Class Index Number Name

ST HILDA'S SECONDARY SCHOOL

Secondary Four Express/ Five Normal Academic

PRELIMINARY EXAMINATION 2017

General Certificate of Education Ordinary Level

SCIENCE (PHISTRY)

5076/01

Paper 1 Multiple Choice

August 2017

1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, index number and class on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 17.

A copy of the Periodic Table is printed on page 18.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use

PHYSICS /20

CHEMISTRY /20

TOTAL /40

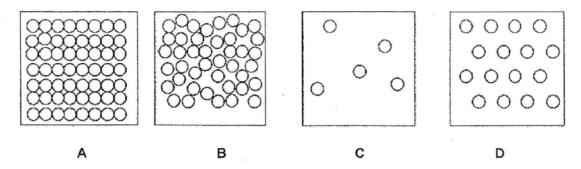
Setters: Mr Vincent Tham, Mdm Sharizah

Vetters: Ms Suhaila, Ms Rachel Teo, Mr Raymond Ong

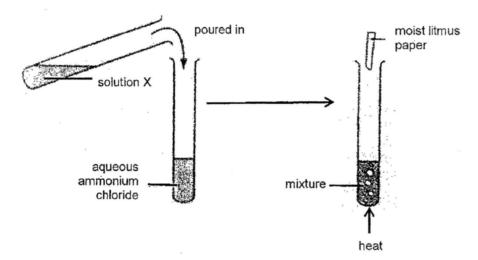
Mrs Lim SY, Ms Peh HS, Mrs Ho CK, Mr Abdul Bari,

Mr Eric Tan, Mr Charles Neo

This document consists of 18 printed pages.


The Periodic Table of the Elements

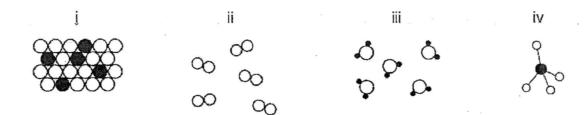
	12 14 16 19	L CO	Gardon nitrogan oxygen illuorine	28 31 32 35.5	S C1	phosphorus 15	79 80	SeBr	selenium bromlne 34 35	128 127	Te	tellurium 52	1	Po At	polonium astatine radon 84 85 86			
	12 14 16 19	L CO	Gardon nitrogan oxygen intorine	28 31 32 35.5	S C1	phosphorus sulfur chlorine	79 80	SeBr	selenium bromlne 34 35	128 127	Te	tellurium jodine 52 53	1	Po At	polonium astatine 84 85			
	12 14 16		caroon nitrogen oxygen 6 7 8	28 31 32	ص م	phosphorus sulfur 15	79	Se	selenium 34	128	e e	tellurium 52	1	Po	polonium 84			
	12 14	2 1	caroon murogan 6 7	28 31	۵.	phosphorus 15	75	As	anic			>			_			
	57 () {	caroon 6	28	Si	_			arse 33	125	Sp	antimor 51	209	ö	bismuth 83			
	Ξ.	α §	5 boron 6	-		silicon 14	73	g	germanlum 32	119	S	# DS	207	유	lead 32			2
				27	A!	aluminium 13	20	Ga	galllum g	115	Ľ,	indlum 49	204	<u></u>	thallium 81			
			لتسيي				65	Zu	zinc 30	112	S	cadmlum 48	201	Ê	mercury 80			
							64	ਹ	copper 29	108	Ag				blog 79			
							59	Z	nickel 28	106	Pd	palladium 46	195	立	platinum 78			2 X 2
							- 28	රි	cobalt 27	103	枟	thodium 45	192	ij	indium 77	-		
H hydragen	ų ž						56	E O	ion 9	101	R	uthenium	190	SO	osmium 76			
	ļ						55	M	папданеѕе	ı	2	technetium 43	186	Re	rhenium 75			
	lass	-					1	່ວ	chromium 72	96	Mo	ralybdenum	1	3	tungsten 74			
Key	e atomic n	nic symb	пате тъег				51	>	vanadium 23	93		opinm	181		ntalum			
	relativ	ator	atomic nu				48	F	titanium 22	91	Zr	mnino	178	Ī	hafnium 72			
ı				ı			1	Sc	scandium 21	89		trium	139	- - - -	lanthenum *	1	Ac	aotinium †
	o 1	Be 	beryllium 4	24	Mg	nagnesium 12.	40		kium	88	స	mrigue	3	Ва	.문	1	Ra	nadium 88
	7			23	Na	mnipo		¥				ndium	133	Cs	ssium	,	亡	franclum 87
	Key	ē	6 A	um	9 Be berylium 4 ator	9 Be berylium 4 4 24 Mq	9 Be beryllium 4 A 24 Mg magnesium 12	Key 7 9 relative atomic mass atomic symbol atomic symbol name name atomic number 11 Be atomic symbol name name atomic number 23 24 Atomic number Na Mg addium nagnesium nagnes	Key E E E E E E E E E	Second S	Second S	Secondium Scandium Scandium	Se	Second S	Second S	Se	Se	February February


150 152 157 159 162 165 167 169 173	Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	marium europium gadolinium terblum dysprosium holmium erbium thulium ytterbium	61 62 63 64 65 66 67 68 69 70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a	nerotunium americium curium berkelium californium ainsteinium fermium mendelevium nobelium	93 94 95 96 97 98 99 100 101 102	
162	۵	n dysprasiu	99	ı	ŭ	um californium	98	
159	2	lum terblur	65					-
157	Gd	im gadolini	64				O	-
152	Ш	n europiu	63	1	Am	n americit	95	
150	Sm	m samariur	62		P	n plutoniur	94	
1	Pm	promethiur	61	1	aN	neotuplur	93	
144	N	neodymiu	. 09	238			92	-
141	à	Praseodymium	59	1	۵	protactinium	91	-
140	S. C.	cerium	58	232	4	thorium	90	

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

21 Substance Y melts at -120 °C and boils at -10 °C.
Which diagram represents the arrangement of the particles in substance Y at -30 °C?

An aqueous solution X was reacted with aqueous ammonium chloride and the mixture was heated. A gas, Y, is produced which changes colour of the moist litmus paper.


A gas Y, is produced which changes the colour of the moist litmus paper.

What are solution X and gas Y?

	solution X	gas Y
Α	aqueous sodium hydroxide	ammonia
В	aqueous sodium hydroxide	chlorine
C	dilute sulfuric acid	ammonia
D	dilute sulfuric acid	chlorine

- 23 Which statement about an atom is correct?
 - A Each element has only one nucleon (mass) number.
 - B The nucleon (mass) number can be less than the proton (atomic) number.
 - C The nucleon (mass) number can equal the proton (atomic) number.
 - D The number of neutrons never equals the number of electrons.

