

EUNOIA JUNIOR COLLEGE JC2 Preliminary Examination 2024 General Certificate of Education Advanced Level Higher 2

CANDIDATE NAME						7	
CIVICS GROUP	2	3	_			NDEX IUMBER	

CHEMISTRY

Paper 3 Free Response

9729/03

12 September 2024 2 hours

Candidates answer on the Question Paper

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, civics group, index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper. If addition space is required, you

should use the pages at the end of this booklet. The question number must be clearly shown.

Section A

Answer all the questions

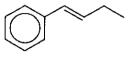
Section B

Answer one question.

The use of an approved scientific calculator is expected, where appropriate.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

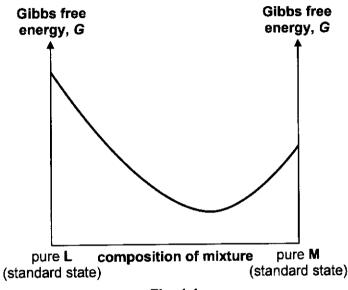

For Examiner's Use				
Par	per 3			
Sect	ion A			
1	/20			
2	/20			
3	/20			
Sect	ion B			
4	/20			
5	/20			
Total	/80			

BLANK PAGE

Section A

Answer all the questions in this section.

- 1 Alkenylbenzene molecules are secondary plant metabolites with certain levels of toxicity, despite their presence in herbs and spices. One type of alkenylbenzene is (2-ethylethenyl)benzene.
 - (a) (2-ethylethenyl)benzene exhibits stereoisomerism and exists as a pair of stereoisomers L and M. The structure of M is as shown.

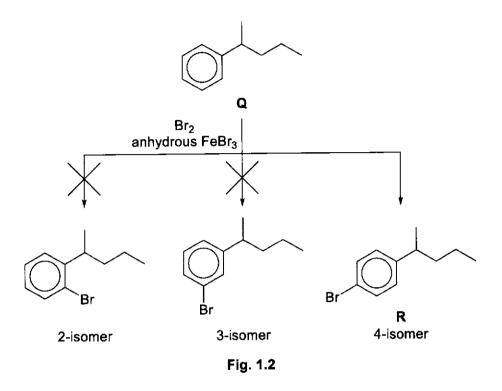

compound M

(i)	State the type of stereoisomerism exhibited by (2-ethylethenyl)benzene.	[1]
(ii)	Draw the skeletal structure of L.	[1]
(iii)	Draw the structure of a constitutional isomer of M that fulfils the following cri odoes not exhibit the stereoisomerism stated in (a)(i) has a non-terminal alkene	teria: [1]
		••••••
	.,,	
		··········
		•••••

(b) When a pure sample of L is left to stand, a portion of it converts to M. The mixture will then eventually achieve equilibrium, as illustrated in the following equation.

$L \rightleftharpoons M$

Fig. 1.1 shows a sketch of how the Gibbs free energy of the mixture of $\bf L$ and $\bf M$ varies with the composition of the mixture at a particular temperature. The slope of the graph at each point corresponds to ΔG of the conversion of $\bf L$ to $\bf M$.


- Fig. 1.1
- (i) Given that the K_c value of this equilibrium at the temperature given is 5.25, calculate the equilibrium concentration of L when 1.30 mol dm⁻³ of pure L was placed in an empty reaction chamber and allowed to reach equilibrium. [2]
- (ii) Label Fig. 1.1 with a cross (×) to show the composition of the mixture of L and M at equilibrium.
- (iii) With reference to the structures of L and M, explain why the minimum point of the graph in Fig. 1.1 lies closer to the point of pure M. [1]

(c) An attempt to synthesise N by mixing one mole of M with two moles of Br_2 in the presence of anhydrous $FeBr_3$ in the dark, was not successful.

- (i) Draw the skeletal structure of the major product obtained instead. [1]
- (ii) A trace amount of **P** was obtained as a by-product. Suggest how **P** was formed during the reaction. [1]

The student then changed M to Q and changed the amount of Q and Br_2 used to one mole each, while keeping the other conditions the same. This caused the student to obtain R, the 4-bromo product, as the major product, as shown in Fig. 1.2.

The generation of the electrophile for this reaction is as shown.

$$Br_2 + FeBr_3 \rightleftharpoons Br^+ + FeBr_4^-$$

(iii)	Draw the mechanism for the reaction between Q and Br₂ to form R .	[2]
(iv)	Explain why R is preferentially formed over the 2-isomer and 3-isomer.	[2]
(v)	With the aid of an equation, explain if ${\bf R}$ can be formed when Br ₂ and anhydro FeC $\it l_3$ were used instead.	ous [1]
		••••

			***************************************	***************************************
	•••••			
		,	•••••••••••••••••••••••••••••••••••••••	***************************************
•	••••••			
			•••••	· · · · · · · · · · · · · · · · · · ·
		••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	**************
	•••••		•••••••••••••••••••••••••••••••••••••••	••••••
				•••••••
	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	
	•••••		•••••	• • • • • • • • • • • • • • • • • • • •
	••••••			••••••
•••••				
				••••••
		•••••		
••••••			••••••	•••••
••••••			••••••	
		•••••		
		•••••		
		•••••	***************************************	
	••••••••••••		***************************************	
•••••	*******************	•••••		

(d) Photoelectron spectroscopy is an experimental technique used to measure the energies of electrons in atoms and ions, such as Cr and Ag⁺. A typical photoelectron spectrum plots the relative number of electrons against energy absorbed to remove the electrons, as exemplified by the photoelectron spectrum of boron in Fig. 1.3, which has the electronic configuration 1s² 2s² 2p¹.

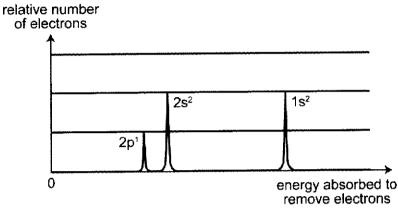


Fig. 1.3

The relative height of each peak corresponds to the number of electrons in that subshell.

Explain why the gap between the peaks corresponding to the 1s and 2s subsh is much larger than the gap between the peaks corresponding to the 2s and subshells.	
	••••

Fig. 1.4 shows a sketch of the photoelectron spectrum of the **valence shell** of X^{2+} , where X is a first-row transition element.

