	Rg	roentgenium	1
dh									28	Z	nickel 59	46	2	palladium 106	78	ď	platinum 195	110	Š	darmstadtium	ı
Group									27	රි	cobalt 59	45	듄	103	77	<u>-</u>	iridium 103	109	¥	meitnerium	1
		~ I	hydrogen 1						56	Fe	56	44	æ	nuthenlum 101	76	so	osmium 190	108	£	hassium	1
									25	Ę	manganese 55	43	ဥ	technetium	75	8	thentum 186	107	듑	bohrium	1
				umber of	nass				24	ర	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium	-
			Key	proton (atomic) number atomic symbol	name relative atomic mass				23	>	vanadium 51	41	2	nloblum 93	73	₽ E	tantalum 181	105	ති	dubnium	***************************************
				pe uotoud	relati				22	F	titanium 48	40	Z	zircentum 91	72	Ī	hafhlum 178	104	Ť	Rutherfordum	1
									21	တ္တ	scandium 45	39	> -	yttrium 89	i 1	L/ — /c	lanthanoids		88	enioina enioin	
	=			4 Be	beryllium 9	12	Μg	magnesium 24	20	င္မ	calcium 40	38	ঠ	strontium 88	26	Ва	barium 137	88	ς α	radium	ļ
	_	······································		3	Ilfhium 7	£	R Na	sodium 23	6	¥	potassium 39	37	8	rubidium 85	တ္တ	ර	caesium 133	87	占	francium	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

22

6092 PURE CHEMISTRY PRELIM 2021 ANS SCHEME

1	С
2	В
3	D
4	Α
5	Α
6	С
7	D
8	D
9	Α
10	Α
11	Α
12	Α
13	С
14	В
15	В
16	В
17	В
18	Α

19 D **20** D

21	С
22	В
23	В
24	В
25	D
26	В
27	С
28	Α
29	В
30	В
31	D
32	Α
33	D
34	С
35	Α
36	Α
37	С
38	В
39	Α
40	С

	26-30
	21-25
	11-15 16-20
	6-10
Paper 1 B	1-5

Note to all students:

Markers for national exams have commented on students' handwriting that are too small to be read. Let's have some consideration for the people reading and grading your scripts.

Section A

Qn	Answer			Marks	Remarks
A1a	Element X: Group VII / Halogens Element Y: Group VI	SI		£ £	
b	Oxygen			1	
ວ	Period 3			1	TO COMMUNICATION OF THE COMMUN
q	AIXs			Į.	
0	It is inert			-	
	OR				
	It has low boiling and melting point.	oint.			
A2a				Every 2	
•	name	formula	epoo	correct	
	Potassium fluoride	ΑF	19, 9	answers = 1m	
	Copper(II) carbonate	CuCO3	29,6,8(3)		
	nitrogen dioxide	NO ₂	7, 8(2)		
•					
ji j	Atoms of the same element (same number of protons) with different number of neutrons.	ime number of proto ns.	າກຣ)	V	
ija	There is a higher percentage of the gas sample.		CI-37 atoms compared to CI-35 atoms in	~	
	Both Cl-35 and Cl-37 contain 17 the electron shells.		protons in the nucleus and 17 electrons in		
	CI-35 contains 18 neutrons in the nucleus but CI-37 contains 20 neutrons in the nucleus.	ne nucleus but CI-37	contains 20 neutrons in	-	
A3a	CaO(s) + $H_2O(l) \rightarrow Ca(OH)_2(a)$ Correct equation	aq)		-	