24 Which of the following best describes the substances shown below?

	elements	compounds	mixtures
Α	ii	i, iii, iv	none
В	i, ii	iv	iii
С	ii	iii, iv	i
D	ii, iii	iv	i

- An atom of element X is represented by ${}^{7}_{3}X$. Which statement about this atom of X is correct?
 - A It is in Group III of the Periodic Table.
 - B It is in Group VII of the Periodic Table.
 - c The total number of protons and electrons is 6.
 - D The total number of protons and neutrons is 10.
- 26 Element Z has three electrons in the outer shell.
 What is the formula of the chloride and oxide of element Z?

	chloride of element Z	oxide of element Z
Α	ZC <i>l</i>	ZO
В	ZCl ₃	Z ₂ O ₃
С	Z ₃ C <i>l</i>	ZO ₃
D	Z ₃ Cl ₃	Z ₃ O ₂

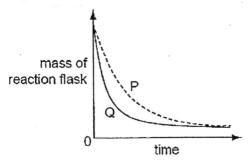
- 27 The formulae of four covalent compounds are shown
 - I H₂O
 - II CO₂
 - III CH₃OH
 - IV CH₃COOH

In which following pair of molecules does oxygen form at least one double bond in both molecules?

- A land II
- B | and |||
- c II and IV
- D III and IV
- 28 A 6.0 g of pure carbon is burnt completely in oxygen.

$$C + O_2 \rightarrow CO_2$$

Which volume of carbon dioxide gas is produced, at rtp?


- A 12 dm³
- B 24 dm³
- C 48 dm³
- D 96 dm³
- 29 The scheme shows four stages, I to IV, in the conversion of solid candlewax, C₃₀H_{62,} into carbon dioxide and water.
 - $I \quad C_{30}H_{62}(s) \rightarrow C_{30}H_{62}(l)$
 - II $C_{30}H_{62}(l) \rightarrow C_{30}H_{62}(g)$
 - III $C_{30}H_{62}(g) + 45.5 O_2(g) \rightarrow 30 CO_2(g) + 31 H_2O(g)$
 - IV $30 \text{ CO}_2(g) + 31 \text{ H}_2\text{O}(g) \rightarrow 30 \text{ CO}_2(g) + 31 \text{ H}_2\text{O}(l)$

Which stages are exothermic?

- A l and II
- B II and III
- C III and IV
- D I and IV

30 A student investigates the rate of reaction between marble chips and dilute hydrochloric acid. The loss in mass of the reaction flask is measured.

The graph shows the results of two experiments, P and Q.

Which of the following change explains the difference between P and Q?

- A A catalyst is added in P
- B A higher temperature is used in P
- C Larger marble chips are used in Q
- D Hydrochloric acid of a higher concentration is used in Q
- 31 Which of the following is an example of a redox reaction?
 - A $2SO_2 + O_2 \rightarrow 2SO_3$
 - B Ba²⁺ + SO₄²⁻ → BaSO₄
 - C $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$
 - D $H^+ + OH^- \rightarrow H_2O$
- 32 Which reactants could be used safely to prepare potassium chloride?
 - A aqueous potassium hydroxide and dilute hydrochloric acid
 - B aqueous potassium sulfate and aqueous sodium chloride
 - c potassium and aqueous sodium chloride
 - D potassium and dilute hydrochloric acid

The surface of aluminium saucepans will often oxidise and form a layer of aluminium oxide. This layer of aluminium oxide can be removed by reacting it with both acids and alkalis.

What can you say about the nature of aluminium oxide?

- A Aluminium oxide is acidic.
- B Aluminium oxide is amphoteric.
- C Aluminium oxide is basic.
- D Aluminium oxide is neutral.
- 34 Which of the following is not a property of Group I metals?
 - A They are soft and can be cut with a knife.
 - B They corrode rapidly when exposed to oxygen in the air.
 - C They produce an acidic solution when they react with water.
 - D They react rapidly with water producing hydrogen gas.
- Three metals, X, Y and Z were heated separately with oxides of four metals, P, Q, R and S, to find out the order of reactivity.

The results are shown in the table.

metal		metal oxide									
	Р	Q	R	S							
Х	×	×	×	×							
Υ	✓	✓	. ×	✓							
Z	×	✓	×	×							

key

√ = reaction observed

× = no reaction observed

What is the order of reactivity of the metals from the least reactive to most reactive?

- $A X \rightarrow Z \rightarrow Y$
- $B X \rightarrow Y \rightarrow Z$
- $C Y \rightarrow Z \rightarrow X$
- D $Z \rightarrow Y \rightarrow X$

36 In how many of the following can kerosene be used as the energy source?

aircraft	air conditioning units	cars
domestic cooking	heavy lorries	power stations

- A 1
- **B** 2
- **C** 3
- D 4
- 37 A steel manufacturing plant is built near to a city.

 The limestone buildings in the city begin to crumble.

Which gas is most likely to cause this damage?

- A carbon dioxide
- B carbon monoxide
- C oxygen
- D sulfur dioxide
- 38 The general formula of the alkanes homologous series is C_nH_{2n+2} .

Which physical property decreases as n increases?

- A boiling point
- B flammability
- C melting point
- D viscosity
- 39 The diagram shows the structure of a polymer, X.

Which reactant does not react with the monomer of the polymer, X?

- A aqueous bromine
- B hydrogen
- C sodium
- D steam

40 The table below shows the results of tests carried out on compound X.

test	result
bromine water is added	bromine water is decolourised
sodium carbonate is added	colourless acidic gas evolved

Which formula represents compound X?

