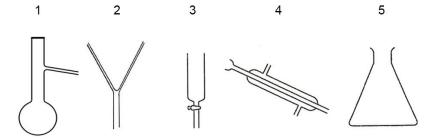
CANDIDATE NAME				
CLASS		REGIST NUMBE		
SCIENCE (Paper 1 (Biology,	BIOLOGY, CHE Chemistry)	MISTRY)		5078/01 6 August 2018
Candidates answer on the OMS. No Additional Materials are required				
READ THESE INST	RUCTIONS FIRST			
Write in dark blue or	ex number and name on the v black ink on both sides of the paper clips, highlighters, glue	paper.		
For each question the	tions in this paper. Answer al ere are four possible answers consider to be correct and re	A, B, C, and D.	pencil on the (DMS.
	will score one mark. A mark hould be done in this booklet.		a wrong answe	er.

BEDOK SOUTH SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2018

A copy of the Data Sheet is printed on page 18.

A copy of the Periodic Table is printed on page 19.


Setter: Ms. Cynthia Chong and Ms. Denise Wong

This document consists of **<u>19</u>** printed pages including this cover page.

[Turn Over

4EXP

1 The diagram shows some laboratory apparatus.

Which apparatus are needed to produce and collect pure water from seawater?

Α	2 and 5	В	3 and 5
С	1, 2 and 4	D	1, 4 and 5

2 Which substance, **A** to **D** undergoes changes in physical states from room temperature to 0°C?

	Melting point/°C	Boiling point / °C
Α	-2	65
В	-23	4
С	50	250
D	-187	-165

- 3 Which statements are true about compounds?
 - 1 They can be made from another compound.
 - 2 They can be made from metals alone.
 - 3 They can be made from non-metals alone.
 - 4 They can be made from a metal and a non-metal.

Α	1, 2 and 3	В	1, 2 and 4
С	1, 3 and 4	D	2, 3 and 4

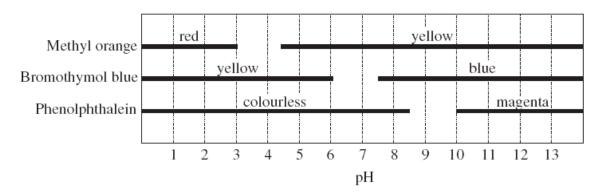
4 A sugar mixture was compared with four different simple sugars using chromatography. The results are shown in the diagram below. What types of sugars does the mixture contain?

•				٠
	•			
		•		
•			•	
sugar mixture	sugar 1	sugar 2	sugar 3	sugar 4

Α	sugar 1 and 2	В	sugar 1 and 4
С	sugar 2 and 3	D	sugar 3 and 4

5 Which compound contains three atoms?

Α	H ₂ O	В	HC/
С	CaSO ₄	D	NO


6 Which of the following compounds has the highest percentage of nitrogen by mass?

Α	NH4NO3	В	(NH4)2CO3
С	CO(NH ₂) ₂	D	NH4C/

- **7** A student dissolved 14.9g of potassium chloride, KCl, in 100 cm³ of water. What is the concentration of the resulting potassium chloride solution in mol/dm³?
 - **A** 0.002 mol/dm³
 - **B** 0.01 mol/dm³
 - **C** 0.15 mol/dm³
 - **D** 2.0 mol/dm³

8 The graph below shows the colour ranges of the acid-base indicators methyl orange, bromothymol and phenolphthalein.

4

A solution, when placed in the three indicators separately, is yellow in methyl orange, yellow in bromothymol and colourless in phenolphthalein. What is the pH range of the solution?

Α	2.5 to 3.5	В	4.5 to 5.5
С	7.5 to 8.5	D	9.5 to 10.5

9 Which of the following elements burns in air to produce a substance which can react with both hydrochloric acid and sodium hydroxide?

Α	lead	В	hydrogen
С	iron	D	phosphorous

- **10** Which of the following reagents **cannot** be used to differentiate sodium hydroxide solution from sodium chloride solution?
 - A Aqueous iron(III) nitrate
 - **B** Aqueous copper(II) nitrate
 - **C** Aqueous lithium nitrate
 - **D** Aqueous ammonium nitrate

11 Separate samples of hydrogen peroxide are added to aqueous potassium iodide and to acidified potassium manganate(VII). It is known that hydrogen peroxide is both an oxidising agent and a reducing agent.

5

	aqueous potassium iodide	acidified potassium manganate(VII)
Α	colourless to brown	purple to colourless
В	brown to colourless	purple to colourless
С	colourless to brown	orange to green

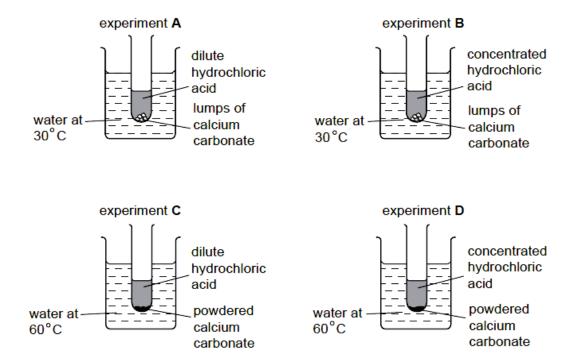
What colour changes are seen?

D

12 X, Y and Z are elements in the same period of the Periodic Table.

brown to colourless

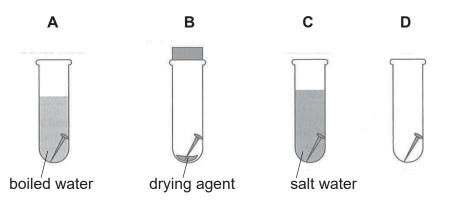
X forms an acidic oxide, Y forms a basic oxide and Z forms an amphoteric oxide.


If **X**, **Y** and **Z** are placed in increasing order of atomic number (lowest atomic number first), which order is correct?

orange to green

Α	X, Y, Z	В	Y, Z, X
С	Y, X, Z	D	X, Z, Y

- **13** Rubidium is in the same group as sodium in the Periodic Table. What is a likely property of rubidium?
 - **A** It reacts with water to form hydrogen gas.
 - **B** It cannot be cut by knife.
 - **C** It reacts with chlorine gas to form a salt with the formula RbCl₂.
 - **D** It does not conduct electricity in the molten state.


14 Which of the following experiment will have the fastest speed of reaction?

15 The element chromium produces hydrogen from dilute hydrochloric acid but it does not react with cold water. When a piece of chromium is placed in lead(II) nitrate solution, solid of lead appear.

What is the order of decreasing reactivity of the metals lead, calcium and chromium?

- A calcium, chromium, lead B calcium, lead, chromium
- C chromium, calcium, lead D lead, chromium, calcium
- **16** In which tube is the iron nail **not** likely to rust?

www.KiasuExamPaper.com

[Turn Over

17 Which of the following shows the correct percentage composition of oxygen, nitrogen and carbon dioxide found in dry unpolluted air?

	Oxygen	Nitrogen	Carbon dioxide
Α	78	21	1
В	1	78	21
С	21	78	1
D	78	21	78

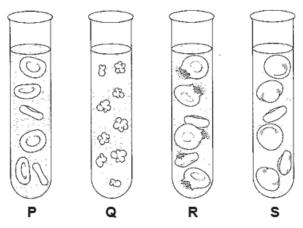
18 Which of the following shows the correct use of the different fractions of petroleum?