Š	A56654		Mostre	Domovice
3	Correct state symbols		1	
			-	
Ω	Calcium hydroxide that is formed in a wet concrete beam is that fully dissociates in water to release hydroxide ions.	d in a wet concrete beam is a strong alkali to release hydroxide ions.	74 7d	
U	Carbon dioxide in air is an acidic oxide. It dissolves in water to form a weak acid hydroxide found in wet concrete.	Carbon dioxide in air is an acidic oxide. It dissolves in water to form a weak acid that will neutralize the calcium hydroxide found in wet concrete.	~ ~	
p	Salt speeds up the process of ru	usting.	~	
A4a	$Ag^*(aq) + CI'(aq) \rightarrow AgCI(s)$ $Ba^{2*}(aq) + SO_4^2(aq) \rightarrow BaSO_4(s)$	(s)	· ·	
	Deduct 1m overall if state symbol	Deduct 1m overall if state symbols not provided or wrongly stated.		
ō	Nitric acid which contains the nil mixture already.	Nitric acid which contains the nitrate ion has been added to the resulting mixture already.	-	
	The test will always give positive sample of wastewater contained	e results regardless of whether the original an intrate ions.	~	
ပ	(1/2m)	(1/2m)	-	
	Add excess aqueous annopia to the sample of wastewater	A white precipitate is formed which is insoluble in excess aqueous ammonia		
		Filter	<u></u>	
	White precipitate is formed, insoluble in excess aqueous sodium hydroxide	Add aqueous sodium hydroxide in excess to the filtrate		
	(1/2m)	(1/2m)	~	
A5a	Production of ammonia in Haber OR Production of manarine with ven	or process	-	
	Accept any other reasonable suggestion.	ggestion.		
q	X = activation energy			

6	ΑΑ			Banka	Demonstra
5	Answer	· · · · · · · · · · · · · · · · · · ·		Marks	Kemarks
	Y = enthalpy change	hange	The state of the s	~*	
U	Agree.	والم	Care after board orth to loved consoner with the off our	-	
	higher than the	The energy prome diagram shows that the en higher than the energy level of the reactants.	The energy profile diagram shows man the energy lever of the products are higher than the energy level of the reactants.	••	
	This means the	at the reaction is	This means that the reaction is endothermic and there should be greater	ų-,	
	energy absorb formation.	ed for breaking bo	energy absorbed for breaking bonds than energy released from bond formation.		:
p	Ea lowered				
	But same start	But same start and end point level.	vel.		TANK AND THE RESERVE OF THE PARTY OF THE PAR
A6a					
	experiment	electrodes	lonic equation, for reaction at each electrode		
	-	carbon rod	$4OH(aq) \Rightarrow O_2(g) + 2H_2O(l) + 4e$	-	
		steel keychain	$Cu^{2*}(aq) + 2e \rightarrow Cu(s)$	72	
	c	copper rod	Cu(s) → Cu ²⁺ (aq) + 2e	<u> </u>	
	, V	steel keychain	Cu²+(aq) + 2e → Cu(s)	7,4	
4	Experiment 1.				
2					
	The electrolyte This is because Is being discha	The electrolyte solution turns fro This is because, copper(II) ions Is being discharged and remove	The electrolyte solution turns from blue to colourless. This is because, copper(II) ions that cause the blue colouration is being discharged and removed at the cathode.	4 - 4-	
	Experiment 2:	,			
	The electrolyte This is because	The electrolyte solution remains blue. This is because, as 1 mole of coppert	The electrolyte solution remains blue. This is because, as 1 mole of copper(II) ions are being discharged at the		
	cathode.				
	1 mole of copp replenish it.	1 mole of copper(II) ions are beir replenish it.	ing released/formed at the anode to		
v	The some part	s of the original st	The some parts of the original steel material had dissolved away.	1	
	Steel which con	ntain iron, is more	Steel which contain iron, is more reactive than copper. Iron will displace copper(II) lops out of the solution and form iron(II) ions		
	instead, which	instead, which dissolves into the	e solution.	_	
<i>7</i> a	General formula: C _n H _{2n} O Functional group: C=O	la: C"H _{2n} O up: C=O			
According to the second of the	The same of the sa		**************************************		THE RESERVE AND THE RESERVE AN

Qn	Answer	Marks	Remarks
p	Approx 104 °C	-	
	Answer must approximate to the interval difference of the data.		
U	It indicates the position of the carbon where the functional group is found.	1	
0	2-propanone and propanal are isomers.		
	They have the same chemical formula of C ₃ H ₆ O.	-	
	But they have different structures because the oxygen atom is bonded to	_	
	the 2nd carbon in 2-propanone but in propanal, the oxygen atom is bonded		
	to the 1st/3rd carbon.		

