NAME:			NO: CLASS:
	ADMIRALTY S	Admir	NDARY SCHOOL
	PRELIMINAR	Y EX/	AMINATION 2017
	SUBJECT	:	Science (Chemistry)
	CODE/PAPER	:	5078/1
	LEVEL/STREAM	:	Secondary Four Express Secondary Five Normal (Academic)
	DATE	:	18 August 2017
	TIME	:	0800h – 0900h
	DURATION	:	1 hour

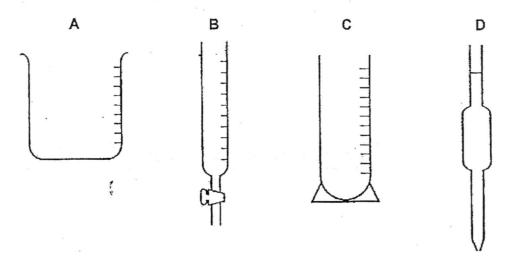
<u>Instructions to candidates:</u> Write your name, index number and class on the cover page. Write in dark blue or black pen. Do not use staples, paper clips, highlighters, glue or correction fluid.

There are **forty** questions on this paper. Answer all questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice **in soft pencil** on the separate OTAS Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

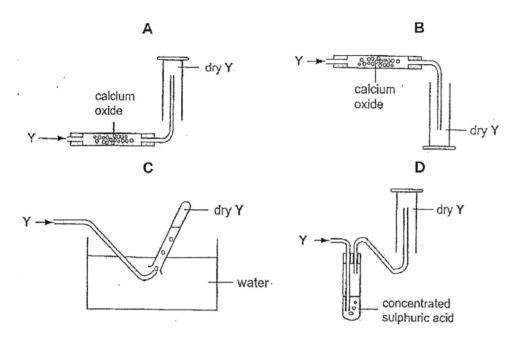

A copy of the Periodic Table is printed on the last page.

For Exami	ner's Use
Total	/ 40

DO NOT TURN OVER THIS PAPER UNTIL YOU ARE TOLD TO DO SO.

This question paper consists of <u>19</u> printed pages including this cover page.

1 Which piece of apparatus is used to measure exactly 25.0 ml of acid?


2 Which changes occur when a liquid at 50 °C becomes a gas at 120 °C?

	Separation of particles	Energy of particles	Attractive force
		- E stars	between particles
Α	decreases	increases	decreases
В	decreases	decreases	increases
С	increases	increases	decreases
D	increases	decreases	increases

3 Which statement about the molecules in the gas carbon dioxide is correct?

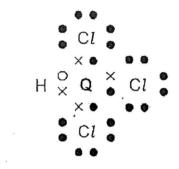
- A The molecules are close together.
- B The molecules are diatomic.
- C The molecules move randomly.
- D The molecules all move with the same speed.

4 A gas Y, is less dense than air, very soluble in water and is an alkali. Calcium oxide and sulfuric acid are drying agents. Which method is used to collect a dry sample of the gas?

5 What is the formula of nickel (II) hydroxide?

- A NIOH
- B NiOH₂
- C Ni(OH)2
- D Ni₂OH

6 A nucleus is represented by the symbol $\frac{81}{37}X$. What does this nucleus contain?


- A 37 electrons and 44 neutrons
- B 37 neutrons and 81 protons
- C 37 protons and 44 neutrons
- D 37 protons and 81 neutrons

7 The atoms of element X have the electronic configuration 2,8,6. Which statement about element X is correct?

- A It forms an ionic compound with sodium.
- B It has 6 protons in the outer shell of an atom.
- C It forms an ion of charge 2+.
- D It only reacts with non-metals.

Element Q has four electrons in its outermost shell.

Element Q can combine with hydrogen and chlorine to form a compound $QHCl_{3}$. The diagram shows the outer electronic configuration structure of $QHCl_{3}$.

Which of these properties will this compound have?

- A It will be a solid at room temperature.
- B It will be readily soluble in water.
- C It will be a good conductor of electricity.
- D It will have a low boiling point.
- 9 Four aqueous solution have the pH shown in the table.

solution	Р	Q	R	S
рН	2	6	8	10

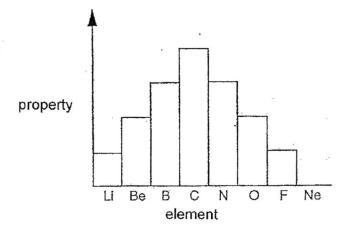
If pairs of solution are mixed, which pair must produce an acidic mixture?

Α	P and Q	в	P and R
С	P and S	D	Q and R

10 The oxide of an element M was added separately to hydrochloric acid and aqueous sodium hydroxide.

The word equations for the reactions are shown.

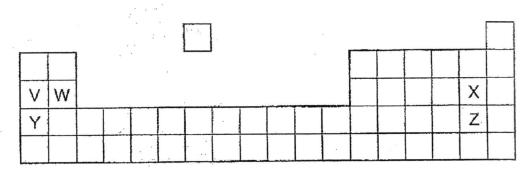
M oxide + hydrochloric acid \rightarrow M chloride + water M oxide + sodium hydroxide \rightarrow no reaction


Which row describes M and its oxides?

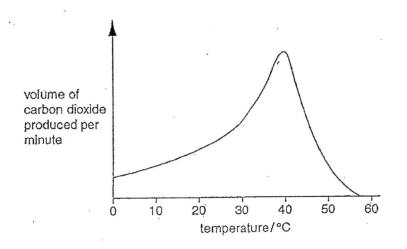
M	M oxide	
metal	acidic	
metal	basic	
non-metal	amphoteric	
non-metal	acidic	
	metal metal non-metal	metalacidicmetalbasicnon-metalamphoteric

11 Which of the listed reactions produce hydrogen?

reaction 1 : potassium with water reaction 2 : sodium carbonate with hydrochloric acid reaction 3 : zinc with hydrochloric acid

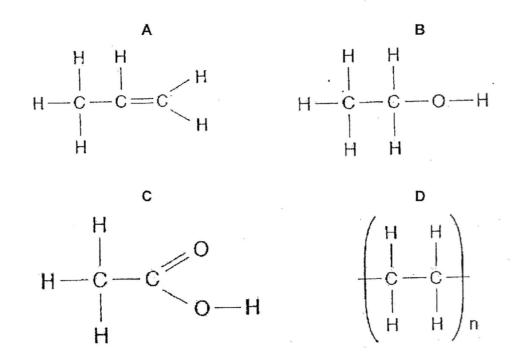

- A 1, 2 and 3
- B 1 and 2 only
- C 1 and 3 only
- D 2 only
- 12 Which statement about the production of iron from haematite is correct?
 - A Coke is used to oxidise the slag.
 - B Limestone is used to produce oxygen for the coke to burn.
 - C Molten iron floats on slag at the furnace base.
 - D The haematite is reduced by carbon monoxide.
- 13 The bar chart shows the period of elements from lithium to neon.

Which property of these elements is shown on the chart?


- A the number of electrons used in bonding
- B the number of orbits holding electrons
- C the proton number
- D the relative atomic mass

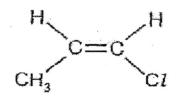
14 Part of the Periodic Table is shown.

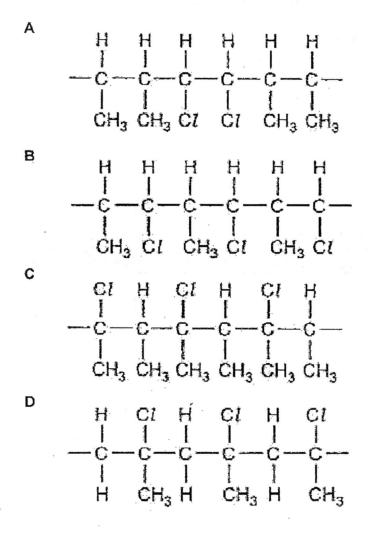
The letters are not the symbols of the elements. Which statement is correct?