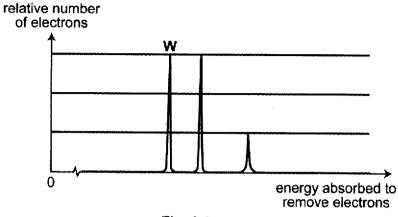


Fig. 1.4

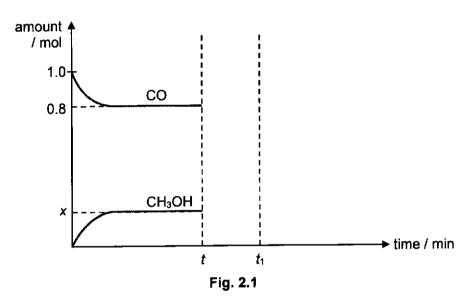
(ii)	State two	orbitals	in the	subshell	corresponding	to	peak	W	that	have	different
	shapes fro	m each	other.								[1]

1	iii)	Identify X	2+ and explain	your answer briefly	usina Fia. 1.4.	101

(iv)	Identify another ion with a 2+ charge that is a second-row transition element a has a valence shell photoelectron spectrum with the same peak heights Fig. 1.4.	
		·
		•••

[Total: 20]

2 (a) The industrial synthesis of methanol involves heating carbon monoxide and hydrogen under controlled conditions in the presence of catalysts.


$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

temperature / °C	200 to 300
pressure / atm	50 to 100
catalysts	mixture of Cu, ZnO and Al ₂ O ₃

(i) Write the expression for the equilibrium constant, K_p , for this reaction.

[1]

(ii) In one of the synthesis, CO and H₂ were added in the molar ratio 1:2. Fig. 2.1 shows the change in the amounts of CO and CH₃OH with time. The temperature was maintained at a temperature of 250 °C and the total pressure at equilibrium is 85 atm.

Use the information provided and data from Fig. 2.1 to calculate the equilibrium amount of methanol, x, at 250 °C. [1]

- (iii) Hence, calculate the value of K_P for the equilibrium at 250 °C, giving its units. [2]
- (iv) At time t, 0.2 mol of CH₃OH(g) was added. Assuming that the volume and temperature in the sealed vessel remains unchanged, sketch the changes in amount of CO and CH₃OH that would be observed from t min in Fig. 2.1 until the new equilibrium is reached at t₁ min. [2]

(v)	The reaction to produce CH ₃ OH is repeated with the same amounts of CO and H ₂ at 250 °C in a bigger vessel. State and explain the effects, if any, of this change on							
	rate of producing methanol							
	the equilibrium yield of methanol							
	 the value of K_p 	[3]						
(vi)	State the type of catalysis and outline the mode of action of the catalysts in the synthesis of methanol.	he [3]						
		•••						
		•••						
	,							

(b) Mandelic acid derivatives, including brominated forms like 3-bromomandelic acid, are used in the synthesis of chiral compounds.

3-bromomandelic acid

3-bromomandelic acid can be formed from benzaldehyde in 3 steps.

- (i) Suggest the identity of intermediates A and B. [2]
- (ii) State the reagents and conditions for step 2. [1]
- (iii) State the type of reaction in step 3. [1]
- (iv) Suggest a chemical test to distinguish between benzaldehyde and 3-bromomandelic acid. Include the reagents and conditions used, and the observations for each compound. [2]
- (v) In many brominated organic compounds, the Br will be converted to a hydroxy group in the presence of hot aqueous sodium hydroxide. Explain whether this conversion will take place for 3-bromomandelic acid. [2]

[Total: 20]

3 Sorbic acid is a natural organic compound used as a food preservative. The traditional route to sorbic acid involves the reaction of malonic acid and crotonaldehyde as shown in Fig. 3.1.

Fig. 3.1

(u)		I dm ⁻³ . Explain why K_{a1} of malonic acid is larger than the K_a of sorbic acid.	, · 2]
	••••		
		······································	
	••••		
	•		••
(b)	(i)	State the type of reaction for step 1.	1]
	(ii)	State the identity of gas B.	1]

(c)	(i)	Explain why the addition of NaOH(aq) to aqueous sorbic acid can result in the formation of a buffer solution. [1]				
	(ii)	Sorbic acid has a pK _a of 4.75.				
		Deduce the volume of 0.100 mol dm ⁻³ NaOH(aq) that must be added to 100 cm ³ of 0.100 mol dm ⁻³ sorbic acid to make a buffer solution with a pH of 4.75. [2]				
	(iii)	Another buffer is made by dissolving 0.100 mol of solid sodium sorbate in 100 cm 3 of 1.00 mol dm $^{-3}$ aqueous sorbic acid.				
		Comparing this buffer with the buffer in (c)(ii) , explain which buffer is more resistant to changes in pH when a strong acid or a strong base is added. [1]				
	(iv)	A particulate representation of another sorbic acid / sodium sorbate buffer solution is shown in Fig. 3.2.				
		Is the pH of this buffer greater than, less than, or equal to 4.75? Justify your answer.				
		sorbic acid molecules sorbate anion				
		Fig 3.2				

d)	When sorbic acid reacts with excess hot acidified potassium manganate(VII), only one organic product is formed. Write the structural formula of the organic product.

Question 3 continues on the next page.

(e)	Sorbic acid undergoes controlled oxidation in alkaline potassium manganate(VII producing ethanedioate ion, $^{-}O_2C-CO_2^{-}$. Ethanedioate ions react with aqueous iron(III ions to form a green iron(III) complex.				
	(i)	Name the reaction between aqueous iron(III) ion and ethanedioate ions.	[1]		
	(ii)	Write an equation for the reaction between aqueous iron(III) ion and ethanedio ions. Hence, explain why the ΔS^{Θ} of reaction is positive.	ate [2]		
	(iii)	Explain how the positive ΔS^Θ of reaction contributes to the spontaneity of reaction in (e)(ii) .	the [1]		
	(iv)	Draw the structure of the green iron(III) complex ion formed in (e)(ii) . State value of the O-Fe-O bond angle.	the [2]		
	(v)	State the type of isomerism exhibited by the iron(III) complex ion.	[1]		
	(vi)	Explain why the iron(III) complex ion is coloured.	[3]		
					

······································
······································

[Total: 20]

Section B

Answer one question from this section.