17

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

S
7
7
2
_
a
-
Elements
O
_
4
4
of the
0
-
Table
.00
12
.=
7
0
-
7
Periodic
-
The
Ē
2

	0	He Hellum Pellum	20	Š	neon 10	40	¥	argon 18	84	ż	krypton 36	131	Xe	xenon 54	1	R.	radon 86					175 Lu	Jutetlum 71	1	ב	lawrencium 103
	ΙΙΛ		19	Ľ.	fluorine 9	35.5	ö	chlorine 17	80	മ്	bromine 35	127		todine 53		¥	astatine 85					75 Yb	5		Š.	nobelium 102
	ΙΛ		16	0	exygen 8	32	တ	sulfur 16	79	Se	setentum 34	128	Te	ty tellurium 52	١	Ъо	n polonium 84					169 Tm	_	1	PW.	mendelevium 101
	>		14	z	nitrogen 7	31	۵	phosphorus 15		As	arsenio	122	S	antimony 51	209	ö	blsmuth 83					167 Er	erblum 68	1		fermium 100
	>		12	ပ	carbon	28		allicon 14		8	germanium 32	119			207	£	lead 82					59 오	holmium 67	ŧ	ខ្ល	californium einsteinium 98 99
	III		1	മ	boron 5		Α	aluminium 13	70		gallium 31	115	H	Ω	204	1	thalllum 81					162 Q	dysprosium 66	ι		
									65	Zu	zlnc 30	112	3	cadmium 48	201	Hg	mercury 80					159 Tb	terbium 65	1	ă	berkelium 97
									20	ਟੋ	copper 29	108			197	Αr	plog 79					157 Gd			င်	n curtum 96
Group									59	Z	nickei 28	106	Б	paliadium 46	195	苉	platfnum 78					152 Eu	2 00	1	Am	americiun 95
Ğ		16.	1						59	රි	cobalt 27	103	뜐	modium 45	192		Indium 77					150 Sm	0) 8		Pr	piutonium 34
		1 H hydrogen 1							56	Fe	lon G	101	R	uthentum 4	190	ő	Osmium 76					- F	8.0	ı	ž	neptunium 93
									55	Mu	m chromlum manganess 24 25 2	1	ည	molybdenu technetium n m 43 43	186	Re e	rhenium 75					2 8	- 5	238	C	uranit 12
									52	ပ်	chromium 24	96	ğ	molybdenu m 42	184	3	tungsten 74					74.1 Pr	ргалеодутили 59	1	D B	protactiniun 91
									51	>	vanadlum 23	93	2	nioblum 41	181	Ta	tantalum 73					140 Ce 40	cerium 58	232	무	thorlum 90
									48	F	titanium 22	91	7	zirconium 40	178		hafnium 72	*********						ic mass		c) number
									33	လွ	scandium 21	88	>	yttrium 39	139	La	lanthanum 57 *	1 2	n actinium	d series	series			a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		6	8	beryffum 4	24	Mg	magnesium 12	40	ပ္မ	calcium 20	88	ഗ്	strontium 38	137		barlum 56	1 0	radlum 88	*58-71 Lanthanoid series	†90-103 Actinoid series					
			7	=	ithlum 3	23		godlum 11	39	×	potassium 19	85	R _b	nubidium 37	133	S	caesium 55	ı ü	8	*58-71 L	190-103			Кеу	×	ف

Index Number

Name

ST HILDA'S SECONDARY SCHOOL

SECONDARY FOUR EXPRESS / FIVE NORMAL ACADEMIC PRELIMINARY EXAMINATION 2017

General Certificate of Education Ordinary Level

SCIENCE

Paper 3 Chemistry

5076/03 & 5078/03 AUGUST 2017

Candidates answer on the Question Paper. No Additional Materials are required.

1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer any two questions.

Write your answers in the spaces provided.

A copy of the Data Sheet is printed on page 14.

A copy of the Periodic Table is printed on page 15.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The use of an approved calculator is expected, where appropriate.

For Examiner's Use							
Section A	/ 45						
Section B	/ 20						
Total	/ 65						

Setter: Mdm Sharizah

Vetters: Mrs Lim SY, Ms Peh HS, Mrs Ho CK

Mr Eric Tan, Mr Abdul Bari, Mr Charles Neo

This document consists of 15 printed pages including the Cover Page.

Section A

Answer **all** the questions in this section. Write your answers in the spaces provided on the question paper.

When completed, Table 1.1 describes the synthesis of two gases and their corresponding laboratory tests. Complete the table by filling in the blank boxes.

Reaction	gas produced	laboratory test	result of test
Decomposition of hydrogen peroxide	oxygen		
calcium + cold water		insert a lighted splint at the mouth of the test tube	

Table 1.1

[2]

2	In each of these redox equations, identify the oxidising agent and the reducing agent.									
	(a)	$3C + Fe_2O_3 \rightarrow 3CO + 2Fe$								
		oxidising agent reducing agent	[1]							
	(b)	$Mg + Cu^{2+} \rightarrow Mg^{2+} + Cu$								
		oxidising agent reducing agent	[1]							
3	Nam	ne a suitable process to separate								
	(a)	three miscible liquids with different boiling points;								
			[1]							
	(b)	a mixture of sodium chloride and iodine;								
			[1]							
	(c)	the products from reacting potassium sulfate and barium nitrate.								
			- 47							

2017/Prelims/Sc(Chem)/P3/4Exp5NA

[Turn over

4 Fig. 4.1 shows the structural formula of a molecule of drug called LSD. (Lysergic acid diethylamide)

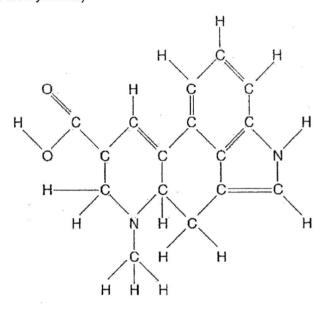


Fig. 4.1

(a)	vvrite	down the molecular formula of LSD.
		[1]
(b)		is an unsaturated molecule. Describe a chemical test to prove that LSD is saturated molecule.
	Test .	·
	Obse	rvation
		[1]
(c)	LSD	dissolve in water to produce a weakly acidic solution with pH 4.
	(i)	Explain why LSD produces a weakly acidic solution.
		[1]
	(ii)	On Fig. 4.1, circle the functional group present in the LSD molecule which is responsible for the acidic nature.
		[1]

5 Students give their own special symbols to five non-metallic elements. All five non-metals are in the same group of the Periodic Table. The special symbols are shown in Fig. 5.1.

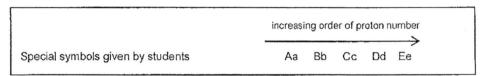


Fig. 5.1

The students know the following:

- Sodium, Na, reacts with the non-metal of the given symbol, Bb.
 The compound formed has the chemical formula NaBb.
- 2. The elements exist as diatomic molecules.