	Fraction	Uses
Α	Petrol	used for making chemical feedstock
В	Bitumen	used for lubricating machine parts
С	Kerosene	used as fuel for aircraft
D	naphtha	used to pave road

19 Which of the following hydrocarbon undergoes substitution reaction?

Α	C ₂ H ₄	В	C_2H_6
С	C ₂ H ₅ COOH	D	C ₂ H ₅ OH

- 20 Which of the following is the same for both ethanol and ethanoic acid?
 - **A** empirical formula
 - **B** functional group
 - **C** number of carbon
 - **D** homologous series


[Turn Over

21 The table below shows comparisons of features between a red blood cell and xylem vessel cell.

	feature	red blood cell	xylem vessel cell
1	cytoplasm present	no	no
2	cell wall present	yes	yes
3	nucleus present	no	no
4	chloroplast present	no	yes

Which comparison of features is / are correct?

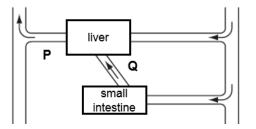
- A 1 only
- **B** 3 only
- C 2 and 4 only
- D 3 and 4 only
- 22 The diagram below shows red blood cells in four different salt solutions, P, Q, R and S.

Which correctly shows the solutions in order of increasing salt concentration?

	lowest			highest
Α	Q	Р	S	R
В	Q	S	Р	R
С	R	Р	S	Q
D	R	S	Р	Q

[Turn Over

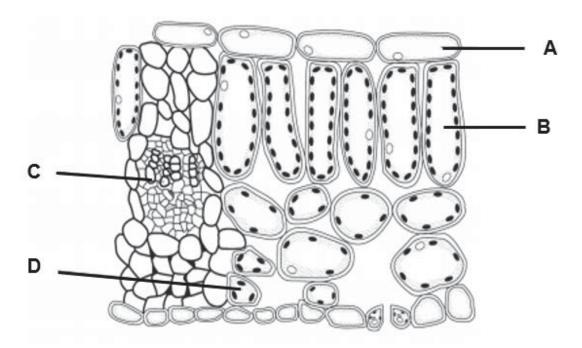
- 23 Which substance does not contain the element nitrogen?
 - A urea
 - **B** pepsin
 - C cellulase
 - D glycogen
- **24** Which fluid(s) collected from an individual is likely to give a brick-red precipitate when tested with Benedict's solution?
 - 1 blood
 - 2 saliva
 - **3** secretions from the pancreas
 - 4 secretions from the walls of the large intestine
 - A 1 only
 - **B** 1 and 3 only
 - C 2 and 4 only
 - **D** 1, 3 and 4 only
- **25** Digestive juices were collected from three regions of the human alimentary canal. Drops of these digestive juices were added to three wells made in an agar of starch. After an hour, the wells were rinsed with distilled water and flooded with iodine solution. The results are shown below.


region around well	1	2	3
colour of iodine solution	yellowish-brown	blue-black	yellowish-brown

Which correctly identifies the regions of the alimentary canal that the three digestive juices were obtained from?

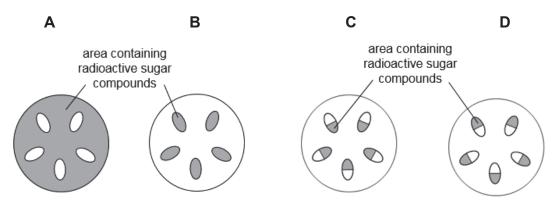
	1	2	3
Α	mouth	small intestine	stomach
В	mouth	stomach	small intestine
С	stomach	mouth	small intestine
D	small intestine	mouth	stomach

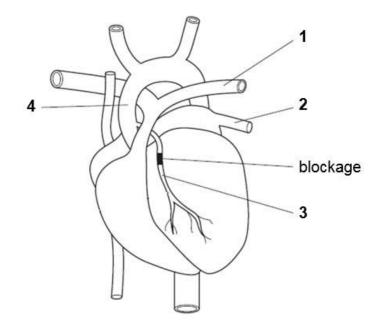
[Turn Over


26 The diagram below represents some human organs and their associated blood vessels.

Which statement about the concentration of alcohol in the blood vessels P and Q after a man has consumed an alcoholic drink is true?

- **A** There is no alcohol in both blood vessels.
- **B** The concentration of alcohol is higher in **P** than **Q**.
- **C** The concentration of alcohol is lower in **P** than **Q**.
- **D** The concentration of alcohol is equal in both blood vessels.
- **27** The diagram below shows a section through a leaf as seen under the microscope.

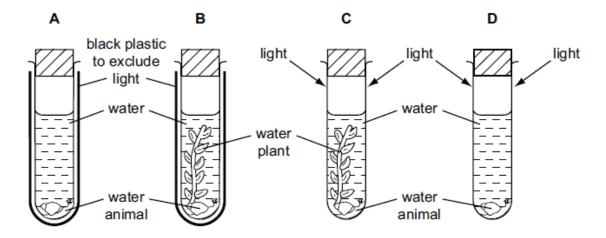

Which part of the plant has the lowest concentration of carbon dioxide on a warm, sunny day?


[Turn Over

28 A plant shoot was exposed to radioactive carbon dioxide and sunlight for a few hours before sections of the stem were tested for the presence of radioactive sugar compounds.

Which correctly identifies the part of the stem that would contain the radioactive sugar compounds?

29 The diagram below shows an external view of the heart of a patient with a blockage of the coronary artery. This could be treated by inserting a tube to by-pass the blockage.


Which two blood vessels would be joined by this tube?

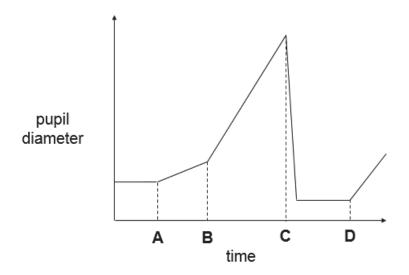
- A 1 and 2
- **B** 1 and 4
- **C** 2 and 4
- **D** 3 and 4

[Turn Over

30 Four test tubes are set up as shown in the diagram below.

In which tube will the water animal survive for the longest period of time?

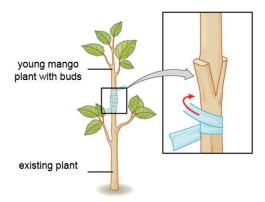
- 31 Three directions in which nerve impulses can travel in the nervous system are listed.
 - 1 away from the central nervous system
 - 2 towards the central nervous system
 - 3 within the central nervous system


Which correctly identifies the direction of the nerve impulse in motor and relay neurones?

	motor neurone	relay neurone
Α	1	2
В	1	3
С	2	1
D	2	3

32 A man was wearing sunglasses on a bright sunny day. The graph below shows the change in diameter of the pupils of his eyes.

13


At which point in time did he remove his sunglasses?

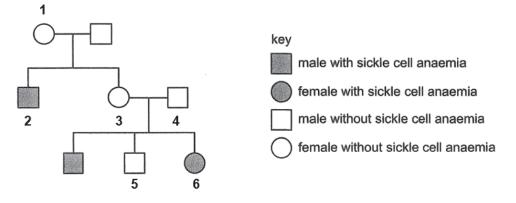
33 Which difference between the endocrine and nervous system is not correct?


	endocrine system	nervous system
Α	rapid response	delayed response
В	involves hormones	involves nerve impulses
С	always involuntary	may be voluntary or involuntary
D	usually affects more than one target organ	affects one target organ

34 A mango tree can be grown by planting a mango seed directly into the soil or by asexual reproduction as shown in the diagram below. Trees produced by each of these methods produce mango fruits.

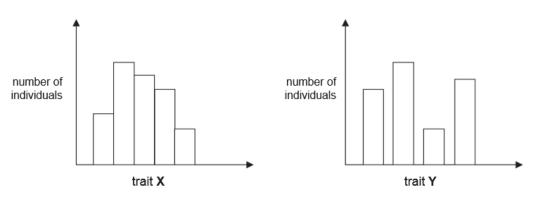
Which statement is true?