4	(a)	Gro	up 2 metals can react with nitrogen and oxygen to form different compounds.	
		(i)	On heating with oxygen, Group 2 metals have an increasing tendency to for metal peroxides, $M^{2^+}O_2^{2^-}$, down the group from magnesium to barium. Describe and explain this tendency in terms of the variation in thermal stability the Group 2 peroxides.	
		(ii)	Nitrogen is typically inert due to the large amount of energy needed to break Nebond, but magnesium produces trace Mg_3N_2 , in addition to MgO , when burnt atmospheric air. Suggest a reason that allows the formation of Mg_3N_2 .	in [1]
		(iii)	${\rm Mg_3N_2}$ dissolves in water to give a white solid and ammonia gas. Write an equation with state symbols, that describes this reaction.	on [1]
				•••
				•••
				•••
				•••
				•••
				,

(b)	Ammonia is produced via the Haber Process, in which a temperature of 450 °C is used, and nitrogen and hydrogen are mixed in a molar ratio of 1:3 at 250 bar in a reaction vessel.			
		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$		
	(i)	Suggest why ammonia behaves as an ideal gas despite the high pressure used in the Haber Process. [1]		
	(ii)	Given that 15% yield of ammonia is obtained from the process, calculate the partial pressure of the ammonia produced. [2]		
	(iii)	Hence, assuming ammonia is an ideal gas, calculate the density of ammonia produced, in g ${\rm m}^{-3}$, in the reaction vessel. [2]		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		·····		
				
		······		
		······································		

(c)	Describe and explain the relative basicities of ethanamide, ethylamine, phenylamine, and ammonia, in aqueous medium. [3]
	•••••••••••••••••••••••••••••••••••••••

- (d) Primary amines can react with aldehydes and ketones to yield imines, containing C=N bond, which are common as intermediates in biological pathways. The mechanism for the reaction between ethylamine and butanone is shown in Fig. 4.1.
- step 1: nucleophilic addition

step 2: proton transfer

step 3: protonation

step 4: elimination of water

step 5: deprotonation

A: + N -	N + H-A
Fig. 4.1	

- (i) State the reagents and condition required to form ethylamine from ammonia. [1]
- (ii) By considering step 1, suggest why the reaction is slow at a low pH. [1]
- (iii) Explain why protonation in step 3 favours the elimination of water in step 4. [1]

.....

(e) An electrolysis cell was set up to coat a zinc disc with copper. The zinc disc with a surface area of 25 cm² was used as the cathode with 1 mol dm⁻³ CuSO₄(aq) as the electrolyte at 298 K. The anode is a 10 g copper ore with silver impurities.

A current of 1.20 A was passed through the electrolysis cell for 20 minutes. At the end of the electrolysis, there was a deposit under the anode.

(i)	Explain why the concentration of the electrolyte remains constant.	[1]
(ii)	Calculated the expected increase in mass of the circular zinc disc at the end of minutes.	20 [2]
(iii)	Calculate a minimum value for which the voltage of the external circuit must higher than, so that electrolysis can occur.	be [1]
		••••
		
	,	

[Total: 20]

5	(a)	Describe the reactions, if any, of the chlorides NaCl, MgCl ₂ and AlCl ₃ with water. Write equations for all reactions that occur, and suggest the pH of the resulting solutions. Relate the reactivity of these chlorides to their structure and bonding. [4]

(b) Aldol condensation can occur between two carbonyl molecules, of which one of the molecules must possess at least one hydrogen on the neighbouring carbon atom to the carbonyl group.

(where R₁, R₂, R₃ and R₄ can be H, alkyl or aryl groups)

The first step of the aldol condensation involves the generation of a nucleophile, which occurs in the presence of strong bases, such as potassium hydroxide, potassium methoxide, CH₃OK, or potassium *tert*-butoxide, (CH₃)₃COK.

In the carbonyl molecule shown below, H_a is removed instead of H_b.

(i) Explain why Ha is more acidic than Hb.

[1]

[2]

- (ii) Compare and explain the basicities of potassium methoxide, CH₃OK, and potassium *tert*-butoxide, (CH₃)₃COK. [1]
- (iii) The initial steps for aldol condensation of two propanone molecules are shown in Fig. 5.1, where OH⁻ is used to represent a strong base.

Copy and complete Fig. 5.1 to suggest a mechanism for these initial steps. Show all charges and relevant lone pairs, and show the movement of electron pairs by using curly arrows.

(iv) Suggest the starting organic reactants required to form the following compound.

(c) The kinetics of acid-catalysed iodination of propanone was studied. Reaction mixtures with varying concentrations of iodine, propanone and H* were prepared, and the progress of the reaction was then followed by the use of a colourimeter.

The total volume of the reaction mixture was kept constant in all experiments. The time taken for a 5% decrease in $[I_2]$ was measured and the data in Table 5.1 was obtained at a fixed temperature of 298 K.

Table 5.1

experiment	[CH ₃ COCH ₃] / mol dm ⁻³	$[I_2]$ / mol dm $^{-3}$	[H ⁺] / mol dm ⁻³	time taken for a 5% decrease in [I ₂] / s
1	0.2	1 × 10 ⁻³	0.1	110
2	0.2	5 × 10 ⁻⁴	0.1	55
3	0.2	5 × 10 ⁻⁴	0.05	110
4	0.1	1 × 10 ⁻³	0.05	440

(i)	The rate of reaction is given by the rate of decrease of [I ₂].	
	Given that [I2] has decreased by 5% at the end-point, calculate the rate of re	action,
	in mol dm ⁻³ s ⁻¹ , for experiment 1.	[1]

(ii)	Determine the or	der of the re	eaction with	respect to e	each of the	following	reactants:
------	------------------	---------------	--------------	--------------	-------------	-----------	------------

- CH₃COCH₃
- I₂

1.1+		[3]
 H⁺ 		[3]

(iii) Hence, write the rate equation for the reaction.	[1]
--	-----

(iv)	Calculate the rate constant for the reaction, stating its units.	[1]
		•••••

.....

•
······································

(d)	Methanol can be used in direct-membrane alkaline fuel cells to generate electricity. A the anode, methanol is diluted in potassium hydroxide solution and undergoe oxidation to become carbonate, CO ₃ ²⁻ , and water. At the cathode, oxygen gas is being supplied into water.			
	(i)	Construct half equations for the cathode and anode reactions.	2]	
	(ii)	Hence, write the overall equation.	1]	
	(iii)	The cell is capable of producing an e.m.f of $+1.21$ V under standard conditions. By using relevant data from the <i>Data Booklet</i> , suggest a value for the E^{Θ} of the anode reaction.	ne [1]	
	(iv)	Calculate ΔG^{Θ} for the oxidation of 1 mol of methanol.	1]	
			•••	
				
			•••	
			•••	
			•••	
			•••	
			•••	
			•••	

Additional answer space

must be clea	arly shown.						
***************************************	•••••			•••••			• • • • • • • • • • • • • • • • • • • •
					•••••	••••••	
				••••	•••••		
							•
				•••••	•••••••••		••••••
					•••••		

***************************************					•••••••••••		
***************************************	***************************************				•••••••••••••••••••••••••••••••••••••••		
					••••••		
	*****************	***************************************				***************	
		•••••				***************************************	
***************************************	***************************************		*************			***************************************	***********
***************************************	,,,,,,	,,,	•••••				•••••
		•••••		**************			
				••••••		·····	
***************************************				4114			
						•	
					***************	•	
***************	***************************************		••••••••••••		***************************************	*******************	
				•••••			•••••
***************************************	***************************************	•••••••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	••••••					····	
****************	•••••		• • • • • • • • • • • • • • • • • • • •	•••		•••••	••••

n Advanced Level

BLANK PAGE

N

EUNOIA JUNIOR COLLEGE	General Certificate of Educatio
JC2 Preliminary Examination 2	Higher 2
	会

gher 2	
Ē	

N CANDIDATE NAME

ı m

CIVICS

INDEX NUMBER

9729/03

12 September 2024 2 hours

Candidates answer on the Question Paper

Paper 3 Free Response

CHEMISTRY

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, civics group, index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper. If addition space is required, you should use the pages at the end of this booklet. The question number

For Examiner's Use

Section A Answer all the questions

Section B

Answer one question.