- A V is more reactive than Y.
- B W has more metallic character than V.
- C Y has a lower melting point than V.
- D Z is more reactive than X.
- 15 Ethanol is produced by the fermentation of sugar. During the reaction, carbon dioxide is given off. The graph shows how the volume of carbon dioxide produced per minute varies with temperature.

Use the graph to decide which statement is correct.

- A The rate of reaction always increases with temperature.
- B The rate of reaction reaches a maximum at about 40 °C.
- **C** The reaction is slowest at 0 °C.
- D The reaction takes a long time to begin.


- 16 Which solution of sodium chloride has the greatest concentration?
 - A 0.10 mol NaCl in 0.10 dm³ of solution.
 - B 0.10 mol NaCl in 10.0 dm³ of solution.
 - **C** 0.01 mol NaCl in 100 cm³ of solution.
 - D 0.01 mol NaCl in 1000 cm³ of solution.
- 17 Carbon monoxide is a pollutant emitted from car exhausts. Which of its properties makes it harmful to humans?
 - A It has no colour, taste or smell.
 - B It has a corrosive action on lung tissues.
 - C It forms a stable compound with blood.
 - D It combined with oxygen in the lungs.
- 18 Which substance causes the brown colour of aqueous bromine to disappear?


19 When crude oil is distilled, several products are obtained. What is the correct order of their boiling points?

	lowest boiling poin	it	> hig	ghest boiling point
А	diesel	paraffin	petrol	lubricating oil
B	paraffin	petrol	lubricating oil	diesel
C	petrol	paraffin	diesel	lubricating oil
D	petrol	diesel	lubricating oil	paraffin

20 The following formula represent a monomer.

Which formula shows a part of the polymer chain formed from 3 molecules of the monomer?

Elements	
fthe	Period Statement
o alo	and the second se
c Tak	Contraction of the local division of the loc
Periodic	COLUMN STREET,
The	OF CALL PROPERTY OF STREET, ST

							Ū	Group				2	>	M	11/1	
											11	1	>	I/	IIA	>
- 1	- I	- 1	- 3	- 1	- 1											ম :
L unour she	L Halmon	L L	Halmon	Hartmone	Hattoren											e E
	1 L			1 I	1 Indentity											AINIER CA
6	And and a second distance of the second dista	A set of the set of th	prompto participante de Balancia anti-	Prime Pre-Latin Line Stat	prints to the state state						11	12	14	16	18	
Be											മ	J	Z	0	ند	Ne Ne
Beryleum											Boron	Carbon	Narogen	Oxygen	Flucerine	Neon
4											5	6	7	8	6	10
24											27	28	31	32	35.5	40
5W											Å.	ŝ	۵.	S	õ	ΥĽ
atagression 12		÷						-1 -1			Aluminium 13	Silicon 14	Phosphorus 15	s Subliur 16	Chlorine 17	Angun 18
45 43 51 52 55 56	48 51 52 55 56	52 55 56	55 56	56			59	59	64	65	02	73	75	52	80	84
Sc Ti V Cr Mn Fe	Ti V Cr Mn Fe	V Cr Mn Fe	Cr Mn Fe	5e	5e		ខ		ő	Z	Ga	ð	As	Se	Br	¥
Catchum Scandrum Titanium Vanadium Chromitum Manganese iton Cr 20 21 21 22 23 24 26 27 27 27 27 24 25 28 27	Titerium Vanadium Chromkum Manganese Iron 22 23 24 25 26 2	Vanadium Chromium Manganese iron 23 24 25 26 2	Chromitern Manganese Iron 24 25 26 2	iron 26 2	iron 26 2	27 C	Cobelt 7	Nicket 28	Cropper 29	ZIn: 30	Galium 31	Germanium 32	Areentic 33	Setennum 34	Etomine 35	Krypton 36
89 91 93 96 101	91 93 96 101	96 101	101				103	106	108	112	115	119	122	128	127	131
Y Zr Nb Mo Tc Ru	Zr Nb Mo Tc Ru	Nb Mo Tc Ru	Mo Tc Ru	ßu	ßu	_	뙨	Pd	Ag	8	드	ß	Sb	4		ж
Spontium Yilifum Zucchlifte Mobium Molybokenum Pechneuum Ruhamium Rh 38 39 40 40 41 43 43 43	Zuconium Mobium Motylotenum rechneuum Ruthennum	Michium Molybdensim Fectimeratum Rutherseim	Molyliderterin Pectinebulm Ruthermun	Ruthermum	Ruthermum	略 あ	Rhodium	Palladium	SIVER A7	Cadmium	Indium	Tin CO	Antimoriy E4	Tetunium	30cline	Xenen
37 139 178 18t 18d 190	178 131 190 130	81 184 196 190	184 186 190	190	190		197	105	107	504	45	2017	2006	70	53	5
La Hí Ta W Re Os	HI Ta W Re Os	W Re Os	Re	ő			1	ā	Au	H	Ĩ	2 6	i i i i	Ó	44	ů
1 Lantharum Hairaium Tantalum Tangsaan Rhenium Osmium	Halfaium Tantalum Tungsaan Rhenium Osmaum	Tungsten Rhenium Osmium	Tungsten Rhenium Osmium	Osmium		E	irkdium.	Platinuen	2 9g	Kinonek	Thallum		Blemulh	Protection I	Al	RN Bydon
57 * 72 73 74 75 76 7	72 73 74 75 76 7	74 75 76 7	74 75 76 7	76 7	7	11		78	79	80	81	82	83	84	85	86
226 227		na bana na pina mana manana manana ang kana na mang kanana mang kanana na manana na kana na manana na kana ka		and a second											distant and a second of a	Al more and a large state
	0															
Radium actinium B23 89 +	EU11															
*58-71 Lanthanoid series																
190-103 Actinoid series																
141 144	141 144	141 144	144		-	-	150	152	157	159	162	165	167	169	173	175
Pr Nd Pm	Pr Nd Pm	Pr Nd Pm				ŝ	Sm	ញី	99	đ	'n	Å	൘	шŢ	đ۲	Lu
Centurn Presend/mum Nacitymium Promethium Sem 58 59 60 60 61 61 62	Saturn Promethium Neodymium Promethium 59 60 61	Saturn Promethium Neodymium Promethium 59 60 61				Seen 62	Semanium 62	Europium 63	Gadošinium 64	Terbium 65	Dysprosium 66	Holmium 67	Edokum 68	Thulium 69	Yllerbûm 70	Luteéum 71
232 238	232		238	238												
Pa U Np	Th Pa U Np	Pa U Np	dN N	dN		a.	μ	Am	ç	Bk	ç	Ê	Fm	Μđ	No	5
breaction optimum Protectinium Uranhum Paptunium Photochum breactinium Uranhum Photochum breachum breachum breachum 25 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	sorium Protectinium Uranhum Nepteuneum 91 92 93	sorium Protectinium Uranhum Nepteuneum 91 92 93	Uranlum Neptunium 32 93	antum Neptunium			mkim	Americhum	Cuelum	E	Californium	Ĕinsteiņium 00	Femilum 100	Mendelewium 4 D.1	Nobelum	Lawrenchim
								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		A REAL PROPERTY.	20		101	501	201

The volume of one mole of any gas is  $24\,dm^3$  at room temperature and pressure (r.t.p.).

NAME:			NO:	CLASS:
	ADMIRALTYS	SECO	NDARY SCHOOL	
	PRELIMINAR	YEX	AMINATION 2017	
	SUBJECT CODE/PAPER LEVEL/STREAM	: : :	Science (Chemistry) 5076/3, 5078/3 4 Express / 5 Norma	
	DATE TIME DURATION	: : :	11 August 2017 1100h – 1215h 1 hour 15 minutes	

Instructions to candidates:

Write your name, index number and class on the cover page. Write in dark blue or black pen. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A: Short answer questions [45 marks]

Answer all questions.

Write your answers in the spaces provided in the question paper.