(a)	(1)	in which group of the Periodic Table are these non-metallic elements placed?
		[1]
	(ii)	Choose from Fig. 5.1 the special symbol of the element which is most likely to be a solid at room temperature and pressure.
		[1]
(b)	(1)	Suggest the name of the element given the special symbol Bb by the students.
		[1]
	(ii)	Write the special symbol of the element most likely to displace Bb from a solution containing ions of Bb.
		[1]
	(iii)	Use the special symbols to write an ionic equation for the displacement reaction in (b)(ii). State symbols are not required.
		[2]

6		ns of i	non-metallic elements can combine with other atoms to form many different
	(a)		of these compounds is carbon tetrachloride, CCl_4 , an organic solvent with low ng and boiling point and is a non-conductor of electricity.
		(ii)	Name the type of chemical bonding present in carbon tetrachloride.
			[1]
		(ii)	Draw a 'dot-and-cross' diagram to show the arrangement of electrons in a molecule of carbon tetrachloride in the space below. Show only the outermost electrons. [Proton numbers: C, 6; Cl, 17]
			*
			[2]
	(b)	this o	her of these compounds is magnesium chloride. Unlike carbon tetrachloride, compound has a high melting and boiling point and is a conductor of electricity molten.
		Write	e the chemical formula of magnesium chloride.
		*****	[1]
	(c)		your knowledge of the bonding in carbon tetrachloride and magnesium chloride plain the difference in their
		(i)	melting and boiling points;
		1	· · · · · · · · · · · · · · · · · · ·
			[2]
		(ii)	electrical conductivity.
			· · · · · · · · · · · · · · · · · · ·
			[2]

2017/Prelims/Sc(Chem)/P3/4Exp5NA

7	The equation	below	shows	the	salts	formed	from	the	reaction	between	lead(II)	nitrate	and
	zinc sulfate.												

$$Pb(NO_3)_2 + ZnSO_4 \rightarrow PbSO_4 + Zn(NO_3)_2$$

A student wanted to prepare one of the two products in the above reaction in the laboratory. He was told that only the following reagents are available for use.

dilute nitric acid	lead(II) hydroxide powder	aqueous lead(II) nitrate
dilute sulfuric acid	aqueous zinc chloride	zinc carbonate powder

(a) What volume (in cm³) of 0.100 mol/dm³ of lead(II) nitrate solution is required to react completely with a solution containing 0.0250 mol of zinc sulfate to produce the salts above?

	volume of lead(II) nitratecm ³ [2]
(b)	Suggest two reagents from the above list that can be used to prepare one of the products.
	State the product which you wish to prepare:
	Two reagents that can be used to prepare your chosen product:
	and[1]
(c)	Describe the steps needed to prepare a pure and dry sample of the product you have chosen in (b) .
	[4]

2017/Prelims/Sc(Chem)/P3/4Exp5NA

[Turn over

- 8 The student investigated the temperature change when sodium hydrogencarbonate was added to excess dilute hydrochloric acid.
 - Fig. 8.1 shows the apparatus used during the investigation.

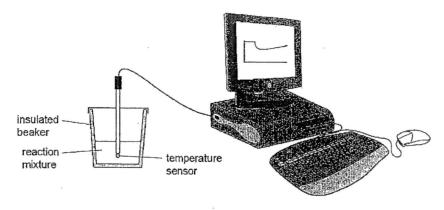


Fig. 8.1

Temperature measurements were displayed on the computer screen as a graph of temperature against time. This graph is shown in Fig. 8.2.

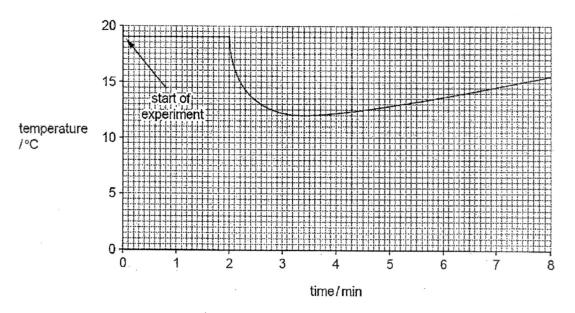
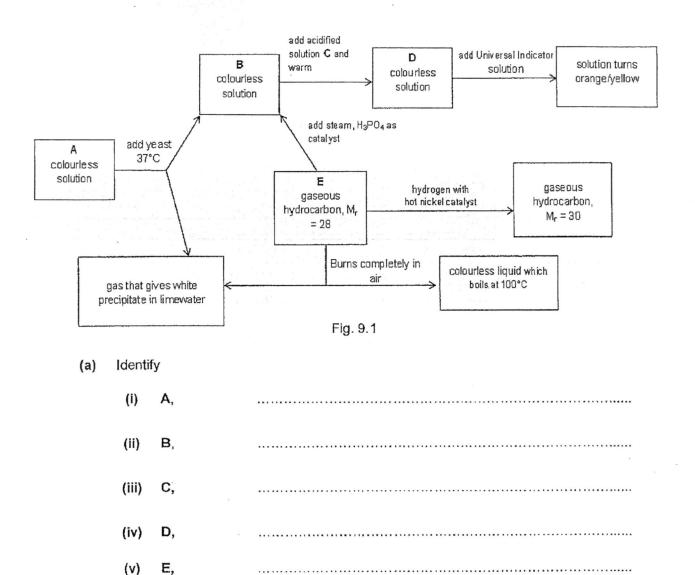


Fig. 8.2

- (a) On the graph in Fig. 8.2, mark with an X the point where sodium hydrogencarbonate was added to the dilute hydrochloric acid.
- (b) Calculate the temperature change shown in Fig. 8.2 that occurred during the reaction.


temperature change°C

[1]

[1]

(c)	Use the results during the rea hydrochloric acid	action between			
			 •	 ••••••••	
			 	 •	· · · · · · · · ·
					101

9 Fig. 9.1 describes some of the reactions of an organic compound E.

[5]

(b)	hydro	the balanced carbon E with hydro		equation	to	represent	the	reaction	between
		• • • • • • • • • • • • • • • • • • • •							[1]
(c)		carbon E undergoe i polymer.	s further re	action unde	er hig	h heat and p	oressu	re; with a c	atalyst, to
	(i)	State the name of	the polyme	er formed.					
					· · · · · ·				[1]
	(ii)	Draw the structure	of one rep	eat unit of	this p	olymer.			
				•					[1]
	(iii)	State one disadva	ntage of us	sing the poly	ymer.				

									[1]

Section B

Answer any **two** questions in this section. Write your answers in the spaces provided.

The Periodic Table printed on page 15 lists the elements in increasing proton number.
Use the Periodic Table to help you answer these questions.