20 750

2

Section A Paper 3

> The use of an approved scientific calculator is expected, where appropriate.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

02/	81	/20	/20	/80
	Section B	4	w	Total

This document consists of 31 printed pages and 1 blank page.

© EJC

Turn Over

© EJC

Section A

Answer all the questions in this section.

- 1 Alkenylbenzene molecules are secondary plant metabolites with certain levels of toxicity, (2-ethylethenyl)benzene. despite their presence in herbs and spices. One type of alkenylbenzene is
- (a) (2-ethylethenyl)benzene exhibits stereoisomerism and stereoisomers L and M. The structure of M is as shown. exists as a pair 잌

- (i) State the type of stereoisomerism exhibited by (2-ethylethenyl)benzene. Ξ
- (ii) Draw the skeletal structure of L.
- (iii) Draw the structure of a constitutional isomer of M that fulfils the following criteria:
- does not exhibit the stereoisomerism stated in (a)(i)
- has a non-terminal alkene

Ξ

Ξ

9729/03/J2PE/24

[Turn Over

(b) When a pure sample of L is left to stand, a portion of it converts to M. The mixture will then eventually achieve equilibrium, as illustrated in the following equation.

1 1 8

at each point corresponds to ΔG of the conversion of \boldsymbol{L} to $\boldsymbol{M}.$ with the composition of the mixture at a particular temperature. The slope of the graph Fig. 1.1 shows a sketch of how the Gibbs free energy of the mixture of L and M varies

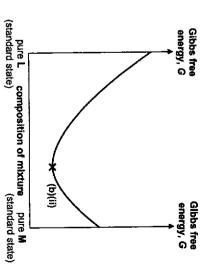


Fig. 1.1

- 3 Given that the K_c value of this equilibrium at the temperature given is 5.25, placed in an empty reaction chamber and allowed to reach equilibrium. calculate the equilibrium concentration of L when 1.30 mol dm⁻³ of pure L was <u> 2</u>2
- (II) Label Fig. 1.1 with a cross (x) to show the composition of the mixture of L and M at equilibrium. Ξ
- (iii) With reference to the structures of L and M, explain why the minimum point of the graph in Fig. 1.1 lies closer to the point of pure M.

change in conc / mol dm ⁻³	initial conc / mol dm-3	() L Z M
×	1.30	٦
		11.
×	0	3
	change in conc / mol dm ⁻³ —x X	initial conc / mol dm ⁻³ 1.30 0 change in conc / mol dm ⁻³ –x x

$$5.25 = \frac{x}{1.30 - x}$$

 $x = 1.092 \text{ mol dm}^3$

equilibrium concentration of L = 1.30 - 1.092 = 0.208 mol dm⁻³

(iii) M. the trans isomer, has less steric strain than L, the cis isomer.

M is thus more stable than L. causing the minimum point to lie closer to

M.

(c) An attempt to synthesise N by mixing one mole of M with two moles of Br₂ in the presence of anhydrous FeBr₃ in the dark, was not successful.

(i) Draw the skeletal structure of the major product obtained instead.

Ξ

(ii) A trace amount of P was obtained as a by-product. Suggest how P was formed during the reaction.

9729/03/J2PE/24

The student then changed M to Q and changed the amount of Q and Br_2 used to one mole each, while keeping the other conditions the same. This caused the student to obtain R, the 4-bromo product, as the major product, as shown in Fig. 1.2.

The generation of the electrophile for this reaction is as shown.

(iii) Draw the mechanism for the reaction between Q and Br2 to form R.

<u>7</u> <u>~</u>

(iv) Explain why R is preferentially formed over the 2-isomer and 3-isomer.

Ξ (v) With the aid of an equation, explain if R can be formed when Br2 and anhydrous FeCl3 were used instead.

9729/03/J2PE/24

9729/03/J2PE/24

Turn Over

(ii) The HBr formed in the formation of the major product reacted with

unreacted M to give P.

3 D. + FeBr₄ -slow fast

(iv) The alkyl group is 2,4-directing; hence Q will preferentially substitute either

+ FeBr₃ + HBr

on the second or fourth carbon atom. However, the alkyl group on Q is very

bulky and presents significant steric hindrance to incoming electrophiles.

Hence, the fourth carbon atom is more accessible than the second carbon

atom.

(v) Yes, it would occur. Using Br2 and FeCt will still generate Br* as the

electrophile.

Br₂ + FeCl₃ ⇒ Br⁺ + FeCl₃Br

(d) Photoelectron spectroscopy is an experimental technique used to measure the energies of electrons in atoms and ions, such as Cr and Ag*. A typical photoelectron has the electronic configuration 1s2 2s2 2p1. the electrons, as exemplified by the photoelectron spectrum of boron in Fig. 1.3, which spectrum plots the relative number of electrons against energy absorbed to remove

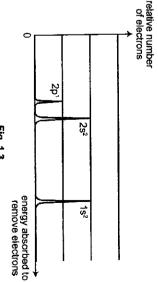
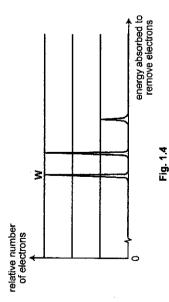


Fig. 1.3


The relative height of each peak corresponds to the number of electrons in that

€ Explain why the gap between the peaks corresponding to the 1s and 2s subshells is much larger than the gap between the peaks corresponding to the 2s and 2p subshells.

subshells are in the same principal quantum shell, hence the energy attraction, thus requiring more energy to remove. Electrons in the 2s and 2p subshell, hence 1s electrons experience stronger electrostatic forces of difference between them is smaller, thus the gap between the peaks is smaller The electrons in the 1s subshell are much closer to the nucleus than the 2s

QE/C

Fig. 1.4 shows a sketch of the photoelectron spectrum of the valence shell of X2+; where X is a first-row transition element.

(ii) State two orbitals in the subshell corresponding to peak W that have different shapes from each other.

3d2, and the name of any other 3d orbital.

(iii) Identify X2* and explain your answer briefly using Fig. 1.4.

