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1. ALGEBRA

Quadratic Equation

For the equation ax® +bx+c=0,

—bt+b* —4ac
2a

Binomial expansion

(a+b) =a" + (ﬂa”'lb + [;]a"_zbz b+ ["]a""b’ L
¥

. e ! - -
where n is a positive integer and 4 P — n(n—1)..(n—r+1)
) (n—rir! r!

2. TRIGONOMETRY

ldentities
sin24+cos?4=1
sec2A=1+tan’ 4
cosec2A=1+cot? 4
sin{4+ B)=sin Acos B+cos Asi B
cos(A + B) = cosAcosB F sinAsinB
_ tanA + tanB
tan{4 + B) = T avanB
sin 24 =2sin Acos A
cos2A=cos’ A—sin> A=2cos> 4—1=1-2smn’ 4
an2d4=—2204
1-tan” 4
Formulae for AABC
a b c

sm A - sin B - sin C
a2 =b? +¢2 =2bc cos A

Areaof A= %bc sin A4
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1 Find the range of values of p for which the line y =px—5 meets the curve
y=3x*+4x-2 [4]
SxZ-6x+13 | . .
2 Express —D13) in partial fractions. (5]
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3  Provethat 2 cot 20 = cosec §sec — 2tan@. [5]



BP-389

4 (1) Find—(Sxe®™"). [2]

(b) Hence find | xe?*** dx. [4]
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(6]

ISR

5  Solve the equation 1 + 3 sin” & = 4 cos 8 for —g <8<
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7

The function fis given by f(x) = ;% , for x > 2k , where £ is a positive constant.
(a) Find f'(x). 2]

The function g, defined for x > 2k , has the property that g'(x) = (x — 2k)? f'(x).
g decreases for k < x < 6.

(b) Show that a possible value of k is 3. [4]
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7 Prove that there are no values of & for which kx? + 2x — 2k — 3 is always positive. 6]
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8 Theline y —x =2 intersects the curve y? = 4(2x+ 1) at two points.
Find the coordinates of these two points. [5]
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9 A curve has equation y = x® +mx — 15. It has a stationary point 4 where x = 2.
(a) Show that the value of the constant m is —12. 2]

(b) Find the coordinates of the other stationary point B. [2)
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It is given that P is a point on the curve where the gradient is 2 minimum.
(¢) Find the coordinates of the point P. 3]

(d) Prove that the gradient is a minimum at P. [2]
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10  The equation of a circle Cis x? +y? —4x— 6y —12=0.
(a) Find the coordinates of the centre of C, and the radius of C. [4]

() Find the coordinates of the points at which the circle intersects the x-axis. [3]
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(c) State an equation of the circle which is a reflection of C in the y-axis. [2]

(d)  Explain whether the circle in part (c) lies entirely in the 2°¢ quadrant. [1]
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11  An open cylinder has radius r cm and total surface area 4 cm?.

It is given that Z—: = 2n(r + k).

(a) Find an expression for 4 in terms of 7. [2]

(b) Express the height of the cylinder in terms of & [1]
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15
The radius of the cylinder is increasing with the height remaining constant.
. . . d2r 5
It is given that, at time ¢ seconds, FICARETVOR

It is also known that initially, the radius was increasing at 3 cm/s.

(¢) Find an expression for % . (2]

(d) Hence find the rate of increase of the total surface area of the cylinder after
4 seconds, given that the radius is 15 cm and k = 10 at this instant. 3]
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12 A piece of wire, 100 cm in length, is divided into two parts.
One part is bent to form a square of side x cm, and the other square of side y cm.

(a) Express y interms of x. [2]

(b) Find the total area, 4 cm?, of the two squares, leaving your answer in the form
p(x + ¢)* + r, where p, g and r are consants. [4]
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(c) Hence state the minimum total area of the two squares, and the value of x at
which this occurs. [2]

(d) When x = x, the total area of the two squares is A;, where 0 < x; < 12% .

State another value of x, in terms of x;, which also gives a total area of 4. [1]
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13  The perpendicular bisector of the line joining the points A(3,2h) and B(—7,—10) passes
through the point X (h, 3), where A is a constant.