(a)	(1)	and period. Using any element from the first 20 elements in the Periodic Table, explain how the electronic structure can be used to determine which group and period the element is in.
		[3]
	(ii)	On moving across from Group I to Group VII, the character of the elements changes. Describe and explain the change.
		[3]
(b)	Sodi	um and the element of proton number 12 can undergo similar chemical reactions.
		cribe two of these similar reactions. Write a balanced chemical equation for one of reactions you have described. Include state symbols.
	Rea	ction 1
	Rea	ction 2
	Che	mical equation
		[4]

2017/Prelims/Sc(Chem)/P3/4Exp5NA

[Turn over

11 Calcium carbonate, in the form of marble chips, react with hydrochloric acid in the reaction shown below.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

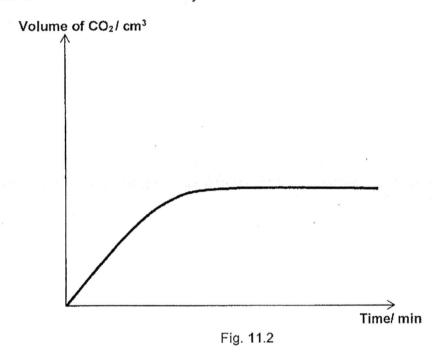
5.0 g of marble chips was added to 60.0 cm³ of 2.0 mol/dm³ hydrochloric acid at room temperature and pressure. The rate of reaction was tracked by measuring the volume of carbon dioxide produced during the reaction at regular time intervals.

Table 11.1 shows the results from the experiment.

time/min	.0	2	4	6	8	10	12	14
total volume of CO ₂ /cm ³	0	240	360	440	460	474	480	480

Table 11.1

(a)	Using the information from Table 11.1, describe how the rate of reaction changes with time.
	[2]
(b)	Use your knowledge of reacting particles to explain the changes in the rate of reaction with time.
	[2]
(c)	Calculate the number of moles of marble chips and hydrochloric acid used in the reaction. Hence, determine the limiting reagent.
	Number of moles of marble chips mol
	Number of moles of hydrochloric acid mol
	[2]


[Turn over

2017/Prelims/Sc(Chem)/P3/4Exp5NA

(d) Calculate the volume of carbon dioxide produced at room temperature and pressure during the reaction.

volume of carbon dioxide[2]

(e) The graph in Fig. 11.2 shows the results obtained when 5.0 g of marble chips was added to 60.0 cm³ of 2.0 mol/dm³ hydrochloric acid.

The experiment above,

is repeated using the 60.0 cm³ of 1.0 mol/dm³ hydrochloric acid.
 Add to Fig. 11.2 the graph you would expect. Label this graph A.

[1]

(ii) is repeated using the same mass of powdered calcium carbonate.

Add to Fig. 11.2 the graph you would expect. Label this graph B

[1]

12	(a)	(i)	Calcium and zinc require different conditions to react with water. By referring to these reaction conditions, justify the relative positions of calcium and zinc in the reactivity series.
			· · · · · · · · · · · · · · · · · · ·
			[3]
		<i>,</i>	. Well- a halomand shareful or agent to the first of the second shareful of the second shar
		(ii)	Write a balanced chemical equation for one of the reactions you described in (a)(i).
			[2]
	(b)	Meta	ls can be extracted in many different ways.
			ain why carbon can be used to obtain iron from iron(III) oxide but not to obtain um from calcium oxide.
			[2]
	(c)		Statue of Liberty in New York is made from iron frame covered with copper plates. 004, work had to be carried out to stop the iron frame from rusting away.
		The i	ron frame was rusting much faster than normal when it was in contact with copper.
		Expla	ain why copper in contact with iron causes the iron to rust at a faster rate.
			[2]
	(d)		est one reason why some countries concentrate more on recycling copper than on sling iron.
			······································
			[1]

2017/Prelims/Sc(Chem)/P3/4Exp5NA

[Turn over

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

	(0	He Helium	8	Š	10	40	Ar argon 18	2 주	krypton 36	131	×e	54	l C	radon 86					175	큭	1-	1 _	19 N	
		>		19	LL.	fluorine 9	35.5		8 6	bromine 35	127	₩ :	53 53	1 4	astatino 85					173	Yb	70	1 2	No nobelium 102	
		>		16	0	oxygen 8	32	sulfur 16		8			. 164 cm	1 0	polonlum 84					160		69		MC mendelevlum 101	1
		>		14	Z	nitrogen 7	31	phosphorus 15	75 As	arsenic 33		Sp	51	209	blsmuth 83					187	-	68		fermium 100	
		≥		12		carbon 6	28	Sillon Non	73 Ge	germanium 32	119	S.	50 m	207	lead 82						2 2 1	29	1 1	ES elnsteinlum 99	
ts.				11	m	boron 5	1	A1 stuminium 13	70 Ga		115	Ľ,	indium 49	204	thallium 81					460	D V	99	1 (8 5	200
The Periodic Table of the Elements									65 Zn		112	8	dadmium 48	201	mercury 80					450	2 C T	65	1	Ë	
he El								٠	\$3	copper 29	108	8	4	197	Pog 62					457	Gd Gd	64	١,	Carring Securing	201
le of t	Group								8 Z	nickel 28	106	P.	46	195	F					450	Eu	63	١,	Am americium 95	192
Tab	ច			,					ც ც	cobatt 27	1	듄	modium 45	192	Indium 77					450		62		Pu. phtonium	24
riodic			1 H hydrogen						85 E	26	101	Z.	44	190							Pm	61	1	Np neptrainm	30
he Pe		٠							. 55 Mn	E 2	1	2	technetium 43	186	rhenium 75						N S	59 60 61	m	uranium S	2
F									25.55	2 4	96	Mo	malybdenu technetium n m 43 4	184	tungsten. 74					3	47	59	ı	Pa protactinium 01	50
									55 >	vanadlum 23	93		niobium 41	181	tantefum					3	S o	58	232	thorium	20
									84	3 E		Z	zirconium 40	178	E 6								lo mass	вдшпи (
								53	\$5	scandium 21	89	>	yttrlum 39	139	La lanthanum 57 *	1	Ac	+ 68	d series	series			a = relative atomic mass	X = atomic symbol b = proton (atomic	
		=	Natural designations of the second se	o	Be	beryllum 4	24	Mg magneslum 12	6 C	calcium 20	88	ຜູ	strondum 38	137	barium 58		Ra	88	anthanoi	Actinoid			a = re	X=at	7
				7	<u> </u>	lithium 3	23	c	g ×	potasslum	85	&	rubidium 37		caesium 55	1	T		*58-71 Lanthanoid series	T90-103 Actinoid series			Keya	׸	
201	7/F	²r∈	elims/Sc	(Ci	he	m)/	P3/	4Exp	5NA													П		rn ov	er

CANDIDATE NAME	CLASS
CENTRE NUMBER	O-LEVEL INDEX NUMBER

ST HILDA'S SECONDARY SCHOOL

Secondary Four Express/Secondary Five Normal (A)

PRELIMINARY EXAMINATION 2017

General Certificate of Education Ordinary Level

SCIENCE Chemistry Booklet 5076/05, 5078/05

Paper 5 Practical Exam

August 2017

1 hour 30 minutes

Additional Materials: Nil

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer both questions.