2

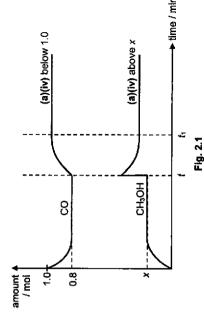
and 4s subshells. Since the middle and leftmost peaks are of the same height, The ion is Fe2+. The 3p subshell is filled first with 6 electrons before the 3d the 3p and 3d subshells must contain the same number of electrons, implying a 3s² 3p6 3d6 electron configuration.

(iv) Identify another ion with a 2+ charge that is a second-row transition element and has a valence shell photoelectron spectrum with the same peak heights as Fig. 1.4.

Ru²

[Total: 20]

2


2 (a) The industrial synthesis of methanol involves heating carbon monoxide and hydrogen under controlled conditions in the presence of catalysts.

temperature / °C	200 to 300
pressure / atm	50 to 100
catalysts	mixture of Cu, ZnO and A½O ₃

Write the expression for the equilibrium constant, Kp, for this reaction.

Ξ

(II) In one of the synthesis, CO and H₂ were added in the molar ratio 1:2. Fig. 2.1 shows the change in the amounts of CO and CH₃OH with time. The temperature was maintained at a temperature of 250 °C and the total pressure at equilibrium is 85 atm.

Use the information provided and data from Fig. 2.1 to calculate the equilibrium Ξ amount of methanol, x, at 250 °C.

(iii) Hence, calculate the value of K_b for the equilibrium at 250 °C, giving its units. [2]

(Iv) At time t, 0.2 mol of CH₃OH(g) was added. Assuming that the volume and temperature in the sealed vessel remains unchanged, sketch the changes in amount of CO and CH₃OH that would be observed from t min in Fig. 2.1 until the new equilibrium is reached at t, min.

Turn Over

9729/03/J2PE/24

2

(v) The reaction to produce CH $_3$ OH is repeated with the same amounts of CO and H $_2$ at 250 °C in a bigger vessel. State and explain the effects, if any, of this change

9

(vi) State the type of catalysis and outline the mode of action of the catalysts in the synthesis of methanol.
[3]

the value of K_p

rate of producing methanolthe equilibrium yield of methanol

(1) $K_{\text{p}} = \frac{\rho_{\text{CH}_3\text{OH}}}{\rho_{\text{CO}} \left(\rho_{\text{H}_2}\right)^2}$

..... equilibrium amt / mol......0.8....

x = 0.200 mol

.....change in amt / mol0.2....

-0.4

+0.2

.....initial and / mol....

(II).....

....CD(g)......+....

.2H₂(g)......≠.....CH₃OH(g)....

į	:	÷	;	÷	;	;	į	;	į
•	:	1	- 1		•	•			
- 1			:		- 1		i	- 1	1
			•			•		•	•
	•		1					÷	
		- 1		:					
		i		•	i	•		•	- 1
•				÷		-		-	
		1	Ė	:	÷			- 1	•
:		- 1		•	•		ŧ		•
i	į	•		1	1		<u> </u>		- 1
				:	:		:		1
	•	,	•						
			•			<u> </u>	į		i
	÷		•	•		- 1			•
	÷	į				- 1	1		1
	1					i		:	
		:		:		•	- 1		
1				•	1	•			
	1					i	- 1	•	•
			- :		1	:			i
•		:	1		1		:	į	
	i		:		1				
			•		:				
	1				•	i			
•	į				•		-		•
	-			- 1		•	:	•	- ;
i			1	- 1		- 1			
		•		:					
1				•					1
					ì	•		1	
		•		•	•				
:		:	- :	:	:	:		:	

Le Chateller's Principle, the backward reaction is favoured to increase the pressure by producing greater amount of gas particles. Hence the position of equilibrium will shift to the left, decreasing the yield of methanol.	(iii) $\rho_{\text{co}} = \frac{0.8}{2.6} \times 85 = 26.15 \text{ atm}$ $\rho_{\text{th}} = \frac{1.6}{2.6} \times 85 = 52.31 \text{ atm}$ $\rho_{\text{chycH}} = \frac{0.2}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{0.2}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 \text{ atm}$ $\rho_{\text{chycH}} = \frac{6.54}{2.6} \times 85 = 6.54 atm$
--	--

© EJC

9729/03/J2PE/24

[Turn Over

(vi) The catalysts are in solid state and function as heterogeneous catalyst since

Since there is no change in temperature, K_p remains constant.

(v) Effect on the value of K_p :

molecules at the catalyst surface and weakens the covalent bonds within the CO(g) and H₂(g) molecules, thereby reducing the activation energy for

This adsorption increases the concentration of the CO(g) and H₂(g)

CO(g) and H₂(g) are adsorbed to the surface of the catalyst.

they are in a different phase from CO(g) and H2(g)

The CH₃OH formed is subsequently desorbed from the surface of the

catalyst.

the reaction.

Пum Ove	

-	:	:	:	:
:		:	:	•
			:	:
:	•			
:	•			
	•		•	:
;	;		:	:
•	•	- 1		•
:	:	:	:	:
•	•		:	:
	:		:	:
	•			•
	:	•		
	:	•		
•	:	:		•
:		:		•
:	:			
:	:	:	:	
	•	•	- :	
:	:	:	•	
:	•	•		- 1
•	;	•	:	1
		•	:	
:	i	:	:	
:	•	•	:	
:		•		•
:	•	•	:	•
•		:	•	•
:		:	•	:
	÷	•	•	•
:	:	;	:	:
•	•		:	- 1
;	:	:	:	:
•	•	- 1	- 1	
:	:		:	:
	:	- 1	•	•
:	:	;	:	•
÷	•		:	:
•	•	•	:	
	•	- 1	:	<u> </u>
:	:	:	:	:
	:	•	:	•
•	•	•		:
	÷	•	i	÷
:	:	:	:	:
	•	•	1	•
1	•	•		•
:	:	:		:

(b) Mandelic acid derivatives, including brominated forms like 3-bromomandelic acid, are used in the synthesis of chiral compounds.

3-bromomandellc acid

3-bromomandelic acld can be formed from benzaldehyde in 3 steps.

(i) Suggest the identity of intermediates A and B.

<u>N</u> Ξ Ξ

(ii) State the reagents and conditions for step 2.

(III) State the type of reaction in step 3.