- A Mangoes from trees grown from seeds and by grafting are genetically identical.
- **B** Mangoes from trees grown from seeds have different characteristics while mangoes from trees grown by grafting have identical characteristics.
- **C** Growing mango trees from seeds produces mangoes faster than growing mango trees by grafting.
- **D** Growing mango trees from seeds requires only one parent plant but growing trees by grafting requires two parent plants.
- **35** The diagram shows a side view of the structures in the lower abdomen of a woman.



Which correctly identifies the structures in which fertilisation and implantation occur in?

	fertilisation	implantation
Α	1	3
В	3	2
С	2	1
D	5	4


[Turn Over

36 The diagram below shows a family tree in which some members have sickle cell anaemia. Sickle cell anaemia is a recessive condition.

Which person(s) is / are likely to be carriers?

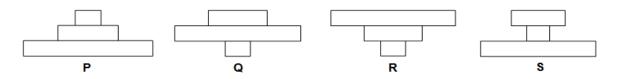
- A 5 only
- B 2 and 6 only
- C 3 and 4 only
- D 1, 3 and 4 only
- **37** The diagram below shows the two types of variation in humans.

Which could trait X and trait Y represent?

	trait X	trait Y
Α	weight	blood group
В	eye colour	hair colour
С	blood group	height
D	fingerprint pattern	intelligence

[Turn Over

38 The diagram below shows part of the sequence of nucleotides taken before and after the DNA in the cells was treated.

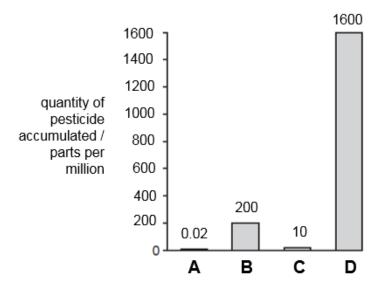

original DNA strand before treatment: A - G - T - C - A - T - T

mutated DNA strand after treatment: A - G - A - G - C - A - T - T

Which correctly identifies the type of mutation shown and cause of the mutation?

	type of mutation	cause of mutation
Α	gene	exposure to heat
В	gene	exposure to UV light
С	chromosome	exposure to UV light
D	chromosome	exposure to mustard gas

39 The diagrams below show four ecological pyramids. In a food chain, a papaya tree provides food for caterpillars, and these caterpillars in turn become food for a few birds.


Which correctly represents the pyramid of numbers and biomass for the food chain?

	pyramid of numbers	pyramid of biomass
Α	Р	Q
В	Q	Р
С	R	S
D	S	R

[Turn Over

40 The graph shows the quantities of pesticide that accumulate in four populations, A, B, C and $\mathbf{\tilde{D}}$, each at different trophic levels in a food chain.

Which population is most likely to be herbivores?

- END OF PAPER -

[Turn Over

www.KiasuExamPaper.com

17

DATA SHEET

Colours of some common metal hydroxides

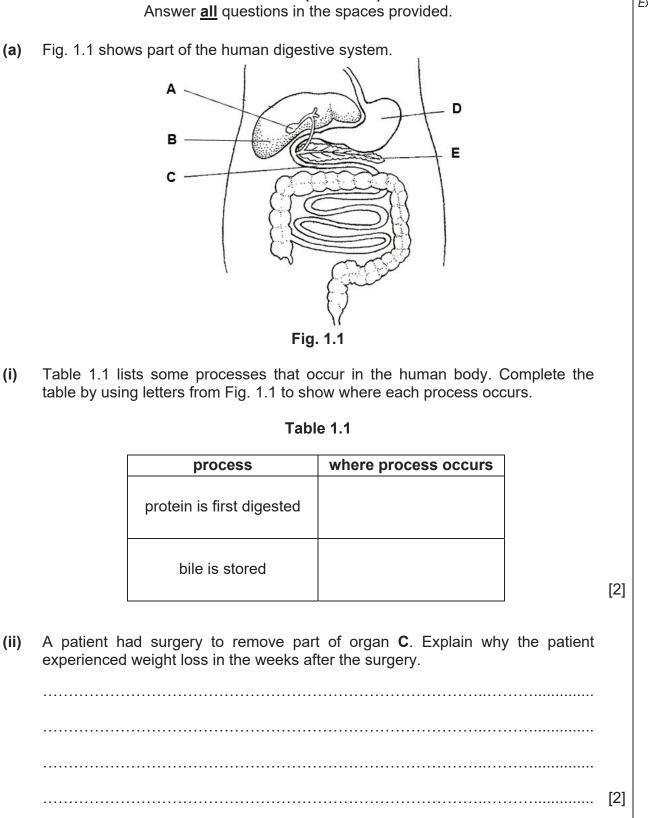
calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

[Turn Over

c		⊢⊾	helium 4	9	Ne	20	18	Ar	argon 40	36	Кr	krypton o.v	40	5	Xe	xenon 131	86	Rn	-	Γ		_	
Ν	,			0	LL.	fluorine 19	17	10	chlorine 35.5	35	Ъ	bromine	8 8	3	Ι	ipdine 127	85	At	astatine 				
5				~	0	oxygen 16	16	S	sulfur 32	34	ŝ	selenium 70	2	NC N	۵Ľ	tellurium 128	84	8	polonium -	116	>	livermorium	ļ
>	*			7	Z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 76	2	2	ß	antimony 122	83	B	bismuth 209				
\geq				9	U	carbon 12	14	S	silicon 28	32	g	germanium 7-2	203	8.	Ъ	fin 119	82	6	207	114	Η	flerovium	ı
=				S	۵	boron 11	13	AI	aluminium 27	31	හී	gallium 70	D/	D	Ц	indium 115	81	Τt	thalfium 204				
	1									8	Zn	ZILIC	3 9	¥.	8	cadmium 112	8	f	mercury 201	112	5	copernicium	ļ
																			gold 197				ţ
Group										28	ī	nickel	50	9	P	palladium 106	78	Ъ	platinum 195	110	ő	darmstadtium	ī.
55										27	8	cobalt	3	71	ЧЧ	103	11	h	iridium 192	109	Mt	meitnerium	E
		- I	hydrogen 1							26	Fe	iron 26	00	+	'n	101	76	රී	osmium 190	108	Ϋ́	hassium	ŗ
										22	Mn	manganese	3 9	?	Lc	technetium	75	Re	rhenium 186	107	뜅	bohrium	ţ
				umber	00	mass						chromium				malybdenum 96	_		tungsten 184			Ę	I,
			Key	proton (atomic) number	atomic symbo	name relative atomic mass				23	>	vanadium	5	Ŧ		niobium 93		٩	tantalum 181	105	90	dubnium	I
				proton	ato	relativ				22	F	tianium	0 C W	}	Zr	zirconium 91	72	Ť	hafnium 178	104	Rf	Rutherfordum	ı
										21	Sc	scandium	2 6	3:	>	yttrium 89	57-71	lanthanoids		89 - 103	actinoids		
=	-			4	Ве	beryllum 9	12	BM	magnesium 24	20	ß	calcium	00	8	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium	ī
-				m	:	Réhium 7	11	Na	e	19	¥	potassium	300	21	8	rubidium 85	55	g	caesium 133	87	Ŀ	francium	Ţ

Elements	
of	
Table (
iodic	
Per	
The	

www.KiasuExamPaper.com


71	Ę	lutetium	175	103	5	lawrencium	1
20	٩Y	ytterbium	173	102	8	nobelium	2
69	Τm	thulium	169	101	pw	mendelevium	3
88	ш	erbium	167	100	Е'n	fermium	3
67	웃	holmium	165	66	ŝ	einsteinium	ı
99	6	dysprosium	163	98	Ⴆ	californium	1
8	Дþ	terbium	159	26	¥	berkelium	1
64	РØ	gadolinium	157	8	ð	curium	1
8	Ш	europium	152	35	Am	americium	1
62	SB	samarium	150	94	Ъ	plutonium	1
61	Рш	promethium	I	33	dN	neptunium	1
00	PN	neodymium	144	26	⊃	uranium	238
20	ድ	praseodymium	141	91	Ba	protactinium	231
58	8	cerium	140	8	£	thorium	232
57	ŋ	lanthanum	139	89	Ac	actinium	1
lanthanoids				actinoids			

The volume of one mole of any gas is $24 \, \text{dm}^3$ at room temperature and pressure (r.t.p.).