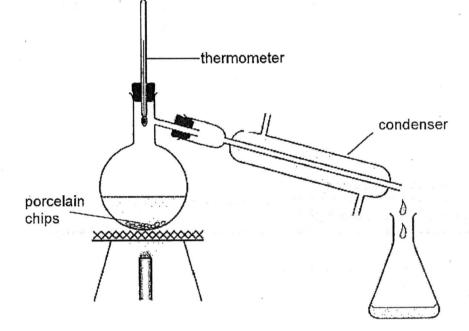
Section B: Structured questions [20 marks] Answer any two out of three questions. Write your answers in the spaces provided in the question paper.

Candidates are reminded that all quantitative answers should include appropriate units. The use of an approved scientific calculator is expected, where appropriate. The number of marks is given in brackets [ ] at the end of each question or part question.

A copy of the Periodic Table is given on the last page.

For Exami	iner's Use
Section A	/ 45
Section B	/ 20
Total	/ 65

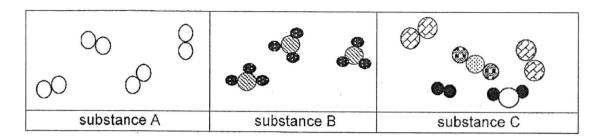
# DO NOT TURN OVER THIS PAPER UNTIL YOU ARE TOLD TO DO SO.


This question paper consists of 16 printed pages including this cover page.

### Section A Answer all questions.

1 A mixture contains the following three liquids that are completely miscible.

liquid	boiling point / °C
propanone	56
ethanol	78
water	100


The liquids can be separated using the setup shown in Fig. 1.1.



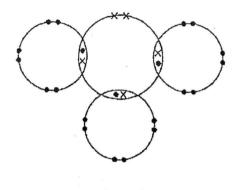


(a) State the name for this method of separation. [1]
(b) State, with a reason which liquid will distil over first. [2]
(b) On Fig.1.1, draw arrows to show how water enters and leaves the condenser. [1]

- 3
- 2 The Fig. 2.1 represent the structures of three unknown substances, A, B and C.





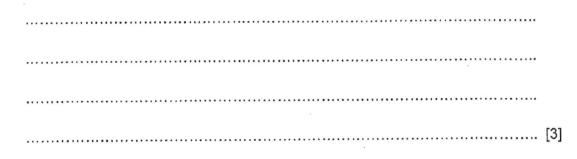

Complete the table below by

- stating whether each substance is an element, compound or a mixture,
- identifying the unknown substances from the list given below.

air	ammonia	hydrogen gas	methane	steel	
-----	---------	--------------	---------	-------	--

substance	element, compounds or mixture	possible identity of substance	
A		•	
В			1
C			[3]

3 The Fig 3.1 shows how the outer shell electrons are arranged in the compound.






(a) Put ticks ( $\sqrt{}$ ) in the boxes to show whether the following statements about the compound are true or false.

statements	true	false	]
It is a saturated hydrocarbon.			]
It could be ammonia,NH ₃ .			
It is a halogen compound.			
It is an ionic compound.	ra Para in		[2]

(b) Suggest whether the boiling point of this substance would be high or low. Explain based on its bonding and structure.



(c) Draw a similar diagram to show the arrangement of electrons in a molecule of carbon dioxide, CO₂. You only need to show outer shell electrons.

BP/S4ESC/16

[2]

4 Lead (II) sulfate is a salt that can be prepared by the precipitation method.

Name suitable reagents for the preparation of lead (II) sulfate. (a) (b) Explain why the precipitation method is suitable for the preparation of lead (II) sulfate. Describe how a pure and dry sample of lead (II) sulfate can be prepared in the (C) laboratory. ..... ------..... ..... ..... 

5 The physical properties of some substances A to F are shown in the Table 5.1. Note that letters used are not the actual symbols of the elements.

### Table 5.1

Substance	Substance Electrical conductivity		Solubility in	Melting point	Boiling point
	Solid	Liquid / Molten	water	/ °C	/ °C
A	Poor	Poor	Soluble	- 101	- 34
В	Poor	Poor	Soluble	153	365
С	Excellent	Poor	Soluble	- 45	12
D	Excellent	Excellent	Insoluble	2050	5842
E	Poor	Poor	Soluble	0	100
F	Poor	Excellent	Soluble	34	127

Identify the substance(s) that is/are (a) a solid at room temperature of 25 °C,

(b)	the distillate of simple distillation of sea water,
	[1]
(c)	an ionic compound,
(d)	likely to exist as metal,
	[1]
(e)	most likely to contain particles that move around rapidly at 75 °C.

6 5 g of magnesium ribbon was added to 100 cm³ of 1.0 mol/dm³ of excess hydrochloric acid. The hydrogen evolved was collected in a gas syringe and the volume collected is recorded every 30 seconds.

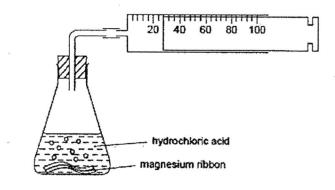
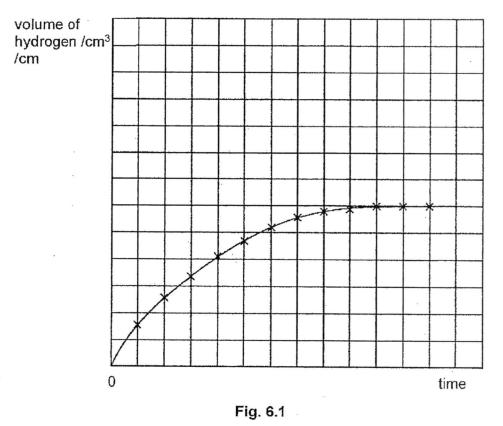




Fig. 6.1 shows the results obtained for the experiment.



- (a) Write a balance chemical equation for the reaction between magnesium and hydrochloric acid. Include state symbols in your chemical equation.

(b) Calculate the volume of hydrogen gas produced.

Volume of hydrogen gas :..... dm3 [2] Suggest how you would calculate the average speed of reaction for the (c) reaction between magnesium and hydrochloric acid. a second and a second ..... ...... The experiment was repeated with 5 g of magnesium ribbon and 100 cm³ (d) (i) of 0.5 mol/dm³ hydrochloric acid. Sketch the graph that you would obtain from the results of this experiment on the same grid in Fig. 6.1. Label it X. The experiment was repeated using 2.5 g of magnesium ribbon and (ii) 100 cm³ of 1.0 mol/dm³ sulfuric acid. Sketch the graph that you would [2] obtain from the results of this experiment on the same grid in Fig. 6.1. Label it Y. Explain the graph obtained in d(ii). (e) ...... ..... 

- 9
- 7 Fig 7.1 shows the reaction scheme of some of the chemical substances.

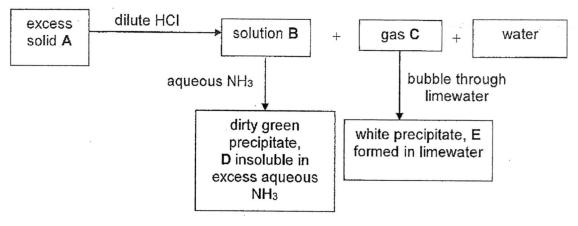



Fig 7.1

Name substance A, B, C, D and E.

(a)	Α	· · · · · · · · · · · · · · · · · · ·
(b)	в	
(c)	С	
(d)	D	
(e)	Е	

[5]

Table 8.1 shows information about some organic compounds. 8 (a) Complete the table below with the name, structural formula and process used to manufacture each of the compound.

name of compound	structural formula of compound	process used to manufact the compound	ure
ethene	compound	catalytic long hydrocarbon chain hydrocarbon	of
	$\begin{pmatrix} H & H \\ -C & -C \\ -C & -C \\ H & H \end{pmatrix}_{n}$	ethene	F
ethanoic acid		ethanol	f



- (b) Ethene will undergo complete combustion if there is sufficient oxygen.
  - Write the chemical reaction for this reaction. (i)

(ii)		bes incomplete combustion, it will form an air ir pollutant and state its effect on human health.
	name of air pollutant	
	effect of air pollutant	
		[2]

#### Section B

Answer any two out of three questions.