3-bromomandelic acid. Include the reagents and conditions used, and the observations for each compound. (Iv) Suggest a chemical test to distinguish between benzaldehyde and

group in the presence of hot aqueous sodium hydroxide. Explain whether this conversion will take place for 3-bromomandelic acid. (v) In many brominated organic compounds, the Br will be converted to a hydroxy

9729/03/J2PE/24

(ii) HCN, trace NaCN, cold

(iii) acidic hydrolysis

(iv) To separate test-tubes containing each compound, add Tollens' reagent

while the one containing 3-bromomandelic acid will not give a silver

mirror. (other sultable tests are also accepted)

(v) This conversion will not take place for 3-bromomandelic acid. The 4p

resulting in the strengthening of C-Br bond due to the partial double bond character. This makes it harder to break the C-Br bond. orbital of Br overlaps with the π electron cloud of the benzene ring. and heat. The one containing benzaldehyde will give a silver mirror [Total: 20]

> 3 Sorbic acid is a natural organic compound used as a food preservative. The traditional route to sorbic acid involves the reaction of malonic acid and crotonaldehyde as shown in

Fig. 3.1

(a) Malonic acid has a K_a of 1.48×10^{-3} mol dm⁻³, while sorbic acid has a K_a of 1.74×10^{-5} mol dm⁻³. Explain why K_{a_1} of malonic acid is larger than the K_a of sorbic acid. <u>7</u>2

K_{N1} of malonic acid is larger because the conjugate base, HO₂CCH₂CO₂, is more

charge on the -CO2 group. stabilised due to the electron-withdrawing -- CO2H group dispersing the negative

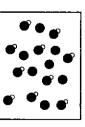
(b) (i) State the type of reaction for step 1.

Ξ

(ii) State the identity of gas B. Ξ

(I) Nucleophilic addition

(II) CO₂


- (c) (i) Explain why the addition of NaOH(aq) to aqueous sorbic acid can result in the formation of a buffer solution.
- (ii) Sorbic acid has a p.K., of 4.75.

Deduce the volume of 0.100 mol dm-3 NaOH(aq) that must be added to 100 cm³ of 0.100 mol dm⁻³ sorbic acid to make a buffer solution with a pH of 4.75. (III) Another buffer is made by dissolving 0.100 mol of solid sodium sorbate in 100 cm³ of 1.00 mol dm-3 aqueous sorbic acid.

Comparing this buffer with the buffer in (c)(ii), explain which buffer is more resistant to changes in pH when a strong acid or a strong base is added. [1]

(iv) A particulate representation of another sorbic acid / sodium sorbate buffer solution is shown in Fig. 3.2.

Is the pH of this buffer greater than, less than, or equal to 4.75? Justify your answer.

sorbic acid molecules

sorbate anion

Flg 3.2

(iii) The buffer in (c)(ii) is more resistant to changes in pH because it contains a	higher Isorbic acidl and Isorbate ion] to react with added H* or OH* ions.		(Iv). At pH = pKs = 4.75 [conjugate acid] = [conjugate base].	Since [sorbic acid] > [sorbate ion], as represented in the diagram, the	solution has a pH < 4.75. (Candidates can also use the Henderson-	Hasselbach equation to show)
--	--	--	---	---	---	------------------------------

2

(d) When sorbic acid reacts with excess hot acidified potassium manganate(VII), only one organic product is formed. Write the structural formula of the organic product. [1] СН3СО2Н

Turn Over

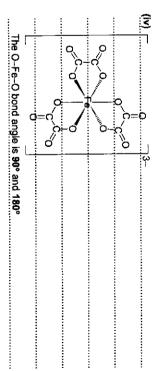
9729/03/J2PE/24

......(Candidates.can.use.the.Henderson-Hasselbach.equation.to.show)......

- (e) Sorbic acid undergoes controlled oxidation in alkaline potassium manganate(VII) ions to form a green iron(III) complex. producing ethanedioate ion, TO2C-CO2. Ethanedioate ions react with aqueous iron(III)
- (i) Name the reaction between aqueous iron(III) ion and ethanedioate ions. Ξ
- (ii) Write an equation for the reaction between aqueous iron(III) ion and ethanedioate lons. Hence, explain why the ΔS^e of reaction is positive
- (iii) Explain how the positive ΔS^{φ} of reaction contributes to the spontaneity of the
- (iv) Draw the structure of the green iron(III) complex ion formed in (e)(ii). State the value of the O-Fe-O bond angle. value of the O-Fe-O bond angle
- (v) State the type of isomerism exhibited by the iron(III) complex ion

Ξ

(vi) Explain why the iron(III) complex ion is coloured.


- (i) Ligand exchange
- (ii) $[Fe(H_2O)_6]^{3+} + 3C_2O_4^7 \rightarrow [Fe(C_2O_4)_3]^{3-} + 6H_2O$

More particles is produced after the reaction, resulting in an increase in

the degree of disorderliness. Hence, entropy increases.

(iii) Spontaneity for a process at standard conditions is determined by the sign of $\Delta G^{0} = \Delta H^{0} - T\Delta S^{0}$. Since ΔS^{0} is positive, the $-T\Delta S^{0}$ term makes the value

of AG® more negative and thus makes the reaction more spontaneous.

(v) Enantiomerlsm

(vi) Iron(III) has an incomplete 3d subshell. The ligands splits the d orbitals of

the transition metal Ion into two different energy levels. An electron In

the lower energy d orbital absorbs certain wavelengths of light energy

from the visible region of the electromagnetic spectrum, and is promoted

to a higher energy d orbital. This is called d-d transition. The remaining

wavelengths are transmitted and the complementary colour is observed.

[Total: 20]

© EJC

[Turn Over

Section B

Answer one question from this section.

- 4 (a) Group 2 metals can react with nitrogen and oxygen to form different compounds.
- On heating with oxygen, Group 2 metals have an increasing tendency to form Describe and explain this tendency in terms of the variation in thermal stability of metal peroxides, $M^{2+}O_2^{2-}$, down the group from magnesium to barium the Group 2 peroxides.
- bond, but magnesium produces trace MgsN2, in addition to MgO, when burnt in Nitrogen is typically inert due to the large amount of energy needed to break N=N atmospheric air. Suggest a reason that allows the formation of MgsN₂. €
- MgsN₂ dissolves in water to give a white solid and ammonia gas. Write an equation, with state symbols, that describes this reaction. €
- (i) Thermal stability of Group 2 peroxides increases down the group, hence there is increased tendency to form metal peroxides.
- cloud decreases down the group, and hence the O-O in the peroxide is Down Group 2, the cationic radius increases from Mg2* to Ba2*. The charge group. The ability of the cation to polarise and distort the anionic electron weakened to a lesser extent, leading to increase in thermal stability of the density and thus polarising power of the cations decreases down the
- (ii) The combustion of Mg to form MgO is highly exothermic, and provides the energy to break the triple bond in nitrogen

Group 2 peroxides down the group.