55

	BEDOK SOUTH SECONDARY SCHOOL PRELIMINARY EXAMINATION 2018					
CANDIDATE NAME						
CLASS		EGISTER JMBER				
SCIENCE (Paper 4 Biology	BIOLOGY, CHEMISTRY)		5078/04 2 August 2018			
•	er on the Question Booklet. terials are required	11	nour 15 minutes			
	RUCTIONS FIRST ex number and name on the work you hand in. black ink on both sides of the paper.					
Do not use staples, p Section A (45 marks Answer all questions	paper clips, highlighters, glue or correction fluid.					
Section B (20 marks						
paper		Paper 1	niner's Use			
The number of marks question or part quest	s is given in brackets[]at the end of each stion.	Paper 1 P4 Section A				
Setter: Ms. Denise W	Vona	P4 Section B				
		Paper 5				
		Total				
This docu	ment consists of <u>16</u> printed pages includ	ding this cover p	bage. [Turn Over			

Γ

www.KiasuExamPaper.com

[Turn Over

For Examiner's Use

SECTION A (45 marks)

1

(b)	Fig.	1.2 shows the blood vessels associated with organs B and C .		For Examiner's Use
	(i)	Fig. 1.2 Identify blood vessels Y and Z.		
		Υ		
		Ζ	[2]	
	(ii)	Describe one structural difference between blood vessel Y and blood vessel Z . Explain how this difference helps blood vessel Y to perform its functions.		
			[2]	
	(iii)	Explain why the concentration of glucose varies in blood vessel Z throughout the day while the concentration of glucose remains relatively constant in blood vessel X .		
			[3]	
		[Total:	11]	

www.KiasuExamPaper.com

[Turn Over

2 Rennin is an enzyme found in the human alimentary canal that curdles milk by converting soluble milk proteins into insoluble milk proteins. An experiment was carried out to determine the effect of pH on the activity of rennin at 30 °C. Table 2.1 shows the results of the experiment.

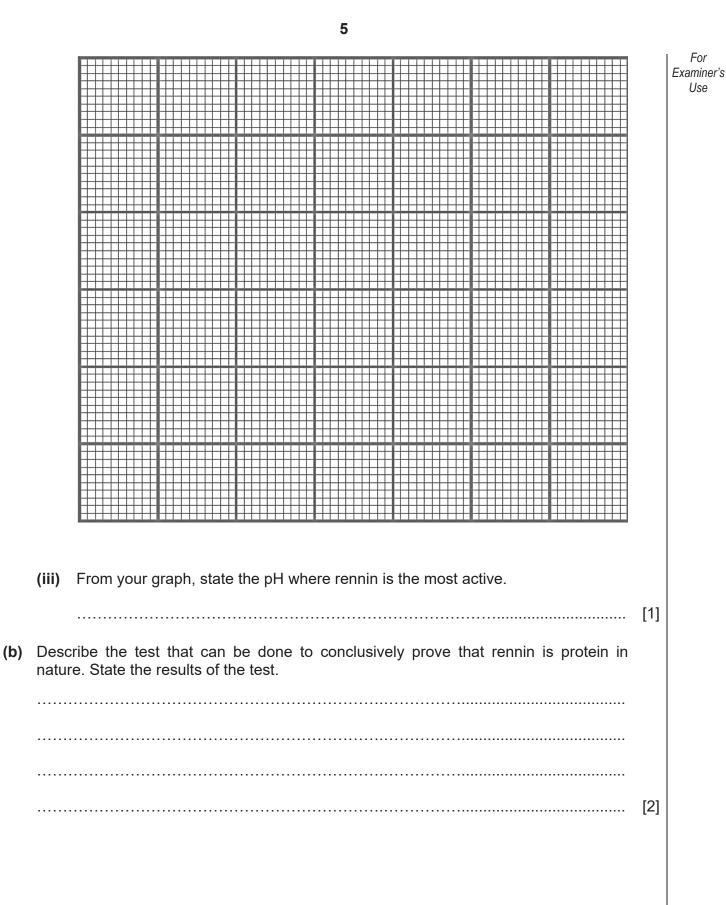
рН	time taken for milk to curdle / min	rate of reaction / min ⁻¹
1	4	0.25
2	2	0.50
3	3	0.33
4	7	0.14
5	13	

Table 2.1

(a) (i) Calculate the rate of reaction for pH 5. Show your working.

- (ii) On the grid provided on the next page, plot a graph of rate of reaction against pH. Use the results in Table 2.1 and your answer to (ai).

On your graph, use appropriate scales, label the axes and draw a line of best fit. [3]