You are advised to spend 45 minutes on each question.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Electronic calculators can be used in this paper.

A copy of the Chemistry Practical Notes is given on Page 5.

Setter:

Vetted by:

2017Sec4E5NPrelimP5ScChem

Total Marks /15

This question paper consists of 5 printed pages including the cover page and the Chemistry practical notes.

You are provided with a sample of solid Z which is a mixture of two salts, X and Y.

Salt X is insoluble in water while salt Y is a water-soluble hydrated salt.

Carry out the following experiments and carefully record your observations in the table.

You should test for any gases evolved. The volumes given are approximate and should be estimated rather than measured, unless otherwise stated.

	tests	observations
(a)	Transfer three spatulas of Z into a large dry hard glass test-tube.	
	Heat Z gently for about 30 seconds for a gas to come out of the tube.	Water droplets/Condensation formed on the upper part of the boiling tube. [1/2] White fumes are given off [1/2] The white solid Z turns yellow. [1/2]
	Test the gas evolved using a piece of damp Indicator Paper strip. Using the colour chart, determine the pH of the gas	pH of gas evolved has a pH value of 11. (accept pH value 8-11). [*1]
	evolved.	Gas evolved has a pungent smell. [1/2]
		Gas produced forms a white ppt in limewater [1/2]
	Continue heating Z very strongly until no further changes are seen.	Upon continued heating, white fumes are given off sublime to form white solids on the upper part of the boiling tube. [*1/2]
	Leave the tube to cool and study the appearance of the residue.	Solid is brown / reddish-brown / orange / grey / charred [*1] [4]
(b)	Transfer two spatulas of Z into a test tube. Add about 3 cm ³ of dilute nitric acid.	Effervescence / Bubbling / Fizzing occurs. [1] Gas produced forms a white ppt in limewater. [1]

Add two spatulas of Z into a boiling tube.

Measure out 10 cm³ of deionized water using the measuring cylinder and pour it into the boiling tube.

Stopper the boiling tube and shake the contents gently for about two minutes.

Filter the contents of the boiling tube, keeping both the filtrate and residue on the filter paper in the filter funnel.

Carry out the tests shown on the next page.

	test on the residue in the filter paper	observations
(c)	Place the filter funnel together with the residue in a clean test-tube. Pour about 3 cm³ of dilute nitric acid onto the residue contained in the filter funnel. To the solution collected in the test-tube, add dilute aqueous ammonia drop by drop, with shaking, until no further change is seen.	Effervescence / Bubbling / Fizzing occurs. [1/2] Green solid on the filter paper turns reddishbrown [1/2] A white ppt [1/2] was formed upon adding aq ammonia dropwise and is soluble in excess aqueous ammonia to give a colourless solution [1/2]. A green ppt was formed, insoluble in excess aqueous ammonia [1/2]

		tests on the filtrate	observations	
(d)	(i)	To 2 cm ³ of the filtrate from Z , add in 1 cm ³ of dilute nitric acid, followed by 1 cm ³ of aqueous barium nitrate.	White ppt is formed. [1]	
٠	(ii)	To another 2 cm ³ of the filtrate from Z , add an equal volume of aqueous sodium hydroxide.	Green ppt is formed. [1]	
		Warm the mixture gently.	Upon warming, the gas produced turns damp red litmus paper blue. [1]	
				[3]

(e) Consider the results of your experiments, give one conclusion about the observations made in part (a) and/or (b). [1]

Any one of the following:

- · The gas evolved from heating Z is an alkaline gas
- Carbon dioxide gas is produced when acid is added to Z in (b).
- Z contains carbonate ions as carbon dioxide gas is produced when acid is added to C in (b).
- Upon heating Z, water droplets are formed, and hence Z contains a hydrated salt. (0m as its stated in qn already)
- (f) Consider the results of your experiments, give one conclusion about the ions present in salt X. Give evidence to support your conclusion. [1]

conclusion:

Salt X contains zinc ions/Zn2+ [1/2]

evidence:

A white ppt is formed that dissolves in excess aqueous ammonia in test (c)

indicates that zinc ions are present in Salt X. [1/2]

conclusion:

Salt A contains carbonate ions/CO₃²⁻ [1/2]

evidence:

Carbon dioxide gas was produced in test (a) when Z was heated and Salt B contains sulfate ions, hence Salt X must contain carbonate ions. [1/2]

(g) Consider the results of your experiments, give **two** conclusions about the ions present in salt Y. Give evidence to support your conclusions. [2]

Any two of the following:

conclusion 1: Salt Y contains iron(II) ions/Fe2+ [1/2]

evidence 1: A green ppt is formed when aqueous ammonia is added to the filtrate in test (dii)/aqueous sodium hydroxide is added in test (diii) indicates that iron(II) ions are present in Salt B. [1/2]

conclusion 2: Salt Y contains ammonium ions/NH₄⁺ [1/2]

evidence 2: Ammonia gas produced in test (diii) upon warming the mixture indicates that ammonium ions are present in Salt Y. [1/2]

conclusion 3: Salt Y contains sulfate ions/SO₄²⁻ [1/2]

evidence 2: White ppt was formed when acidified barium nitrate solution was added to the filtrate in test (di). [1/2]

NOTES FOR QUALITATIVE ANALYSIS

Test for anions

COLITO MINORS									
anion	test	test result							
carbonate(CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced							
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.							
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced							
sulfate (SO ₄ ² -) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.							