- (III) $Mg_3N_2(s) + 6H_2O(l) \rightarrow 3Mg(OH)_2(s) + 2NH_3(g)$ or Mg₃N₂(s) + 3H₂O(l) → 3MgO(s) + 2NH₃(g)

9729/03/J2PE/24

@EJC

Turn Over

2

and nitrogen and hydrogen are mixed in a molar ratio of 1:3 at 250 bar in a reaction (b) Ammonia is produced via the Haber Process, in which a temperature of 450 °C is used,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- (l) Suggest why ammonia behaves as an ideal gas despite the high pressure used in Ξ the Haber Process.
- (ii) Given that 15% yield of ammonia is obtained from the process, calculate the partial pressure of the ammonia produced.
- (iii) Hence, assuming ammonia is an Ideal gas, calculate the density of ammonia produced, in g m-3, in the reaction vessel.
- (i) At a higher temperature (of 450 °C), the ammonia particles have greater
- kinetic energy, and can overcome the existing intermolecular hydrogen

bonding in NH₃.

N
1
3H ₂ (a)
+
(b)(d)

$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	N ₂ (g)	+	3Hz(g)	1	⇒ 2NH₃(g)
initial amt / mol x 3x —	×		Зх		1
change in amt / mol0.15x0.45x +0.30x	-0.15x		-0.45x		+0.30x
eqm amt / mol	0.85x		2.55x		0.30x

partial pressure of NH ₃ (g) = $\frac{0.30x}{0.85x + 2.55x + 0.30x} \times 250$ bar	
partial pressure	*******************

= 20.27 bar

=20.3 bar (to 3 s.f.)

$$pV = nRT$$

$$pV = \left(\frac{m}{M}\right)RT$$

$$m \quad pM$$

$$\frac{m}{V} = \frac{\rho M_t}{RT}$$
= $\frac{(20.27 \times 10^8)(14.0 + 3.0)}{8.31 \times (450 + 273)}$

= 5740 g m⁻³ (to 3 s.f.)

9729/03/J2PE/24

© EJC

(c) Describe and explain the relative basicities of ethanamide, ethylamine, phenylamine, [3] and ammonia, in aqueous medium.

In order of increasing basicity in aqueous medium:

CH₃CONH₂ < C₆H₆NH₂ < NH₃ < C₂H₅NH₂

into the C=O, rendering the lone pair unavailable for donation to a proton Ethanamide is neutral, as the lone pair of electrons on the nitrogen is delocalised

Phenylamine is the least basic, as the lone pair of electrons on nitrogen in

phenylamine is partially delocalised into the benzene ring, rendering the lone pair

less available for donation to a proton.

Ethylamine is the most basic (more basic than ammonia), as the ethyl group is an

electron-donating group that increases the electron density on the nitrogen atom,

step 4:

which makes the lone pair of electrons on the nitrogen most readily available

for donation to a proton.

(d) Primary amines can react with aldehydes and ketones to yield Imines, containing C=N the reaction between ethylamine and butanone is shown in Fig. 4.1. bond, which are common as intermediates in biological pathways. The mechanism for

(i) State the reagents and condition required to form ethylamine from ammonia. [1]

(ii) By considering step 1, suggest why the reaction is slow at a low pH.

(iii) Explain why protonation in step 3 favours the elimination of water in step 4.

 \equiv Ξ

step 1: nucleophilic addition

elimination protonation proton transfer of water

step 5: deprotonation (i) Chloroethane in ethanol, heat in sealed tube with excess ammonia. Fig. 4.1

lone pair of electrons available for nucleophilic addition. This leads to a

(II) At low pH, the nitrogen in ethylamine is protonated and does not have a

slower rate of reaction as there is lesser ethylamine available

(iii) The hydroxide group is a poor leaving group as it is a strong base

Protonation converts the leaving group to water instead. or The carbon will

be more electron deficient due to the positively charged oxygen.

A current of 1.20 A was passed through the electrolysis cell for 20 minutes. At the end of the electrolysis, there was a deposit under the anode.

- Ξ Explain why the concentration of the electrolyte remains constant.
- Calculated the expected increase in mass of the circular zinc disc at the end of 20 €
- Calculate a minimum value for which the voltage of the external circuit must be higher than, so that electrolysis can occur. [1] €
- Cu is preferentially oxidised at the anode and Cu2+ is preferentially constant, the amount of Cu2+ entering and exiting the solution is the same reduced at the cathode. Since the current passing through the circuit and there is no net change in the concentration of the CuSO4 electrolyte.
- $It = n_s F$ €
- $1.20 \times 20 \times 60 = n_s (96500)$
- $n_{\rm e} = 0.01492 \, \text{mol}$
- n_{Du} deposited = 0.01492 + 2 = 0.00746 mol
- expected increase in mass = $0.0746 \times 63.5 = 4.74$ g
- (III) $E_{
 m cell}^{\Theta} = E_{
 m reduction}^{\Theta} E_{
 m outdelton}^{\Theta}$
- $= E^{0}(Cu^{2\gamma}|Cu) E^{0}(Cu^{2\gamma}|Cu)$
- = +0.34V (+0.34V) = 0 V
- The voltage of the external circuit must be higher than 0 V.

[Total: 20]

Turn Over

9729/03/J2PE/24

26

5 (a) Describe the reactions, if any, of the chlorides NaCl, MgCl2 and AtCl3 with water. Write <u>4</u> equations for all reactions that occur, and suggest the pH of the resulting solutions. Relate the reactivity of these chlorides to their structure and bonding.

NaCl has a glant ionic structure, held together by electrostatic attraction between oppositely charged Na* and Ct ions. As a result, NaCl dissolves in water, where the ons undergoes hydration:

$$NaCl(s) \xrightarrow{h_tO} Na^+(aq) + Cl^-(aq)$$

Due to the very low charge density of the hydrated Na*(aq) ion, no hydrolysis takes place and the pH of the resulting solution is 7.

between oppositely charged Mg²* and Ct ions. MgCk dissolves in water, where the MgCle also has a giant ionic structure, held together by electrostatic attraction ons undergoes hydration.

$$MgCL_{s}(s) \xrightarrow{H_{s} \circ} Mg^{2+}(aq) + 2Cl^{-}(aq)$$

Due to the higher charge density of the hydrated Mg2+ ion, slight hydrolysis takes place and the pH of the resulting solution is 6.5.

$$[Mg(H_2O)_R(aq)]^{2^+} \longrightarrow [Mg(H_2O)_ROH(aq)]^+ + H^+(aq)$$

AXCIs has a simple molecular structure, consisting of dimeric ALCIs molecules containing intramolecular polar AI-CI covalent bonds. As a result, AICIs reacts riolently with water, liberating much heat. It undergoes hydrolysis to give white fumes of HCt, leaving behind white solid $A_{L}O_{3}$:

$$2AlCl_{\lambda}(s) + 3H_{\lambda}O(l) \rightarrow Al_{\lambda}O_{\lambda}(s) + 6HCl(g/aq)$$

Some of the HCl dissolves in water to give a pH of 3 for the resulting solution.