- 9 Chlorine can form both ionic and covalent bonds when combined with other elements.
  - (a) Explain why chlorine can form both ionic and covalent compounds when combined with other elements. Use 'dot and cross' diagram to support your explanation. State clearly the other elements used in your explanation.
    - (i) Ionic compound

### (ii) covalent compound

[3]

(b) State two differences in the physical properties of ionic compound and covalent compound. Use your knowledge of the particles to explain the differences.

[4]

10 (a) Name one homologous series and give the general formula for its members. ..... (b) Explain why, on moving from one member of a homologous series to the next higher member, the relative molecular mass increases by 14. Give an example of another property that changes on moving to the next higher member. ..... ..... ..... (c) The molecules of an alcohol each contain four carbon atoms. Suggest the name and molecular formula of this alcohol. Use your knowledge of homologous series to suggest the full structural formula of this alcohol. Determine the percentage of carbon in the alcohol. ..... ..... ..... ..... 

.....

[5]

[3]

[2]

11	Lithi	um, sodium and potassium are in Group I of the Periodic Table.
	(a)	Explain why these metals belong to Group I.
	(b)	Describe an experiment to show a trend in the reactivity of these metals with a compound of your choice.
		·····

(c) Caesium, Cs is also in Group I. How would the reaction of caesium differ with this same compound from (a). Write a full chemical equation for this reaction.

(d) Suggest how these metals can be obtained from its ore. Explain your answer.

END OF PAPER

1     1       Hydrogen     1       Hydrogen     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1	52 Спотит Спотит 24 Мо Мо 42 Мо 42 VV
1     H       Hydrogen     Hydrogen       1     1       1     1       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     12       1     13       1     13       1     10       1     10       1     10       1     10       1     10       1     11       1     12       1     11       1     11       1     11       1     11       1     11       1     11       1     11       1     11       1     11       1     11	52 57 Chromium 24 M0 M0 M0 M0 M0 M0 M0 M0 VV
1     1     1     12     14     16       1     1     12     14     16       1     1     12     14     16       1     1     12     14     16       1     1     12     14     16       1     1     12     14     16       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1	52 52 Сhromium 24 МО МО МО МО 42 42 VV
11     12     14     16       Bron     C     N     0       Bron     Carbon     Nitrogen     0xygen       Si     F     7     8       Al     Si     P     Si       Alminium     Silicon     Prosphorus     Sulphur       Nicosin     Nickel     Copper     Zinc     Ge       Al     Zinc     Gellum     Gee     Assentic     Selennium       24     25     26     20     Nickel     Copper     Zinc     Gellum     Geennium       23     30     31     32     33     34     32       33     56     108     108     112     115     119     122     128	52 Cr Chromium 24 M0 M0 M0 M0 M0 M0 M184 VV
B     C     N     O       Boron     Carbon     Nurogen     Oxygen       5     6     7     8       51     52     55     56     59     54     51     32       51     52     55     56     59     54     65     70     73     75     79       61     57     56     59     59     64     65     70     73     75     79       7     Manganese     fromium     Manganese     from     Cobert     27     28     33     34     32       24     25     26     59     59     64     65     70     73     75     79       23     36     101     103     106     108     112     115     119     122     128	52 52 Chromium 24 Mo Moybdenum 42 W
Enorn         Carbon         Carbon         Nitrogen         Oxygen         Oxygen         Oxygen         Sygen         Sysen         Sygen         Sygen         Sysen         Sysen         System         System </td <td>52 Chromium Chromium 24 Mo Ma Mo Ma Ma 42 184 V</td>	52 Chromium Chromium 24 Mo Ma Mo Ma Ma 42 184 V
51     52     55     56     59     54     51     32       51     52     55     56     59     64     65     70     73     75     79       V     Cr     Min     Fe     Co     Ni     Cu     Zn     6a     6a     58     59       23     24     25     56     59     64     65     70     73     75     79       24     25     26     27     28     20     30     31     32     34     3       33     96     101     103     106     108     112     115     119     122     128	52 52 Chromium 24 96 M0 M0ybdenum 42 184 W
Al         Si         P         S           51         52         55         56         59         59         64         65         70         73         75         79         5           V         Cr         Mn         Fe         Co         Ni         Cu         Zn         6allum         6allum         6allum         Assenic         5elenium         33         34         3           33         96         101         103         106         108         112         115         119         122         128	52 Chromium 24 Mo Moybdenum 184 W
51         52         55         56         59         59         64         65         70         73         75         19           V         Cr         Mn         Fe         Co         Ni         Cu         Zn         6a         6a         As         Selenium         Subtur         16         1           v         Cr         Mn         Fe         Co         Ni         Cu         Zn         6a         Ge         As         Selenium           adum         Assentic         cobact         Nickel         Copper         Zinc         Ga         Ge         As         Selenium         Selenium         24         25         26         29         30         31         32         34         3           33         96         101         103         106         108         112         115         119         122         128	52 Chromium 24 Mo Mo 42 VV
51         52         55         56         59         59         64         65         70         73         75         79           V         Cr         Mn         Fe         Co         Ni         Cu         Zn         Ga         Ge         As         Se           value         Chromium         Manganee         iron         Cober         Zinc         Ga         Ge         As         Se           120         25         26         27         28         29         30         31         32         34         3           33         96         101         103         106         108         112         115         119         122         128	52 Ch Ch Chomium 24 Mo Mo Mo Mo Mo Mo 42 184 V
V         Cr         Mn         Fe         Co         Ni         Cu         Zn         Ga         Ge         As         Se           radium         Chromium         Manganese         iron         Cobet         Zinc         Gallum         Ge         As         Se           radium         Chromium         Manganese         iron         Cobet         Zinc         Gallum         Germanium         Arsenic         Selenium           24         25         26         27         28         29         30         31         32         34         3           93         96         101         103         106         108         112         115         119         122         128	С ^г С ^{hromlum} 24 Мо 42 42 W
radium         Chromium         Manganese         iron         Cober         Zinc         Gellurm         Cermanturm         Arsenic         Selenium           24         25         26         27         28         29         30         31         32         34         3           93         96         101         103         106         108         112         115         119         122         128	Chromium 24 96 Mo Mo 42 42 184 V
24         25         26         27         28         29         30         31         32         33         34         35           93         96         101         103         106         108         112         115         119         122         128         34         35	24 96 Mo Moybdenum 42 184 W
96 101 103 106 108 112 115 119 122 128	96 Mo Molybdenum 42 184 W
	Mo Moybdenum 42 184 W
	Motybdenum 42 184 W
oblum Mckybderum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium	42 184 W
43 44 45 46 47 48 49 50 51	184 W
186 190 192 195 197 201 204 207 209	3
Re Os Ir Pt Au Hg T1 Pb Bi Po	-
Alalum Tungsten Rhenium Osmium Iridium Platinum	Tungslen
141 144 150 152 157 159 162 160 107 108 	141
ropium Gadolinium Terbium Dysprosum Holmium Erbium 7hulium 1	Prasecdymium
59 60 61 62 6	59
Bk Cf Es Fm Md	Ъа
Tholum         Protectinum         Uranium         Neptonium         Platonium         Americium         Californium         Einsteinum         Fermium         Mandelevium         Nooelum           90         91         92         93         94         95         97         98         97         99         100         101         102	Protactinium 91