www.KiasuExamPaper.com

[Turn Over

For

Examiner's

Use

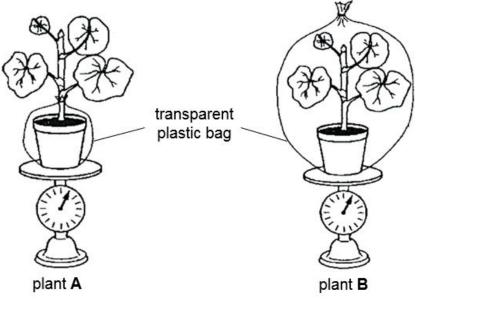
www.KiasuExamPaper.com

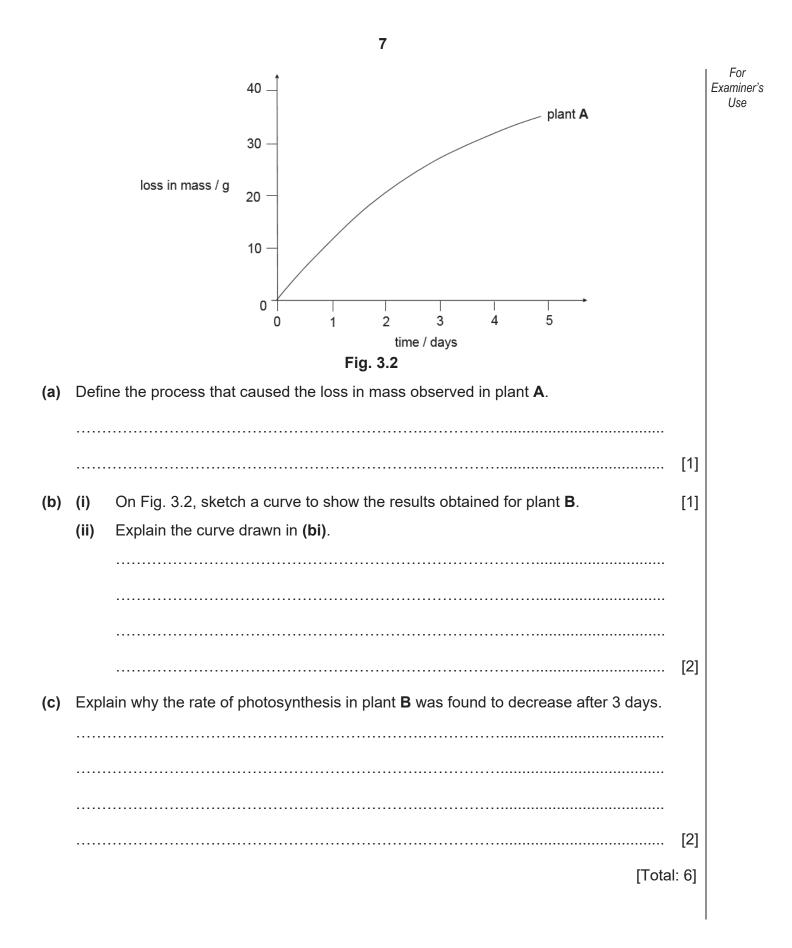
[Turn Over

- 6
- (c) In another experiment, rennin was boiled and cooled down to 30 °C before it was added to milk. Using your knowledge of the lock and key hypothesis, explain why the milk did not curdle.

	[3]
[Tot	al: 10]

3 Fig. 3.1 shows an experiment set up to investigate the change in the mass of plants **A** and **B** potted in damp soil over a period of time.




Fig. 3.1

The loss in mass was measured over a period of five days and the results are shown in Fig. 3.2.

For

Examiner's

Use

[Turn Over

4 Fig. 4.1 shows the pressure changes in the aorta and chambers **X** and **Y** on the left side of the heart during one cardiac cycle in a healthy person.

2.0

8

aorta 1.5 Pressure / chamber 1.0 Ncm⁻² х 0.5 chamber γ 0 130 volume of chamber X / 90 cm³ 50 A BC DE F Time Fig. 4.1 Identify chamber X. Explain how you arrived at your answer. (a) [2] Describe and explain how the volume of the chamber X changes with pressure in (b) chamber X from time B to D. [2]

www.KiasuExamPaper.com

For

Examiner's

Use

(c)	State the function of the valve that closes at D .		For Examiner's Use
		[1]	
(d)	It was observed that the increase in pressure in chamber ${\bf X}$ was greater in smokers than in healthy persons. By naming a component in cigarette smoke, explain this observation.		
	component		
	explanation		
		[2]	
	[Tota	l: 7]	

[Turn Over

5 Colour blindness is controlled by a pair of alleles. The allele for normal vision (B) is dominant to the allele for colour blindness (b).

Fig. 5.1 shows the chromosomes found in the normal cells of a father and mother.

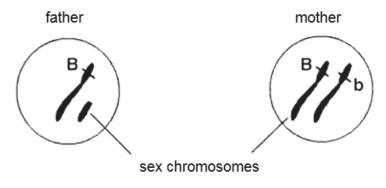
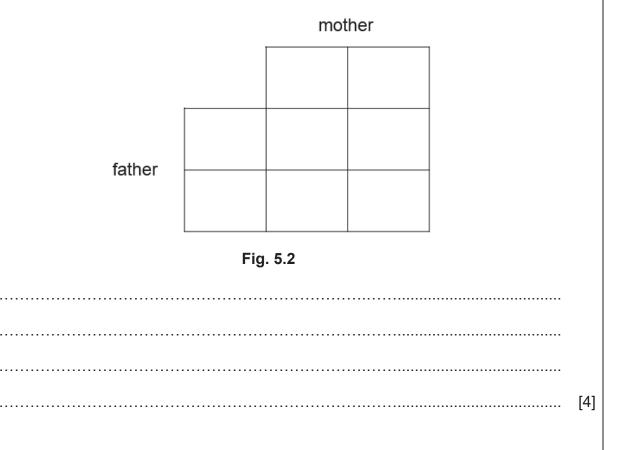
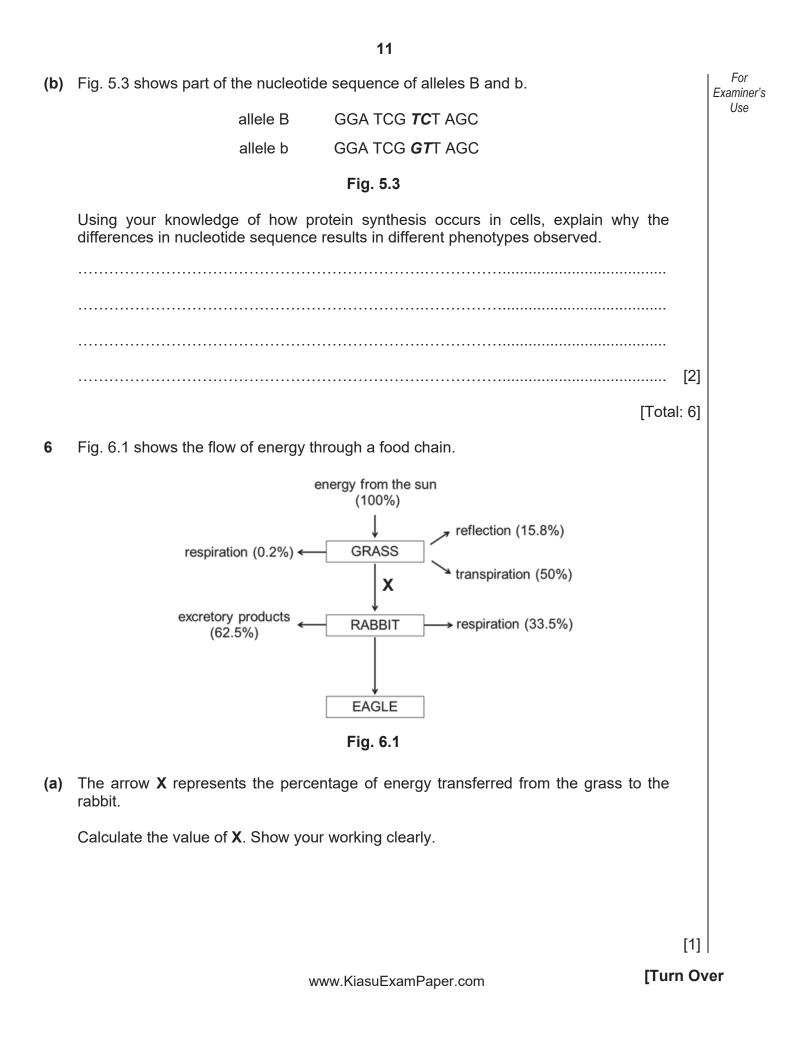



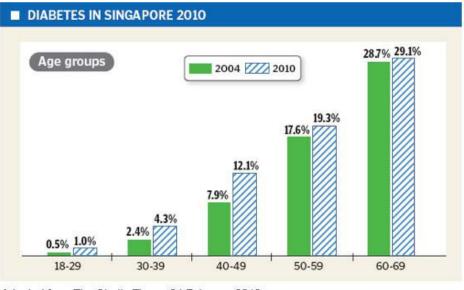
Fig. 5.1


(a) The genotype of the father is X^BY and that of the mother by X^BX^b. Use the genetic diagram in Fig. 5.2 to explain why colour blindness occurs more frequently in males than females.

[Turn Over

www.KiasuExamPaper.com

For Examiner's Use


(b)	With reference to Fig. 6.1, explain why the flow of energy in the food chain is non-cyclical.		For Examiner's Use
		[2]	
(c)	Explain why most food chains are unable to support more than four trophic levels.		
		[2]	
	[Tota	l: 5]	

- End of Section A -

SECTION B (20 marks)

Answer any **two** questions in this section. Each question carries 10 marks. Write your answers on the spaces provided.