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ +)	ammonia produced on warming	-
calcium (Ca2+)	white ppt., insoluble in excess	no ppt.
copper(II) (Cu2+)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
lead(II) (Pb2+)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

est for gases						
gas	test and test result					
ammonia (NH ₃)	turns damp red litmus paper blue					
carbon dioxide (CO ₂)	gives white ppt. with limewater (ppt. dissolves with excess CO ₂)					
chlorine (CI ₂)	bleaches damp litmus paper					
hydrogen (H ₂)	"pops" with a lighted splint					
oxygen (O ₂)	relights a glowing splint					
sulfur dioxide (SO ₂)	turns aqueous acidified potassium manganate(VII) from purple to colourless					

Sec 4E5N Prelim Practical Exam 2017 Prep List

Each candidate will require

- about 3.0 g of a mixture of approximately equal masses of ammonium iron(II) sulfate-6-water, (NH₄)₂SO₄.FeSO₄.6H₂O and zinc carbonate, ZnCO₃, labelled solid Z.
 - This should be mixed on the morning of the exam and then weighed out; [T]
- 2. standard rack of test-tubes with 2 boiling tubes
- bunsen burner (1 each);
- 4. lighter (1 each);
- 5. Indicator Paper strip (2 each) and colour chart
- 6. blue and red litmus papers (2 each)
- 7. filtration apparatus (plastic filter funnel and filter papers (2 each));
- 8. distilled water;
- 9. teat pipettes (2 each);
- 10. spatula (one each);
- 11. measuring cylinder to measure 10 cm3; (1 each)
- 12. delivery tube (1 each);
- 13. stopper for boiling tube (1 each);
- 14. wooden splint (1 each)
- 15. one beaker each placed at sink for rinsing
- 16. Communal Reagents (Labels do not need to include concentrations)
 - (a) aqueous ammonia of concentration 1.0 mol / dm³; [H]
 - (b) aqueous sodium hydroxide of concentration 1.0 mol / dm³; [C]
 - (c) dilute hydrochloric acid of concentration 1.0 mol / dm³; [C]
 - (d) dilute nitric acid of concentration 1 mol / dm³; [C]
 - (e) barium nitrate solution of sufficient concentration to give a positive sulfate test; [T]
 - (f) silver nitrate solution [T]
 - (g) limewater

Note: Additional Preparation

For the Universal Indicator Colour Chart:

Please label the following:

The Universal Indicator Colour Chart can be used to determine the pH of a gas or solution. To determine the pH, observe the colours produced on the Indicator Paper strip and match them with the different colour shades of the standard Universal Indicator Colour Chart.

Sec 4E/5N Sc(Chem) Prelims Exam 2017 Marking Scheme

5076 & 5078: Paper 1

1/21	В	11/31	Α
2/22	Α	12/32	Α
3/23	С	13/33	В
4/24	С	14/34	С
5/25	С	15/35	Α
6/26	B	16/36	В
7/27	С	17/37	D
8/28	Α	18/38	В
9/29	С	19/39	С
10/30	D	20/40	Α

Sec 4E/5N Sc(Chem) Prelims Exam 2017 Marking Scheme Sc(Chemistry): 5076/04 & 5078/4

Qn	Suggested Answe	ers			Marks allocation
1	Reaction	gas produced	laboratory test	result of test	4 entries – 2m
	Decomposition of hydrogen peroxide	oxygen	Insert a glowing splint near the gas	Glowing splint is rekindled/ relighted/ burst into flames	2 entries – 1m
	calcium + cold water	hydrogen	insert a lighted splint at the mouth of the test tube	Lighted splint is extinguished with a pop sound	
2	(a) oxidizing agent: Fe ₂ O ₃ reducing agent: C				1m – all correct
	(b) oxidizing agent:				1m - all correct
3	(a) fractional distillation (reject: distillation)				1m
	(b) sublimation				1m
	(c) filtration				1m
4	(a) C ₁₆ H ₁₅ O ₂ N ₂				1m
	(b) Test: Add LSD to aqueous bromine / a solution of bromine Observation: Reddish brown bromine is quickly decolourised/turns colourless				Both correct = 1m
	(c)(i) When dissolved in water, LSD molecule <u>dissociate partially</u> , producing a <u>low concentration of H[±] ion</u> , resulting in a weakly acidic solution.				1m
	(c)(ii) Circle –COOH functional group				1m
5	(a)(i) Group VII (reject: Halogens, Group 7)				1m
	(a)(ii) Dd or Ee (either one)				Either one – 1m
	(b)(i) Chlorine (reject if written chemical symbol, C/)				1m
	(b)(ii) Aa				1m
	(b)(iii) $Aa_2 + 2Bb^- \rightarrow 2Aa^- + Bb_2$			1m - correct formula of substances 1m - balance	

Qn	Suggested Answers	Marks allocation
6	(a)(i) covalent (bonding); precise spelling	1m
	(a)(ii)	1m: correct sharing of electrons between C and CI 1m: correct number of valence electrons in all atoms
	(b) MgCl ₂	1m
	Carbon tetrachloride has low melting and boiling point, as <u>little</u> energy is required to overcome weak intermolecular forces of attraction. On the other hand, more energy is required to overcome strong electrostatic forces of attraction between Mg ²⁺ and C <i>I-I</i> oppositely-charged ions resulting in a high melting and boiling point. (c)(ii) Electrical conductivity Carbon tetrachloride is a non-conductor of electricity as it has no free moving/mobile ions or electrons which can act as charge carriers. On the other hand, molten magnesium chloride is a conductor of electricity as the Mg ²⁺ and C <i>I</i> ions are mobile and can act as charge carriers.	2m; 1m – difference in amt of energy required 1m – provide accurate info on the types of attraction 2m; 1m – mention that CCI4 has no mobile ions & electrons while MgCI2 has mobile ions 1m – relate the mobility of ions to ability to conduct electricity
		-
7	(a) Mole ratio $Pb(NO_3)_2$: $ZnSO_4$ is 1:1 Hence, the number of moles of $Pb(NO_3)_2$ is 0.0250 mol. [1] Volume of $Pb(NO_3)_2$ = $0.0250 / 0.1$ = 0.25 dm ³ = 250 cm ³ [1]	1m: 0.0250 mol of Pb(NO ₃) ₂ ; can be embedded within calculation 1m: Vol. of Pb(NO ₃) ₂ = 250 cm ³
	(b) PbSO ₄ : dilute sulfuric acid and aqueous lead(II) nitrate or Zn(NO ₃) ₂ : dilute nitric acid and zinc carbonate	Both correct – 1m
	Zinc carporate	