### ADMIRALTY SECONDARY SCHOOL



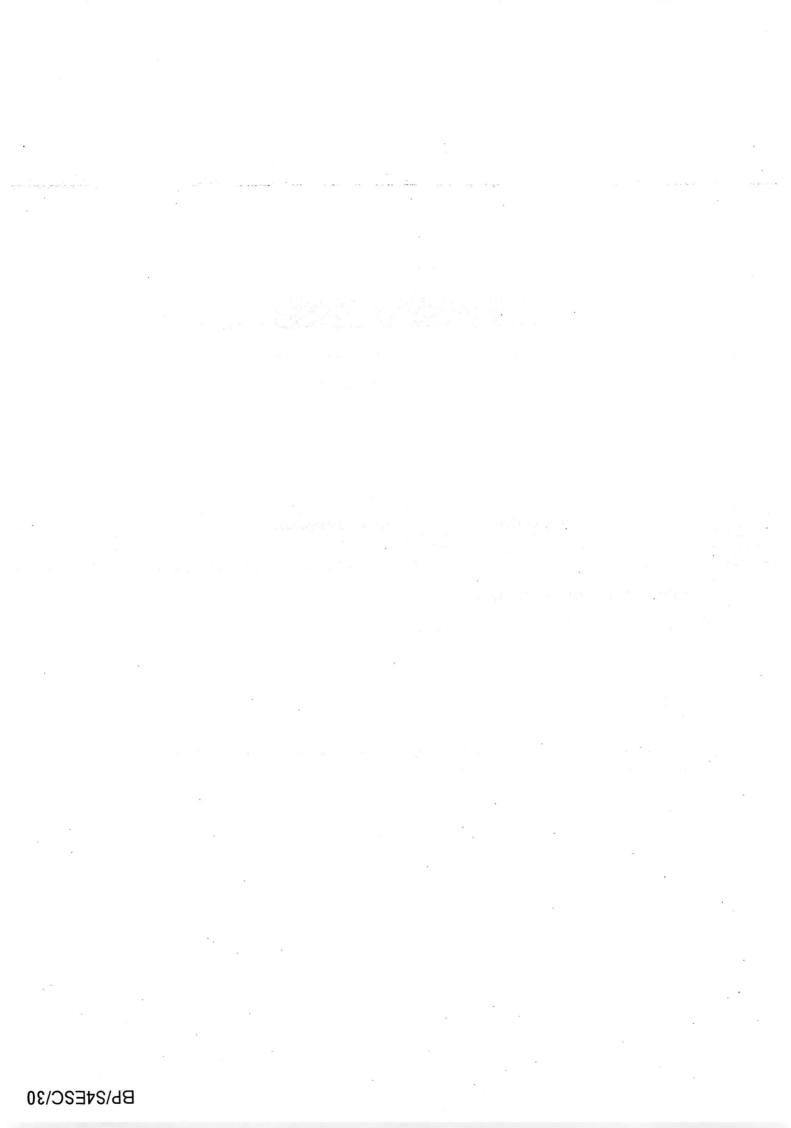
secondary school

# PRELIMINARY EXAMINATION 2017

SUBJECT	: Science (Chemistry)
CODE	: 5076/5, 5078/5
LEVEL/STREAM	: 4 Express / 5 Normal Academic
DATE	: 1 September 2015
TIME	: as scheduled
DURATION	: 1 hour 30 minutes

# Instructions to candidates:

- 1. The paper consists of 1 question on chemistry.
- 2. Answer all questions in the spaces provided.
- 3. You may use a calculator for this paper if necessary. A 'Chemistry Practical Notes' for your reference is available at page **4** of this paper.
- 4. All essential working must be shown where necessary. Loss of essential working and illegible handwriting may lead to loss of marks.
- 5. Do not use correction fluid anywhere in your answer script.


Por Examiner's Use

**Chemistry Section** 

# PLEASE DO NOT TURN OVER THE PAPER UNTIL YOU ARE TOLD TO DO SO!

This question paper consists of <u>4</u> printed pages including this cover page.

BP/S4ESC/29



Q1. You are provided with a solution X and solution Y.

Carry out the following experiments and test any gasses evolved. Carefully record your observations. The volumes given below, unless referring to drops of solution are approximate and should be estimated rather than measured.

	1	test	observations
(a)	(i)	Place 2 cm ³ of the solution X in a clean	
• •		test tube.	
		Add 1cm ³ of nitric acid, followed by	
		2cm ³ of silver nitrate solution.	[1]
	(ii)	Place 2 cm ³ of solution X in a clean	
		test tube.	
		Add dilute sodium hydroxide solution	
		dropwise, with shaking, until no further	[1]
	(iii)	change is observed. Place 2 cm ³ of solution X in a clean	
	(11)	test tube.	
		Add dilute ammonium hydroxide	
		solution dropwise, with shaking, until	
		no further change is observed.	[1]
	(iv)	Place 2 cm ³ of solution X in a clean	
		test tube.	
		To this test-tube, add 3-4 pieces of	
		zinc. Leave this test-tube to stand in the test-tube rack.	
(b)	(i)	Place 2 cm ³ of solution Y in a clean	[2]
(0)	0	test tube.	
		Add dilute sodium hydroxide solution	
		dropwise, with shaking, until no further	*
		change is observed.	[2]
	(ii)	Place 2 cm ³ of the solution Y in a clean	
		test-tube.	
		Add aqueous sodium hydroxide, then	
	/****	add aluminum foil. Warm gently.	[1]
	(iii)	Place 2 cm ³ of the solution Y in a clean	
		test-tube.	
		Add 10m ³ of hudrophlaric said fall	
		Add 1cm ³ of hydrochloric acid, followed by 2cm ³ of barium chloride solution.	141
		by zone of banam chionae solution.	[1]

For Examiner's Usc

(c)	(i)	Using your observations in (a), give 3 conclusions. Give evidence to support each of your conclusions.
		conclusion 1 :
		evidence 1:
		conclusion 2 :
		evidence 2:
		conclusion 3 :
		evidence 3:
		[3]
	(ii)	Solution Y contains either lead or zinc ion. Describe how you would carry out some test to confirm the identity of cation in solution Y.
		[2]
	(iii)	Deduce the anion in solution Y.
		anion :
		explanation
		[1]

End of Paper

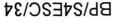
# CHEMISTRY PRACTICAL NOTES

# Test for anions

-----

Test for anions				
anion	test	test result		
carbonate (CO32-)	add dilute acid	effervescence, carbon dioxide produced		
chloride (C1 ⁻ ) · [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.		
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced		
sulfate $(SO_4^{2-})$ [in solution]	acidify with dilute nitric acid, then add aqueous barlum nitrate	white ppt.		

# Test for aqueous cations


cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia	
ammonium (NH4+)	ammonia produced on warming	-	
calcium (Ca ²⁺ )	white ppt., insoluble in excess	no ppt.	
copper(II) (Cu ²⁺ )	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution	
iron(II) (Fe ²⁺ )	green ppt., insoluble in excess	green ppt., insoluble in excess	
iron(III) (Fe ³⁺ )	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess	
lead(II) (Pb ²⁺ )	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess	
zinc (Zn ²⁺ )	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution	

# Test for gases

	gas	test and test result		
	ammonia (NH3)	turns damp red litmus paper blue		
	carbon dioxide (CO2)	gives white ppt, with limewater (ppt. dissolves with excess CO ₂ )		
	chlorine (Cl ₂ )	bleaches damp litmus paper		
The second	hydrogen (H ₂ )	"pops" with a lighted splint		
and the second se	oxygen (O ₂ )	relights a glowing splint		
Contraction of the second	sulfur dioxide (SO ₂ )	turns aqueous acidified potassium manganate(VII) from purple to colourless		

--

i



,

.

.

NAME:		NO: CLASS:
	ADMIRALTY	SECONDARY SCHOOL
	PRELIMINAR	Y EXAMINATION 2017
	CODE	: 5076/5, 5078/5
	SUBJECT	: Science (Chemistry)
	LEVEL/STREAM	: Secondary 4 Express / 5 Normal Academic
	DATE	: 17 August 2017
	DURATION	: 1 hour 30 minutes

# Instructions to candidates:

Write your name, index number and class in the spaces at the top of this page. Write your answers in the spaces provided on the question paper.

#### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets [ ] at the end of each question or part question. You are advised to spend 45 minutes on this question.

CHEMISTRY	SECTION
-----------	---------

For Examiner's Use		
Total	/ 15	

## PLEASE DO NOT TURN OVER THE PAPER UNTIL YOU ARE TOLD TO DO SO

This Question paper consists of 5 printed pages including this cover page.

You are provided with a solid X and solution Y. Both solid X and solution Y consists of one cation and one anion each.

Carry out the following experiments and test any gasses evolved. Carefully record your observations.

The volumes given below, unless referring to drops of solution, are approximate and should be estimated rather than measured.

		test	observations
(a)		Dissolve the solid salt X in the large test-tube, in distilled water and then add more distilled water until the test-tube is about two-thirds full. Stopper and shake the test-tube thoroughly.	[1]
(b)	(i)	Transfer 2 cm ³ of the solution <b>X</b> in a clean test tube.	
		Add 1 cm ³ of nitric acid, followed by 2 cm ³ of silver nitrate solution.	[1]
	·(ii)	Transfer 2 cm ³ of solution <b>X</b> in a clean test tube. Add dilute sodium hydroxide solution dropwise, with shaking, until no further	
		change is observed.	[1]
	(iii)	Transfer 2 cm ³ of solution <b>X</b> in a clean test tube. Add dilute ammonium hydroxide solution dropwise, with shaking, until no further change is observed.	
		Leave this test-tube to stand in the test-tube rack.	[1]

1.1.		test	observations
	(iv)	Transfer 2 cm ³ of solution <b>X</b> in a clean test tube.	
		To this test-tube, add 3-4 pieces of zinc.	
		Leave this test-tube to stand in the test-tube rack.	
			[2]

		test	observations
(c)	(i)	Transfer 2 cm ³ of solution Y in a clean	
		test tube.	
		Add dilute sodium hydroxide solution	
		dropwise, with shaking, until no further	
		change is observed.	
			[2]
	(ii)	Transfer 2 cm ³ of the solution <b>Y</b> in a	
		clean test-tube.	
		Add aqueous sodium hydroxide, then	
		add aluminum foil. Warm gently.	
			[1]
	(iii)	Transfer 2 cm ³ of the solution <b>Y</b> in a	
		clean test-tube.	
		Add 1 cm ³ of hydrochloric acid, followed	
		by 2 cm ³ of barium chloride solution.	
			[1]

(d)	(i)	Using your observations in (b), give 3 conclusions. Give evidence to support each of your conclusions.
		conclusion 1 :
		· · · · · · · · · · · · · · · · · · ·
		evidence 1:
		conclusion 2 :
		······································
		evidence 2:
		conclusion 3 :
		evidence 3:
	(ii)	Solution Y contains either lead or zinc ion. Describe how you would carry out some test to confirm the identity of cation in solution Y.
		۰
		[1]
	(iii)	Deduce the anion in solution Y.
		anion :
		explanation
		End of Paper

# NOTES FOR QUALITATIVE ANALYSIS

#### Test for anions

anion	test	test result
carbonate (CO ₃ ^{2–} )	add dilute acid	effervescence, carbon dioxide produced
chloride (C1  ) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻ ) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate $(SO_4^{2-})$ [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

#### Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH4 ⁺ )	ammonia produced on warming	-
calcium (Ca ²⁺ )	white ppt., insoluble in excess	no ppt.
copper(II) (Cu ²⁺ )	light blue ppt, insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺ )	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺ )	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
lead(II) (Pb ²⁺ )	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
zinc (Zn ²⁺ )	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

#### Test for gases

gas	test and test result	
ammonia (NH ₃ )	turns damp red litmus paper blue	
carbon dioxide (CO ₂ )	gives white ppt with limewater (ppt. dissolves with excess CO ₂ )	
chlorine (Cl ₂ )	bleaches damp litmus paper	
hydrogen (H ₂ )	"pops" with a lighted splint	
oxygen (O ₂ )	relights a glowing splint	
sulfur dioxide (SO ₂ )	turns aqueous acidified potassium manganate(VII) from purple to colourless	

BP/S4ESC/40

.

.

# Admiralty Sec School Marking Scheme Preliminary Exam 2017 4E/5N Science Chemistry (5076 / 5078)

## PAPER 1

	<u></u>		and the second se		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
Q1/21	Q2/22	Q3/23	Q4/24	Q5/25	Q6/26	Q7/27	Q8/28	Q9/29	Q10/30
D	С	С	A	C	С	Α	D	Α	В
Q11/31	Q12/32	Q13/33	Q14/34	Q15/35	Q16/36	Q17/37	Q18/38	Q19/39	Q20/40
C	D	Α	C	D	Α	С	A	C	В

# PAPER 3 SECTION A [45 marks]

1	(0)	Fractional distillation					
	(a)					[1]	
	(h)	Accept : simple distillation	on & distillation				
	(b)	Proponone.	naint thus it distils are fi			[1]	
	(b)	It has the lowest bolling	point thus it distils over fin	St.		[1]	
		n l				[1]	
		· · · · · · · · · · · · · · · · · · ·					
			4				
				~			
				*			
				/			
				$\langle \rangle$			
		,	` E	· · · · · · · · · · · · · · · · · · ·			
		1/2 mark if one of the arro	w is correct				
		:					
2		substance	element, compounds	possible id	entity of	1	
			or mixture	substa			
		A	element	hydroge	n das		
		**************************************	compound	ammo		-	
		С	mixture	air		101	
		1/2 marks for each correct		uii		] [3]	
3	(a)	stater	nents	true	False	[2]	
		It is a saturate	d hydrocarbon.		V	[ I-]	
			mmonia,NH ₃		V		
			n compound.	1	·		
			compound.				
		1/2 mark for each correct a			۷	1	
						1	

1

BP/S4ESC/41

	(b)	The boiling point of the substance would be low.	[1]
		The compound has a molecular structure with weak intermolecular	[2]
· .		forces, thus low amount of energy required to break the bond.	
7 14			
	(c)		[2]
	(•)		
		$(O(\overset{\circ}{\bullet})C(\overset{\circ}{\bullet})O)$	
			× .
2			a na s
		Correct number of overlapping circles = 1/2 mark	
		Correct number of electrons shared = 1/2 mark	
		Correct number of valence electrons = 1/2 mark	
		Correct representation of dot and cross = 1/2 mark	]
4	(a)	Lead(II) nitrate	[1]
		Any soluble sulfate salt	[1]
		Accept : sulphuric acid	
	(b)	Lead(II)sulfate is an insoluble salt.	[1[
	(c)	Add/ Mix lead(II)nitrate and soluble salt named in part (a) in a beaker.	[1]
		Allow e.c.f for wrong reagent named in part (a)	[1]
		Filter to remove the lead(II)sulfate as the residue.	643
		Wash with distilled water (1/2 mark ) and pat dry in between filter paper	[1]
		(1/2 mark).	
-		D. D. and E	[1]
5	(a)	B, D and F	111
		Any one correct answer. N ½ mark if incorrect answer included	1
		E	[1]
		⊭ 1⁄2 mark if incorrect answer included	111
		F	[1]
		¹ / ₂ mark if incorrect answer included	1
		D	[1]
		¹ / ₂ mark if incorrect answer included	1.1
		A and C (1/2 mark for each correct answer)	[1]
			+
	(a)	$Mg(s) + 2HCl(q) \rightarrow MgCl_2(aq) + H_2(g)$	[2]
	(a)	1 mark : correct balanced equations	
		1 mark : correct state symbol	
6	(a)	No. of mole of magnesium = 5/24 mol / 0.208 mol	[1]
	(4)		
		Or	
	1.	Mole ratio :	
		1 mol of Mg produces 1 mol of H ₂	
		0.208 mol of Mg produces 0.208 mol of H ₂	
			[1]
		Volume of H ₂ = 0.208 × 24 = 4.992 dm ³ or 5 dm ³	
	1		
	(b)	Average speed of reaction can be calculated by dividing the total volume	[1]
		of hydrogen produced to total time taken for the reaction to stop / no	
		more effervescence observed/ maximum volume reached.	
	1		