7 Fig. 7.1 shows some statistics on the incidences of diabetes in Singapore in 2004 and 2010.

Adapted from The Straits Times, 24 February 2012

Fig. 7.1

(a) Use the data shown in Fig. 7.1 to describe the trends shown in the data.

Briefly suggest a reason to account for these trends.

[6]

[Turn Over

www.KiasuExamPaper.com

For Examiner's Use

Diab	etes can be treated by introducing the protein insulin into the body.		For Examiner's
(i)	Explain why insulin cannot be administered as an oral medication that is consumed.		Use
		[1]	
(ii)	A nasal spray containing insulin has been recently developed as an alternative way of administering insulin. Insulin is inhaled into the lungs as a spray before it is absorbed into the bloodstream. Outline the pathway the insulin spray would take from the nose till it enters the bloodstream.		
		[3]	
	[Total:	10]	
	(i)	consumed. (ii) A nasal spray containing insulin has been recently developed as an alternative way of administering insulin. Insulin is inhaled into the lungs as a spray before it is absorbed into the bloodstream. Outline the pathway the insulin spray would take from the nose till it enters the bloodstream.	 (i) Explain why insulin cannot be administered as an oral medication that is consumed. [1] (ii) A nasal spray containing insulin has been recently developed as an alternative way of administering insulin. Insulin is inhaled into the lungs as a spray before it is absorbed into the bloodstream. Outline the pathway the insulin spray would take from the nose till it enters the bloodstream.

8 (a)	Outline the sequence of events that take place in the uterus in a typical 28-day menstrual cycle in a woman who is not pregnant. Include the roles of the hormones oestrogen and progesterone in your answer.	For Examiner's Use
		[6]
(b)	Compare and contrast the process of fertilisation in flowering plants and in humans.	
		[4]
	[Total:	: 101
	L	-

For

With reference to the organelles in plant cells and events in the carbon cycle, explain 9 Examiner's (a) why most life forms are dependent on living plants. [5] (b) Destruction of the world's forests are increasing. Explain how this has affected the ecosystem and suggest reasons why it is important to conserve our forests. [5] [Total: 10]

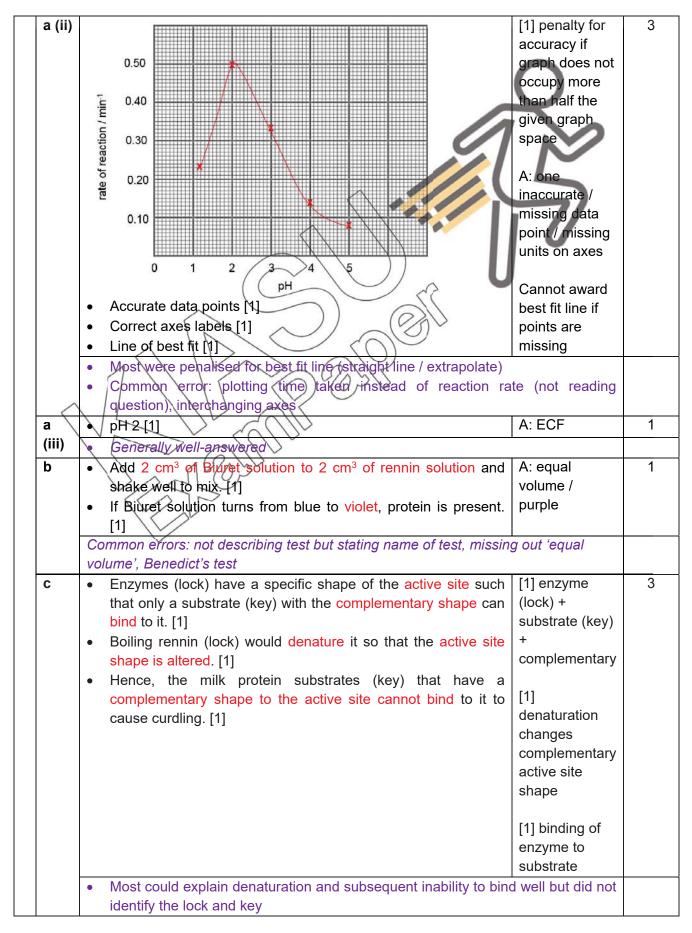
16

For

Use

- END OF PAPER -

BEDOK SOUTH SECONDARY SCHOOL PRELIMINARY EXAMINATION 2018 Secondary 4 Express Science (Biology) 5078/1 and 5078/4 Marking Scheme


Paper 1

Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q28	Q29	Q30		
В	D	D	А	В	С	В	D	D	С		
Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q38	Q39	Q40		
В	С	А	В	С	D	А	В	В	С		
Paper 4											

Paper 4

				Comments to							
Q	n no.	Suggest	Suggested answer		Marks						
1	a (i)	process	where process occurs		2						
		protein is first digested									
		bile is stored	A[1]								
		Many chose liver (B) for stor	age of bile	-							
Ī	a (ii)	Max 2 marks:		[1] less	2						
			n of intestinal juice that contains	efficient							
		digestive enzymes, reducing	the efficiency of digestion. [1]	digestion							
			nces also cannot be efficiently	[1] less							
		absorbed by the villi in the si	nall intestine. [1]	efficient							
		• Thus, without absorption,	assimilation of digested food	absorption							
	10.55		cells barnot occur effectively,								
	$\langle \rangle$	resulting in weight loss. [1]	1								
	/	Many could not interpret the	guestion in terms of functions of th	ne small intestine							
		- digestion and absorption									
		• While those who answered in terms of function, many left out digestion and									
		focused on absorption only									
			t C was for transport of food to sn								
			e small intestine, writing about ab								
ŀ	b (i)		nster food digestion as length of inte	A: minor	2						
	D (I)	• Y: hepatic artery [1]		spelling errors	2						
		• Z: hepatic portal vein [1]									
		Names of the blood vessels appillarios or looving out the	ng aona / veins /								
-		capillaries or leaving out the Any 1 structural point + correct	R: thicker walls	2							
			tery) has thicker, more muscular	R. UNCKET WAIIS	2						
	b	• Blood vessel T (hepatic all walls than blood vessel Z (he	• •	No ECF							
	(ii)	•	y to withstand the high pressure of	(should be							
	()	the blood being pumped out	• • •	able to tell							
		and should being pumped out		artery / vein as							

		•	Blood vessel Y (hepatic artery) has elastic walls than blood		
			vessel Z (hepatic portal vein). [1]	given)	
		•	This allows the hepatic artery to stretch and recoil, helping to		
			push the blood along the artery in spurts through further		
			distances away from the heart. [1]		
		•	Many students write in terms of 'need to' but should take no		
			leads to effects which determines function (and not the other wa	ay round)	
		•	Explanation for the effect of muscular was not well crafted		
		٠	Common error: writing that blood vessel is one cell thick focu	sing explanation	
			on what Z has (valves) when question focus is on Y.		
		Ma	ix 3 marks:	A: varies	3
		•	Glucose is absorbed into the blood capillaries at the ileum and	depending on	
			transported by blood vessel Z (hepatic portal vein) to the liver	glucose intake	
			[1].		
		•	When carbohydrates are consumed and digested, more		
			glucose will be absorbed and transported by the hepatic portal		
			vein / When no carbohydrates are consumed, the level of		
			glucose in the hepatic portal vein will decrease. [1]		
		•	However, the concentration of glucose remains constant in		
	h		blood vessel X (hepatic vein) because of the action of insulin		
	b (III)		and glucagon. [1]	-	
	(iii)	•	When glucose concentration is high, insulin is released to		
			stimulate the conversion of excess glucose into glycogen		
			When glucose concentration is low, glucagon is released to		
			stimulate the conversion of glycogen into glucose. [1]		
		•	Many students gained 1m for the concept that glucose concept	centration varies	
			depending on food digested / absorbed		
		•	Most did not identify that glucose if absorbed into the blood at the	ne villi	
	\wedge	•	Some also did not explain that the glucose concentration rema	ins constant due	
	/	\setminus	to the action of the hormones		
)	V.	Students to note that glucose concentration does not only	increase due to	
		/	glucose intake		
2	a (i)	•	Rate of reaction = $1/13 = 0.08 \text{ min}^{-1}$ [1]	R: fractions	1
	. ,		(A)P	No [½] mark	
		•	Common error: round of errors (not following 2 dp given in table		
				/	