	ns and co	= 1.0 x 34 = 34 g/dm³	From ans in bi, 1000 cm ³ of the solution contains 34 g of H_2O_2 . 1000 cm ³ of the solution contains (34/1.45 = 23.4)	18 / 1000) the minin	ocreases, i
	Correct sharing of electrons Correct distribution of unshared electrons and correct ratio of elements.		From ans in bi, 1000 cm ³ of the solution contains 34 g of H_2O_2 . 1000 cm ³ of the solution contains (34/1.45 = 23.448 cm ³) of H_2O_2 .	Volume concentration of $H_2O_2 = (23.448 / 1000) \times 100 = 2.345 \%$ Since concentration is > 0.5%, it meets the minimum concentration required.	For bleach with TEAD: Between 10 – 40 °C, as temperature increases, the effective bleaching performance increases but starts to drop slightly as temperature increases beyond 40 °C.
Marks		4	74.	%	 74 74
Comments					

Ö	Answar	Morko	Commonto
	For bleach without TEAD: Between 10 – 35 °C, as temperature increases, the effective bleaching performance decreases but increases beyond 35 °C	22 22	
<u> </u>	Mumber of motocules:		
:= •	Number of molecules	_	
eiii	The catalyst increases the proportion of colliding particles with energy equal or more than Ea.	_	
B 90 90	On Venus, carbon dioxide is the most abundant gas (96.5%) whereas on earth, carbon dioxide is only a very small 0.03% of the atmosphere. On Venus, nitrogen is a small percentage of 3.5 of the atmosphere but on earth, nitrogen is the most abundant gas (78%). - Quote values or difference in gas composition - Provide a description on the significance of the different. (eg. Most abundant etc).		
Q	The atmosphere of Venus is mostly made up of carbon dioxide (96.5%) which is a greenhouse gas.		

On O	Answer	Marks	Comments
	Carbon dioxide traps the heat on the planet, causing temperatures to be high.	-	
v	The material must have a high melting point. This is to withstand the high surface area temperature of Venus and prevent the probe from melting when it lands on the planet.		
p	Bubble a sample of the air from Venus through acidified potassium manganate(VII). The purple solution will turn colourless if sulfur dioxide is present.	,	
E B10a	Mass of $I_2 = 127.57 - 126.55 = 1.02$ g moles of $I_2 = 1.02 / 254$ = 0.0040158 = 0.00402 (3 sf)	* *	
۵	From chemical formula XI ₂ , mole ratio of X: I ₂ = 1:1 Therefore, no. of moles of X in final dried product = 0.0040158 (same as I ₂) Mass of X in final dried product = 1.28 – 1.02 = 0.26 g	₹—	
	1 mole of X (molar mass) = 0.26 / 0.0040158 = 64.7 = 65 The metal is zinc.	T	
ပ	Test the electricity conductivity of the solid compound and the aqueous compound. If the compound is unable to conduct electricity in solid state but able to conduct electricity in aqueous state, the compound is likely to be ionic in nature.		
o o	Chlorine is <u>above iodine</u> in Group VII. Since <u>reactivity decreases down the group</u> for halogens, chlorine will be more <u>reactive</u> than iodine and react more vigorously.	2-2	

L C	Answer	Marks	Comments
OR B10ai		_	
=	H + O = C - H + H + O = C - H + H + H + O = C - H + H + H + O = C - H + H + H + O = C - H + H + H + O = C - H + H + H + O = C - H + H + H + O = C - H + H + D = C - H + H + D = C - H + H + D = C - H	y- -	
Q	Total Mr = 12040 Mass of poły(vinyl acetate) = 0.2 x 12040 = 2408 Mr of VA monomer = 86 m = 2408 / 86 = 28 no. of carbon atoms in VA = 28 x 4 = 112		
	Mass of poly(ethylene) = $0.8 \times 12040 = 9632$ Mr of ethylene monomer = 2.8 n = $9632 / 28 = 344$ no. of carbon atoms in ethylene monomer = $344 \times 2 = 688$ Total number of carbon atoms = $688 + 112 = 800$		
	Correct mass found based on % Correct method of finding n and m Correct no. of carbon atoms for the total of each monomer type Correct final answer.	~ ~ ~ ~ ~	

6092 Prelim 2021 Answer Key

å	Answer	Marks	Marks Comments
. <u>.</u> 5	H-O-H H-O-T I-O-T	2	
:5	Concentrated sulfuric acid catalyst and warming	1	
ciii	Bubbies will be formed	1	