		,		· ·										
÷	<b></b>	1 (0)												7
		(c)	volume of										[2]	
			hvdroaen				1. 1.		++					
			·				1			_				
											- <u>-</u> -			1.
rin film Alfred State	· 6	1 1 1 1								5.				
								* *		5 G			1400 ¹¹ 11	
				<u> </u>		**								
								<b> </b>	+					
				-						_				
				4-					$\left  - \right $					
			1 · A-						·`	-				
									<u> </u>	_ <u> </u>	× .			
			Graph X 0											
			1/2 mark : gradient is	s low	er than or	riginal g	raph /	time ta	ken i	s mo	re tha	n		
			original time ½ mark : final volum	!.										
			2 mark : final volum	ne is	same									
			Graph Y											
			1/2 mark : gradient is	stee	eper than	original	graph	1						
			1/2 mark : final volur	me is	half of th	ne origin	al volu	ıme						
		(d)	The final volume of	hydr	ogen gas	produc	ed is t	half of t	he vo	lume	prod	uced	[1]	
			in the original exper	imer	it. This is	becaus	e, the	mass o	of ma	gnes	ium u	sed		
			is reduced by half.										141	
			The speed of reaction	on is	faster be	cause	in sam	e num	her o	fmol	e of		[1]	
			sulphuric acid and h	ydro	chloric ad	cid, ther	e's mo	ore con	centr	ation	of			
			hydrogen ions.	-										
	7	(a)	Iron (II) carbonate										[1]	
		(b)	Iron (II) chloride										[1]	
		(c) (d)	carbon dioxide gas Iron(II) hydroxide										[1]	
		(e)	calcium carbonate							:			[1]	
ſ		(0)	Note : 1/2 given if cor	rect	chemical	formula	writte	'n					[1]	
-	8	(a)	Store / 2 girdin in OUI	,000	onorniudi	ionnule	wille							
			name of compour	nd	structu	Iral form	nula of		proce	SS II	sed to		1/2	
						ompoun					ire the		mark	
										mpol			for	
			ethene					Cat			king	of	each	
					H	< · · /	Н		g hyd				answer	
						C = C			-					
										dra -	nh			
			· · ·		Ц	/ \	н	lona	in ny	droca	arbon			
				(4)	Н	/ \	Н		ui tiy	droca	arbon			
					н / I	<u>, н/</u>	Н				ion of			
			Poly(ethane)		H H		н		lyme		;			
			<u>Polγ(ethane)</u>		H (-)		H -	Po	lyme		;			

	ethanoic acid $ \begin{array}{c c} H & O \\ H - C - C \\ H & O - H \\ H \end{array} $ oxidation of ethanol	
(b)	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$ $\frac{1}{2}$ mark : correct fomula	[1]
	¹ / ₂ mark : correct balancing	
(c)	carbon monoxide	[1]
	Reduces ability of haemoglobin to carry oxygen to different parts of the	[1]
	body.	
	1/2 mark : difficulty in breathing	

# PAPER 3 SECTION A [45 marks]

8	(a)(i)	It needs gain 1 electron from another metal to become stable	[1]
		Eg: sodium, lithium, any metals stated in the expantion	[1]
		Bonding showed through brackets : ½ mark Correct representation dot and cross, charges and metals used in explanation : ½ mark	[1]
	(a)(ii)	Chlorine can share electrons with another non-metal.	[1]
	1 (-/)	Eg : hydrogen, chlorine, any appropriate non-metal stated clearly	[1]
			[1]
		H O CI	· .
		Bonding showed through overlapping circle : ½ mark Correct representation of dot and cross, number of electrons shared and non-metal used in the explanation : ½ mark	×
	(b)	Ionic compound has high melting and boiling point (1/2 mark) while covalent compounds has low melting and boiling point (1/2 mark)	[1]
		Large amount of energy required to break the strong electrostatic forces between the oppositely charged ions, in ionic compounds. (1/2 mark)	[1]
		Weak intermolecular forces in covalent compounds required low amount of energy to break the forces of attraction. (1/2 mark)	
	1	Ionic compound conducts electricity in molten and aqueous stat ((1/2	[1]

	mark), while	e covalent compound does not conduct electricity (1/2 mark)
	This is due mark) and	to the presence of mobile ions in ionic compounds(1/2 [1] there are no mobile ions in covalent compound (1/2 mark)
r		

· · · ·

с*ц* 

· · ·

5

## BP/S4ESC/45

newshire and the

10	(a).	Either one correct combination of homologous series and general	[2]
		formula :	19 ¹
		Alkane, CnH2n+2	
		Alkene, C _n H _{2n}	
	3 ² •	Alcohol, CnH2n+1OH	
		Carboxylic Acid, CnH2n+1COOH	147
	(b)	Moving down from one member to another member of a homologous	[1].
		series, there is addition of 1 Carbon and 2 Hydrogen.	· . 1
		Therefore the relative molecular mass increases by $12 + 2(1) = 14$ Any one of the physical properties :	[1]
		Melting & boiling points increases	[']
		Viscosity increases	
		Density increases	
		Flammability decreases	
		Trend stated : increase / decreas	[1]
	(C)	Name : Butanol	[1]
		Molecular formula : C ₄ H ₉ OH	[1]
		нннн	[2]
		H H H H $H - C - C - C - O - H$	
	1	H-C-C-C-C-O-H	
	1	1mark : Hydroxyl group1 mark : correct structure	[1]
		Percentage of carbon = $4(12)$	111
		$\frac{4(12)}{10(1)+1(16)+4(12)} \times 100$	
		= 68.86%  or  68.9%	
11	(a)	All the metals have 1 valence electrons	[1]
		Accept : need to lose 1 electron	
	(b)	Add the metals in a test tube containing water/acid.	[1]
		A compound used must be stated clearly	
		Observe the reaction / effervescence produced in each of the test tube.	[1]
		Accept : displacement or any other observations stated	[4]
		Lithium will produce least effervescence or slow reaction as it is placed	[1]
		top in the group 1. Sodium will produce the most number of effervescence or fast reaction	
		as it is placed below potassium and lithium in group 1	
		Accept : comparison is made	
-	(C)	Ceasium will produce an explosion when reacted with water/acid.	[1]
		Ceasium is more reactive than lithium, potassium and sodium.	[1]
		Ceasium is placed below lithium, potassium and sodium in the periodic	[1]
		table.	· .
		Accept	
		Esier to lose electrons as the number of shell is more	
		$Cs + H_20 \rightarrow CsOH + H_2$	[1]
	-	OR any correct equation	
	(d)	These metals are extracted through electrolysis	[1]
		These metals are placed high in the reactivity series.	[1]

. .

## ADMIRATLY SECONDARY SCHOOL COMBINED SCIENCE (PHYSICS/<u>CHEMISTRY</u>/BIOLOGY)

# PRELIMINARY PRACTICAL EXAM 2017 PREPARATORY INSTRUCTIONS FOR LABORATORY STAFF

#### CONFIDENTIAL

Great care should be taken that any confidential information given does not reach candidates either directly or indirectly.