9729/03/J2PE/24

(b) Aldol condensation can occur between two carbonyl molecules, of which one of the the carbonyl group. molecules must possess at least one hydrogen on the neighbouring carbon atom to

$$R_2$$
 R_3 R_4 R_2 R_4 R_4 R_2 R_4 R_4 R_4 R_4 R_5 R_6 R_8

(where R₁, R₂, R₃ and R₄ can be H, alkyl or aryl groups)

occurs in the presence of strong bases, such as potassium hydroxide, potassium methoxide, CH₃OK, or potassium *tert*-butoxide, (CH₃)₃COK. The first step of the aldol condensation involves the generation of a nucleophile, which

In the carbonyl molecule shown below, H_a is removed instead of H_b .

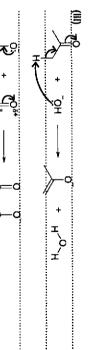
(i) Explain why H_s is more acidic than H_b

Ξ

- (II) Compare and explain the basicities of potassium methoxide, CH₃OK, and potassium tert-butoxide, (CH₃)₃COK.
- (iii) The initial steps for aldol condensation of two propanone molecules are shown in Fig. 5.1, where OH" is used to represent a strong base.

all charges and relevant lone pairs, and show the movement of electron pairs by Copy and complete Fig. 5.1 to suggest a mechanism for these initial steps. Show using curly arrows.

2


(iv) Suggest the starting organic reactants required to form the following compound

Ξ

28

(i) When H_a is removed, the negative charge on the carbon atom of the base formed is resonance stabilised and dissociation of H_a is preferred. This conjugate base may delocalise into the C=O bond, hence the conjugate does not occur for H_b.

(ii) Potassium methoxide is less basic than potassium tert-butoxide. The lone for donation to a proton due to the greater number of alkyl donating groups attached, which increases the electron density on the oxygen pair of electrons on the oxygen of tert-butoxide is more readily available

(iv) Propanone and (2 equiv). benzaldehyde

9729/03/J2PE/24

@EJC

28

(c) The kinetics of acid-catalysed iodination of propanone was studied. Reaction mixtures with varying concentrations of iodine, propanone and H* were prepared, and the progress of the reaction was then followed by the use of a colourimeter.

taken for a 5% decrease in [I₂] was measured and the data in Table 5.1 was obtained The total volume of the reaction mixture was kept constant in all experiments. The time at a fixed temperature of 298 K.

Table 5.1

	Γ	ı		Γ
time taken for a 5% decrease in [1 ₂] / s	110	55	110	440
[H†] / mol dm ⁻³	0.1	0.1	0.05	0.05
[I ₂] / mol dm ⁻³	1 × 10-3	5 × 10-4	5 × 10⁴	1 × 10 ⁻³
[CH ₃ COCH ₃] / mol dm ⁻³	0.2	0.2	0.2	0.1
experiment	1	2	3	4

Given that [12] has decreased by 5% at the end-point, calculate the rate of reaction, The rate of reaction is given by the rate of decrease of [I2]. in mol dm-3 s-1, for experiment 1. ε

(II) Determine the order of the reaction with respect to each of the following reactants:

• CH3COCH3

्य •

÷

3 Ξ Ξ

(III) Hence, write the rate equation for the reaction.

(iv) Calculate the rate constant for the reaction, stating its units.

(I) From experiment 1,

rate of reaction = rate of decrease of $\left[I_{2} \right]$

0.05×1×10⁻³ 110

 $= 4.50 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}$

(ii) $-\frac{\Delta |L_2|}{\Delta |L_2|} = k[CH_3COCH_3]^4[I_2]^4[H^*]^6$

 $\dot{-} = k(0.2)^{3} (1 \times 10^{-3})^{6} (0.1)^{6}$ From experiment 1, 0.05×1×10-8 From experiment 2, $\frac{0.05 \times 5 \times 10^{-4}}{5 \times 10^{-4}} = k (0.2)^{6} (5 \times 10^{-4})^{6} (0.1)^{6}$ 55.1

Comparing experiments 1 and 2, thus **b ≖ 0**

From experiment 3, $\frac{0.05 \times 5 \times 10^4}{440} = k(0.2)^3 (5 \times 10^4)^0 (0.05)^3$ 110

 $- = k(0.1)^{8} (1 \times 10^{-3})^{9} (0.05)^{1}$ Comparing experiments 1 & 3, thus c = 1 From experiment 4, 0.05×1×10⁻³

440

Comparing experiments 1 & 4, thus a = 1

The order of reaction with respect to CH₃COCH₃ is 1.

The order of reaction with respect to I2 is 0.

The order of reaction with respect to H* is 1.

(iii) rate = KICH3COCH2[H1]

- = k(0.2)(0.1)Since 0.05×1×10⁻³ = / (ix) 110 k = 2.27 × 10⁻⁵ mol⁻¹ dm³ s⁻¹

9729/03/J2PE/24

9729/03/J2PE/24

32

- (d) Methanol can be used in direct-membrane alkaline fuel cells to generate electricity. At the anode, methanol is diluted in potassium hydroxide solution and undergoes supplied into water. oxidation to become carbonate, CO_3^2 , and water. At the cathode, oxygen gas is being
- (I) Construct half equations for the cathode and anode reactions.
- (ii) Hence, write the overall equation.

Ξ 2

- (iii) The cell is capable of producing an e.m.f of +1.21 V under standard conditions. By using relevant data from the *Data Booklet*, suggest a value for the E^0 of the anode reaction. Ξ
- (iv) Calculate ΔG^{Θ} for the oxidation of 1 mol of methanol

Ξ

- (i) Cathode; O₂ + 2H₂O + 4e⁻ → 4OH⁻ Anode: $CH_2OH + 8OH^- \rightarrow CO_3^- + 6H_2O + 6e^-$
- (ii) Overall: $CH_3OH + \frac{3}{2}O_2 + 2OH^- \rightarrow CO_3^2 + 3H_2O$
- (iii) Since $E_{\text{cell}}^{\Theta} = E_{\text{raduction}}^{\Theta} E_{\text{oxidation}}^{\Theta}$
- $1.21 \text{ V} = +0.40 \text{ V} E_{\text{oxidation}}^{\text{B}}$
- E_{pxidation} = −0.81 V The E^o of the anode is -0.81 V.
- (iv) $\Delta G^{\Theta} = -nFE_{call}^{\Theta}$ $= -6 \times 96500 \times 1.21 = -701 \text{ kJ mol}^{-1}$

[Total: 20]

[Turn Over

9729/03/J2PE/24

© EJC

9729/03/J2PE/24