3	а	• Transpiration is the loss of water vapour from the aerial parts	1
		of the plant, especially through the stomata. [1]	
		Many did not define but wrote the name of the process	
		A few also wrote photosynthesis	
		• Definition also not well learnt with many leaving out key terms such as 'water	
		vapour' or 'stomata'	
	b (i)	40	1
		plant A	
		30 -	
		loss in mass / g 20 -	
		10 – plant B	
		0 1 2 3 4 5	
		time / days	
		• Many drew the graph such that the different between A and B was not	
		significant even though plant B had a slower rate of mass loss	
	b	The transparent plastic bag increases the humidity of the air	2
	(ii)	around the leaves of plant B .	
		 Increasing the humidity of the air will decrease the water 	
		vapour concentration gradient between the intercellular air	
		spaces in the leaf and the atmosphere. [1]	
		Rate of transpiration decreases so leaves of plant B lose less	
		water vapour than leaves of plant)A)[1]	
		 Most students could not give clear explanations based on the concept of water 	
		vapour concentration gradient and linking it to the reduced transpiration rate	
		 Conceptual understanding of factors affecting transpiration is weak 	
		 Some students thought that the loss of mass will not be significant since water 	
	\wedge		
		Ibss is trapped in the bao (but the bag is porous and some vapour will still	
		Vescape) (
	С	• A reduced transpiration rate results in less transpiration pull	2
		[1] hence less water absorbed for photosynthesis. [1]	
		• Most students wrote about the lack of availability of carbon dioxide the bag	
		directly limits the plant from obtaining carbon dioxide (which is not true as it can	
		be produced by the plant during respiration)	
		• Some identified the lack of water but were unable to explain exactly why it is	
		limiting (conceptual understanding of how water is absorbed by the plant is	
		lacking – thinking that the bag directly limits the plant from obtaining water)	
4	а	Left ventricle [1] A: ventricle	2
	-	The ventricular pressure is higher than atrial pressure [1] as	-
		the thicker more muscular walls of the ventricles generate a A: ventricle	
		larger force to push blood out of the heart over a longer pressure	
		distance to the rest of the body. follows aorta pressure	
		Many were able to identify highest / higher pressure but need to realise to avoid	

						eeds' to	have higher pressure. Structur	e leads to effect			
	h				function				0		
	b	f		3 to D, th			increases from 0 to 2.0 Ncm ⁻² mber X decreases from 130 to	R: if no figures are quoted	2		
					ntricle co	ntracts o	during systole, the increase in				
							blood out of the left ventricle				
					•		lume within the ventricle. [1]				
		• [Descr	iptions w	ere provi	ded with	out quotes				
		 Many also did not know how to express the relationship between pressure and volume and thus wrote from memory irrelevant points about the action of the valves 									
	C			vents the ntricle. [v of bloo	d from the aorta back into the	A: prevent backflow of blood (even if direction or ID of valve is incorrect)	1		
					t deduce tion of ba		valve elosing is the semilunar v	alve and old not			
	d	<u>Any</u>	1 co	mponen	t + corre	ct expla	nation:		1		
				n monox		\frown					
							oxygen-carrying ability of red				
							f atherosclerosis such that the harder with greater force. [1]				
			lean	compens	sales by t	umping	harder with greater torce. [1]				
		• •	Vicoti	qe [1]	\swarrow	\sim					
				1 - 1	ases ris	of blo	od clots in blood vessels /				
						V/ \) in blood vessels / diameter				
	$\langle \rangle$	N /	/				hat the heart compensates by				
		VI.			or with gre	1 1 1 -					
		\setminus (\sim	/ / / /	~	ponent of cigarette smoke but	· · · · · · · · · · · · · · · · · · ·			
				()	V//1 /	-	ent to an increase in PRESSU d heart rate	JRE e.g. writing			
			V / /				cilia paralysis)				
5	а	- (- Chili					A: X	4		
				\checkmark	mot	ner	1	chromosome			
					X ^B	Xp		carries the alleles			
				X ^B	X ^B X ^B	$X_{B} \; X_{P}$					
		fath	ier	Y	X ^B Y	X ^b Y					
			l								
				-		-	aration of allele in parental				
		-			orrect cor						
		• N	lales	nave the	e Y chron	nosome	that doesn't carry the allele for				

5 www.KiasuExamPaper.com

			colour vision. [1]	
		٠	Hence, inheriting one copy of the recessive allele X ^b from the	
			mother is sufficient to result in colour blindness. [1]	
		•	Some were unable to complete the Punnett square with the correct symbols	
			even though genotype was given to them (unable to transfer knowledge)	
		•	Most also could not explain clearly that inheritance of one copy in males is more	
		-	detrimental and hence more common (focus on the answer should be on males	
			•	
			not females)	
		•	To remind students that alleles (recessive / dominant) are found on	
			chromosomes (entire chromosomes cannot be recessive / dominant)	
	b	٠	Differences in nucleotide sequence between the alleles results	2
			a difference in the codons that code for one amino acid. [1]	
		•	Hence, during translation, a difference in the codons would	
			result in a different sequence of amino acids that result in the	
			formation of a different protein responsible for the phenotype.	
		•	Many could not explain that difference in codon sequence results in different	
		•	sequence of amino acids and hence different protein (prenotype)	
		_		
		•	Many mentioned what genes are which is irrelevant to this question	
		•	Many also just simply rewrote what was given in the question – that different in	
			nucleotide sequence results in different phenotypes (conceptual understanding	
			is weak)	
		•	Usage of imprecise terms e.g. each protein consists of 3 nucleotides	
6	а	•	X = 100 – 15.8 – 0.2 – 50 = 34 % [1]	1
		•	Many made calculation errors e.g. using 10 % Fulle (3.4%)	
	b	•	As energy flows from the Sun to the producers and	2
	-		consumers, some of the energy is lost to the environment in	
			e.g. the form of heat released during respiration (0.2 % or	
			38.5 %) / reflection (15.8 %) / transpiration (50 %) / excretory	
	~	. 5		
	$\langle \rangle$	\setminus	products (62.5 %) [1]	
	/	_ ∙∖	This energy lost as heat cannot be recycled / used again by	
		/	the producers or consumers. [1]	
		• \	Most did not duppe the figures as required by the question (with reference to	
		•	Many also did not remember how to explain the non-cyclical flow and wrote	
			about less energy available	
	С	•	About 10 % of the energy stored at one trophic level is	2
			transferred to the next trophic level in the form of biomass /	
			About 90 % of energy is lost to the environment. [1]	
		•	Hence, there will not be enough energy available to support	
		-	the final consumers in long food chains. [1]	
		•	Common errors: not quoting the percentage of energy lost / transferred, not writing about the FINAL consumers	

SECTION C: Free Response Questions (20 marks)