Subject: Chemistry

Please complete parts A, B, C where applicable

#### A) Apparatus / Materials:

Items to be supplied by the Centre (per set per candidate unless otherwise specified)

S/No	Items (Apparatus / Material)	Quantity	Remarks
1.	Solid X – Copper(II)chloride	(approx. 20cm ³ )	Dispense the solution into the stoppered vial labelled solution X.
2.	Solution Y – Lead nitrate	1 sealed packet / bottle	Dispense the solution into the stoppered vial labelled solution Y.
		(approx. 20cm³)	
3.	Zinc granules	1 packet	5 – 6 granules per packet
4.	Hard glass test tubes	6 nos	
5.	Boiling tubes	2 nos	
6.	Test tube holder	1 no.	
7.	Test tube rack	1 no	
8.	Spatula	1 no	
9.	Lighter	1 no	
10.	Goggles	1 no	
11.	Red, blue litmus papers	1 set	
12.	Delivery tube	1 no	
13.	Glass rod	1 no	
14.	Wooden splint	2 pcs	
15.	Dilute nitric acid	1 bottle	· ·

S/No	Items (Apparatus / Material)	Quantity	Remarks
16.	Dilute hydrochloric acid	1 bottle	a Bart Carl and All All a
17.	Aqueous sodium hydroxide	1 bottle	
18.	Aqueous ammonia	1 bottle	
19.	Aqueous silver nitrate		May be placed at side bench
20.	Aqueous barium chloride	-	May be placed at side bench

#### B) Additional Instructions to Laboratory Staff / Subject Supervisor / Invigilator

- 1. All standard reagents not mentioned above would be available to candidates at students bench or side bench as per routine
- 2. Candidates should be warned to warm the solution carefully (precaution to be written on whiteboard on day of exam)
- Additional unknown samples labelled X and Y should be available on teachers' bench Cloths or tissues should be available in case of spillages.
- 4. Additional apparatus and materials on stand-by should be available at the teacher's bench.

C) Action at changeover during each shift (for Laboratory Staff / Subject Supervisor)

- 1. Replace the insulation if it has become wet.
- 2. Replace all personal items used by candidates
- 3. Issue fresh samples of unknown X and Y

NAME:	1971 - MITAL - STUTION - 11 - 1	NO: CLASS:	
а Э. М.	ADMIRALT	Y SECONDARY SCHOOL	
	· · · ·		
		Admiralty	* x
	PRELIMINAR	Y EXAMINATION 2017	••.
-	CODE	: 5076/5, 5078/5	
	SUBJECT	: Science (Chemistry)	
	LEVEL/STREAM	: Secondary 4 Express / 5 Normal Acad	demic
	DATE	: 17 August 2017	
	DURATION	: 1 hour 30 minutes	

## Instructions to candidates:

Write your name, index number and class in the spaces at the top of this page. Write your answers in the spaces provided on the question paper.

## INFORMATION FOR CANDIDATES

The number of marks is given in brackets [ ] at the end of each question or part question. You are advised to spend 45 minutes on this question.

CHEMISTRY SECTION

For Examiner's Use				
Total	/ 15			

## PLEASE DO NOT TURN OVER THE PAPER UNTIL YOU ARE TOLD TO DO SO

This Question paper consists of 5 printed pages including this cover page.

You are provided with a solid X and solution Y. Both solid X and solution Y consists of one cation and one anion each.

Carry out the following experiments and test any gasses evolved. Carefully record your observations.

The volumes given below, unless referring to drops of solution, are approximate and should be estimated rather than measured.

		Test	observations
(a)		Dissolve the solid salt X in the large test-tube, in distilled water and then add more distilled water until the test-tube is about two-thirds full. Stopper and shake the test-tube thoroughly.	Crystal blue solid dissolved to <u>form</u> <u>blue solution.</u> [1]
(b)	(i)	Transfer 2 cm ³ of the solution X in a clean test tube. Add 1 cm ³ of nitric acid, followed by 2 cm ³ of silver nitrate solution.	No changes observed
	(ii)	Transfer 2 cm ³ of solution <b>X</b> in a clean test tube. Add dilute sodium hydroxide solution dropwise, with shaking, until no further change is observed.	[1] Light blue ppt is formed, insoluble in excess sodium hydroxide. [1]
	(iii)	Transfer 2 cm ³ of solution <b>X</b> in a clean test tube. Add dilute ammonium hydroxide solution dropwise, with shaking, until no further change is observed. Leave this test-tube to stand in the test-tube rack.	Blue ppt is formed, soluble in excess ammonium hydroxide and form a dark blue solution.
			[1]

	test	observations
(iv)	Transfer 2 cm ³ of solution X in a clean	· · ·
	test tube.	Effervescence were observed.
	To this test-tube, add 3-4 pieces of zinc.	When left for standing, the solution changes colour from blue to pale
	Leave this test-tube to stand in the	blue/light green.
	test-tube rack.	free and a second
		Zinc dissolve in the solution
		Black solid deposited on the zinc granules.
		Any 2 observations [2]

		test	observations
(c)	(i)	Transfer 2 cm ³ of solution Y in a clean	White ppt is formed.
		test tube.	Soluble in excess sodium hydroxide
			forming colourless solution.
		Add dilute sodium hydroxide solution	
		dropwise, with shaking, until no further	5 at 1
		change is observed.	1
			[2]
	(ii)	Transfer 2 cm ³ of the solution Y in a	· · · · · · · · · · · · · · · · · · ·
		clean test-tube.	Effervescences observed
{			
1			Pungent smell
		Add aqueous sodium hydroxide, then	
		add aluminum foil. Warm gently.	Blue litmus paper remained blue.
			Ded literus shan and blue
			Red litmus changed blue.
	(111)	Transfer 2 cm ³ of the solution Y in a	[1]
	(,)	clean test-tube.	
		ofean cor coe.	
		Add 1 cm ³ of hydrochloric acid, followed	White ppt formed
		by $2 \text{ cm}^3$ of barium chloride solution.	white ppt formed
			F11

 Using your observations in (b), give 3 conclusions. Give evidence to support each of your conclusions.

conclusion 1 : Cu²⁺ is present in solid X.

#### evidence 1:

Blue ppt is formed in part b(ii) when sodium hydroxide is added dropwise and it is insoluble in excess sodium hydroxide.

Blue ppt is formed in part b(iii) when ammonium hydroxide is added dropwise and it is insoluble in excess ammonium hydroxide.

conclusion 2 : No CI= in solid X

evidence 2 : No white ppt is formed in part b(ii) when nitric acid is added, followed by silver nitrate solution.

<u>conclusion 3 :</u> Zinc displaced  $Cu^{2+}$  / cation from solution X / Zinc is more reactive that  $Cu^{2+}$  / cation in solution X

### evidence 3:

The blue color of solution X become pale blue/ light green when zinc is added in part b(iv).

Black solid deposited on zinc granules

[3]

(ii) Solution Y contains either lead or zinc ion. Describe how you would carry out some test to confirm the identity of cation in solution Y.

Add ammonium hydroxide solution dropwise and in excess to solution Y.

If white ppt formed is soluble in excess then forming a colourless solution, then the cation is Zn²⁺. If white ppt formed is insoluble in excess, then the cation is Pb²⁺.

(d) (i)

(iii) Deduce the anion in solution Y.

anion : NO3- / Nitrate ion

explanation: <u>ammonia gas is produced in part c(ii)</u>, <u>blue litmus paper turned</u> red.[1]

End of Paper

# NOTES FOR QUALITATIVE ANALYSIS

#### Test for anions

anion	test	test result
carbonate (CO32-)	add dilute acid	effervescence, carbon dioxide produced
chloride (C1 ⁻ ) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ [¬] ) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻ ) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

### Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH₄⁺)	ammonia produced on warming	_
caícium (Ca2+)	white ppt., insoluble in excess	no ppt.
copper(II) (Cu ²⁺ )	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺ )	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺ )	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
lead(II) (Pb ²⁺ )	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
zinc (Zn ²⁺ )	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

### Test for gases

gas	test and test result
ammonia (NH ₃ )	turns damp red litmus paper blue
carbon dioxide (CO ₂ )	gives white ppt. with limewater (ppt. dissolves with excess CO ₂ )
chlorine (Cl ₂ )	bleaches damp litmus paper
hydrogen (H ₂ )	"pops" with a lighted splint
oxygen (O ₂ )	relights a glowing splint
sulfur dioxide (SO2)	tums aqueous acidified potassium manganate(VII) from purple to colourless