Qn	Suggested Answers	Marks allocation
	 (c) PbSO₄ Mix a fixed volume of aq. lead(II) nitrate with excess sulfuric acid. Stir until no more precipitate of lead(II) sulfate forms. Filter to collect the precipitate, lead(II) sulfate Wash the precipitate with a small amount of distilled water. Dry precipitate in between sheets of filter paper. Zn(NO ₃) ₂	5 points – 4m 4 points – 3m 3 points – 2m 2 points – 1m
	 Add zinc carbonate in excess to a fixed volume of dilute nitric acid. Filter to remove unreacted zinc carbonate and collect filtrate, zinc nitrate solution. Heat the zinc nitrate solution until a saturated solution is obtained. Leave the saturated zinc nitrate solution to cool and crystallise. Then wash with a little cold distilled water and dry in between sheets of filter paper 	
8	(a) X shown clearly on graph at 2 min.	1m
	(b) decrease of; 7°C (-7°C)	1m
	(c) reaction is <u>endothermic</u> as the <u>temperature of mixture decreases</u> with time, thus <u>heat energy</u> is absorbed from the surroundings.	1m: identify endo 1m: 2 pts for the supporting reason.
9	(a) (i) A , glucose solution	1m
	(ii) B, ethanol	1m
	(iii) C, acidified potassium manganate (VII)	1m
	(iv) D, ethanoic acid	1m
	(v) E, ethene	1m
	(b) $C_2H_4 + H_2 \rightarrow C_2H_6$	1m
	(c)(i) poly(ethene)	
		1m
	$\left(\begin{array}{ccc} \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ H & H & D \end{array}\right)$	1m
	(iii) Poly(ethene) is non-biodegradable and will cause land pollution, as it will be difficult to dispose.	1m

Qn	Suggested Answers	Marks allocation
Sectio	n B (20 marks)	
10	(a)(i) Name of element: Sodium (example) / Argon (example)	1m: name a correct element i Period 3
	The <u>electronic structure of sodium is 2.8.1</u> , which means it has <u>one valence electron</u> and <u>3 electron shells</u> . Hence, it is placed in Group I, Period 3.	1m: write the electronic structure accurately
	The <u>electronic structure of fluorine is 2.7</u> , which means it has <u>seven valence electrons</u> and 2 electron shells. Hence, it is placed in <u>group VII</u> , <u>Period 2</u> .	1m: link the number of valence electron to group number and electron shells to period
	(a)(ii) Moving across from Group I to VII, there is a decrease in metallic properties and an increase in non-metallic properties: elements changes from metallic to non-metallic	1m – accurate description of the trend
	Reason: The <u>number of valence electrons increase</u> . Hence, the <u>elements ability to lose electrons decreases (less metallic)</u> while the <u>ability to gain electrons increase (more non-metallic)</u> .	1m: recognise that number of valence electrons increase across period
		1m: ability to lose/gain electrons change accordingly.
	(b) Reaction 1: Both metals can react with <u>dilute acid</u> Both elements react with acid to <u>produce salt and hydrogen gas</u> [1]	1m for each reaction described
	Reaction 2: Both metals can react with <u>oxygen</u> Both elements react with oxygen to form <u>metal oxides</u> . [1]	1m: balanced chemical equation
	Chemical equation: $Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$ $2Na(s) + 2HCI(aq) \rightarrow 2NaCI(aq) + H_2(g)$	1m: state symbols included are
	Of 2Mg (a) + O (g) -> 2Mg O (a)	accurate
	$2Mg (s) + O2 (g) \rightarrow 2MgO (s)$ $4Na (s) + O2 (g) \rightarrow 2Na2O (s)$	

Qn	Suggested Answers	Marks allocation
11	(a) From the results, the volume of carbon dioxide formed in the first 2 minutes is 240 cm³ However, between the 6th and 8th minutes, only about 20 cm³ of carbon dioxide is formed. Finally, between 10th and 14th minutes, only 6 cm³ of carbon dioxide is formed. Hence, we can see that the rate of reaction is decreasing over time.	1m: state that rate of reaction is decreasing 1m: use at-least 3 sets of data to show the decreasing trend.
	(b) The rate of reaction is the <u>fastest at the beginning</u> .[1] As reaction progress, there is lesser reacting particles, hence the frequency of effective collisions decreases, resulting in a decreasing speed of reaction. [1]	2m
	 1m: – recognize that speed of reaction is fast at beginning due to ready available reacting particles 1m: recognize that reacting particles decrease over time, resulting in decreasing speed of reaction 	
	(c) Number of moles of marble chips = 5/100 = <u>0.05 mol</u>	Both correct: 1m
10 p	Number of moles of HCI = $2 \times (60/1000) = 0.120 \text{ mol}$ 0.05 mol of CaCO ₃ will require $(0.05 \times 2) = 0.100 \text{ mol}$ of HCI. However, there is 0.120 mol of acid available, hence marble chips, CaCO ₃ will be used up first.	1m: statement to show that CaCO ₃ is the limiting reagent. (Deduct 1m if missing)
	(d) Number of moles of $CO_2 = 0.06 \text{ mol}$ Volume of $CO_2(g) = 0.06 \times 24 = 1.44 \text{ dm}^3$	1m (can be embedded) 1m
	(e) (i) Graph A – gentler gradient, end slightly later, volume of gas will be halved (less); acid is now the limiting reagent	1m
	(ii) Graph B – steeper gradient, same volume of gas obtained, end slightly earlier	1m

Qn	Suggested Answers	Marks allocation
12	(a) (i) Calcium reacts <u>readily with (cold) water</u> to produce metal hydroxide and hydrogen gas. However, zinc <u>does not react with water</u> but only with <u>steam</u> to produce metal oxide and hydrogen gas	1m – able to state the difference in the condition of water
	Hence, <u>calcium is more reactive than zinc</u> and <u>is placed</u> <u>above zinc</u> in the reactivity series of metal.	1m – using the reaction with water to state that Ca is more reactive than Zr
		1m: Hence, <u>Ca</u> <u>is above Zn</u> in the reactivity series of metals
	(ii) $Zn + H_2O \rightarrow ZnO + H_2$ or $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	1m : Correct reactants and products 1m: balanced equation.
	(b) Carbon is more reactive than iron, hence it is able to displace iron from iron oxide.	1m
	However, carbon is less reactive than calcium and it is unable to displace calcium from its oxide	1m
	(c)(i) Iron, being more reactive [1m] than copper, will react more readily with oxygen and water [1m]. Hence iron rusts faster than normal.	2m
	(c)(ii) Percentage of copper on earth is less than iron/ less abundant Copper has a higher monetory value than iron.	1m