Qn no.	Suggested answer	Comments to	Marks
	6		

7	a	<u>Ma</u> •	 x 2 descriptions with correct quoting of figures [4]: Number of incidences of diabetes has increased in each age group from 2004 to 2010 [1] E.g. In people aged 50 – 59, number of incidences of diabetes has increased from 17.6 % in 2004 to 19.3 % in 2010. [1] 		6
		•	group from 2004 to 2010 [1] E.g. In people aged 50 – 59, number of incidences of diabetes		
		•	E.g. In people aged $50 - 59$, number of incidences of diabetes		
		•			
		•	has increased from 17.6 % in 2004 to 19.3 % in 2010. [1]		
		•			
			For any particular year, number of incidences of diabetes is		
			higher in older people than in younger people. [1]		
		•	E.g. In 2010, 1 % of people aged 18 – 29 had diabetes while		
			29.1% of people aged 60 – 69 had diabetes. [1]		
		•	The onset of diabetes is occurring earlier. [1]	\cap	
		•	E.g. In 2004, 7.9 % of those aged 40 to 49 had diabetes while		
			in 2010, the number had risen to 12.1 %. [1]		
		Ma	x 2 marks for reasons:		
		•	Lack of exercise / less active [1]		
		•	Diet high in carbohydrates / sugar [1]		
		•	Obesity / more affluent so can eat more [1]		
		•	Slowing down of metabolism / less responsive to insulin / less		
			healthy liver in older people [1]		
		•	Most are weak at identifying the trends or accurately articulatin	g the trends and	
			quoting appropriate figures to substantiate the trend observed	,	
		•	Many were able to give 1 reason for trend observed (slowing of	metabolism)	
		•	Common error; liver produces insulin (not penalised)		
	b	•	Insulin will be digested in the stomach by the pepsin into	A: will be	1
			polypeptides and will not function [1]	digested	
		•	Most could not make the connection given in the question	that insulin is a	
	$ \land $		protein and extend the understanding to the fact that it would be	e digested	
		\mathbf{N}	Common errors: it would take a long time for insulin to be diges	ted / longer time	
			to absorb, cannot go to the site of action in the liver, no gluc	ose in mouth to	
		/	react with insulid // 5		
	С	•	The insulin spray-would move from the nasal cavity into the		3
			pharynx and then trachea. [1]		
		•	From the trachea, the spray would move into the bronchus,		
			bronchiole and alveoli. [1]		
		•	The spray would then diffuse across the alveolar wall into the		
			plasma in the blood capillaries. [1]		
	Γ	•	Understanding of the structures in the respiratory system was w	reak	
		•	Irrelevant responses include the movement throughout the cir	rculatory system	
			till the liver		
8	a	Ма	x six marks:	For each time	6
		•	From day $1 - 5$, menstruation occurs due to the decrease in	period:	
			the levels of progesterone in the last few days of the previous	[1] description	
			cycle. [1]	of event	
		•	During menstruation, the uterine lining breaks down and is		

		discharged out of the vagina together with the unfertilized egg [1] explanation	
		and blood. [1] of role of	
		• From day 6 to 13, the increase in oestrogen levels [1] hormone	
		stimulates the uterine lining to thicken / grow / repair and	
		becomes vascularized. [1]	
		• From day 15 to 24, the increase in progesterone levels [1] due	
		to the presence of the corpus luteum maintains the thickness	
		of / further thickens the uterine lining to prepare for possible	
		implantation of the embryo. [1]	
		 From day 24 to 28 (when no fertilisation occurs), the decrease 	
		in progesterone levels due to the breakdown of the corpus	
		luteum stimulates the uterine lining to break down at the onset	
	1	of menstruation. [1]	
		Days of the cycle were not always included in the answers (penalised)	
		Common irrelevant responses include mention of ovulation (question's focus is	
		on events in the uterus)	
		• Common errors: writing that day 15 – 28 is when progesterone levels	
		increases, writing in a non-chronological order	
	b	Similarities: 4	
		In both plants and humans, the haploid male gamete fuses	
		with the female gamete to form a diploid xygote. [1]	
		Differences (point to point, both sides of comparison):	
		The site of fertilisation in plants is the ovule [1] while the site of	
		fertilisation in humans is in the fallopian tube / oviduct. [1]	
		• Two male gametes fuse with two nuclei duning double	
		fertilisation [1] in plants while only one male gamete fuses with	
		the ovum to form the zygote in humans. [1]	
		 In plants, it is possible for self-fertilisation to take place where 	
	\wedge	the gametes are produced from the same parent [1] while in	
		humans, self-fertilisation is not possible. [1]	
	2	· Question was challenging to most who could not find the common similarity or	
		suitable points of comparison for differences about the event of fertilisation itself	
		Common irrelevant responses include writing about events leading to	
		fertilisation e.g. pollination or writing about asexual reproduction	
		Writing that plants can self-pollinate and hence self-fertilize	
9	а	Max 5 marks: [1] 5	
		Plants are the only organisms that can convert carbon dioxide photosynthesis	
		in the atmosphere into chemical energy in the form of glucose.	
		[1]	
		 During photosynthesis, the chloroplasts in plant cells trap light 	
		energy from the sun and use it to convert carbon dioxide into	
		glucose. [1]	
		Glucose is used by the plants to form new cells and is thus	
		converted into biomass. [1]	
		During feeding, energy in the form of biomass is transferred to	
		consumers. [1]	
_			

	In the mitochondria of living organisms, glucose is oxidized	
	during respiration [1] to release the energy required for the organisms to carry out their activities and grow. [1]	
	Question was challenging to most to integrate processes in the carbon cycle to	
	explain that plants are the only source of glucose for most other life forms	
	 Irrelevant responses include production of oxygen (question's focus is on the 	
	carbon cycle)	
b	Max 3 points:	5
D		0
	During photosynthesis, plants remove carbon dioxide from the stmeanhore and earwart it into glupped. [1]	
	atmosphere and convert it into glucose. [1]	
	• With increasing deforestation, there will be fewer trees to	
	remove carbon dioxide from atmosphere. [1]	
	This will lead to an overall increase in the amount of carbon	
	dioxide remaining in the atmosphere. [1]	
	Organisms living in the forests lose their habitats and source	
	of food and shelter. [1]	
	This can cause imbalances to the food chain. [1]	
	Organisms may eventually not survive and species become	
	extinct. [1]	
	Max 1 key point with elaboration:	
	 To maintain biodiversity by preventing the extinction of 	
	species [1]	
	 A large gene pool is important as many wild plants and 	
	animals possess favourable genes. [1]	
	 Plants with better resistance to diseases and drought 	
	can be produced by crossing domestic species with	
	wild species [1]	
	 Many tropical plants are of great importance as they 	
$\langle \rangle$	are sources of medicinal drugs. [1]	
	To allow for species diversity [1]	
	 This means to have a wide variety of different species 	
	of organisms/living in a given area. [1]	
	 Each species has its role to play in maintaining the 	
	balance in the ecosystem. [1]	
	To maintain a stable and balanced ecosystem [1]	
	\circ This prevents disruption of natural cycles such as the	
	carbon cycle, and also prevents global warning. [1]	
	For economic purposes [1]	
	 Tropical plants provide raw materials for industries. [1] 	
	 Tropical rainforests also provide food for example, 	
	rice, pineapple and banana [1]	
	For scientific research [1]	

 The study of wildlife provides useful information to humans. [1] 	
A number of students completely left out reasons why conservation is important	
• Writing about soil erosion instead of the direct impact of deforestation or explaining how erosion impacts the ecosystem (not able to understand the term 'ecosystem')	
Explaining that removal of trees removes oxygen for other organisms	

- END OF PAPER -