(a) Find the mid-point M of AB. (2]

(b) Find the gradient of AB. 2]
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(¢) Hence find the possible values of A. 71

END OF PAPER
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Paper-1
Answers

y=px—5 ()
y=3x2+4x -2 )
Sub (1) into (2):

3x2+4x—-2=px-5
3x* + (4—plx+3=0

Line meets curve => Discriminant > 0:
4-pY¥-4R3)3) =0
16—8p+p>—36=0
pt—8p—-20=0
p~10)(p+2)=0
ps—-2orp=10

Mi

Ml

M1
Al

5x%—6x+13 Bx+C
(x—1)}(x2+3) x-1 x243

Let

S5x2 —6x+13 =A(x*+3) + (Bx +C)(x ~ 1)

M1

Method 1;
Whenx =1,12 = 44
A=3 Ml
When x = 0, 13=3(3) +C (-1)
C=-4 M1
When x = -1, 24 =3(4) + (—B — 9)(-2)
B=2 M1
Sx?-6x+13 _ 3 | 2x—4 Al
Hence’ {x—13{(x24+3) T x-1 + x2+3
RHS for changing
=cosec Osecl —2tan ¥ either cosec,
=1 ( 1 )._25“‘9 M1 sec or tan
sinf \cosd cos g correctly
(.2
= 1 - 2sin” 8 M1 | for common
sin@cosf@ sinfcosh denominator
_1-2 sin® 8
" sinfcos@ 1 mark for
cos 26,1
_ cos28 M2 |  mark for
%sin 28 sin 26
2cos28
= = 2cot26 = LHS Al

sin 28
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(2)

(b)

(a)

562x+1 + 10x32x+1

GCxe x

M1 M1l where ¢, is an arbitrary constant

5xezx+1 — _g_er+1 —c = 1ofx er+1 dx

fx e2%+1 fdy = %xez"“ _%ezxn +c

1
wherec = ——¢,
10

—3¢c0s20 —4cos@+4=0

Lety = cos 8
—3y? -4y +4=0
3y?+4y—4=0

By-2+2)=0 Ml
y=§0ry=—2
cos @ =§ or cos 8 = =2 (rejf) M2

_(x—20)(2x) — x2(1) M1
- (x — 2k)?
x? — 4kx
Al

= (x - 2k)?

B2

M1l

Al

1 mark for
each term

2x+1 ; 82x+1 + 10J‘ 62x+1 dx + €4

0 = 0.841 or — 0.841 (3s.f. A2
f(x)
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g'(x)
= x? — 4kx M1
= x(x — 4k)
g decreases => g'(x) < 0 M1
x(x —4k) <0
0<x<4k Ml
(b)

Since x > 2k, then 2k < x < 4k (D
But it is also given that k < x < 6,
Le. 2k<x <12 (2)
By (1) and (2), 4k = 12

k=13 Al
For the function to be always positive,
k > 0 (so that the graph is U-shaped) (1) M1
We also require discriminant < 0 Ml
(so that graph never cuts x-axis)
22~ 4(k)(-2k-3) <0
2k*+3k+1<0 M1
k+DCk+1D)<0 Ml
-1<k<-3 @) Ml
But (1) and (2) cannot happen at the same time
(k cannot be positive but yet also be between -
land -3 Al

- There is ﬁo value of k for which the function

1s positive (proven)
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9 |(a)

y—x=2

y=x+2 €))
y? =4Q2x + 1) (2)
Sub (1) into (2):

(x+2)2=42x +1)
x24+4x+4=8x+4
x2—4x =10
x(x—4)=0
x=0o0rx=4%

Sub into (1}:
y=20ry==56

d_1= 3x* +m

When x = 2,;—1’ = 0 (given):
0=3(2)+m

m=—12

Ml

Ml

- M1l

M1

The two ioints are iO, 2i and i4, 6i Al
d

M1

Al

(®)

For stationary points, =g

dx
3x2—-12=0

x? =4

x=20r—2

When x = —2,
y=(-2)}—12(-2) - 15
y=1

Bis(2, 1)

Ml

Al
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For gradient to be a min, z—g =0 Ml
6x =0
() x=0 M1
When x = 0, y=—15
Pis (0, -15) Al
d3y
PP Mi
(@ B
Since E_xjsl is positive, the gradient is a Al

um

Method 1:
(x—2)24(r—-3)2—-22-32-12=0 M1
(x—-2)2+(y—-3)2=25 M1
Method 2:
2g = —4 2f = —6
g +fP—c=4+4+9+12=25 M1
Centre = (2, 3) Al
Radius = 5 units Al
Wheny =0,x2~4x—12=10 Ml
(x—-6)(x+2)=0
(b) x=60rx=-=2
The points are (6, 0) and (-2, 0) A2
Centre = (-2, 3), radius = 5 units Mi
(e)
Eqn: (x + 2)% + (y — 3)% = 25 Al/B2
Since the centre is only 2 units away from the y- Ml Accept any
axis similar answer
(d) (e.g. centre is
and the radius is 5 units, the circle will cut the - 3 units away

axis and does not lie entireli in the 224 iuadrant. Al | from x—axisi
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(a)

A=nr?+2nkr+c
where ¢ is an arbitrary constant

Whenr=0A=0:
(when there is no radius, there is no area)

c=10

Hence, A = nir? + 2mkr

M1

Al

(b)

Curved surface area:
2nrh = 2wkr
h=k

Bl

©

d 5
d—: =22t +1) +o

where ¢, 1s an arbitrary constant

d: 5
= =-in(2t+1) +3

M1

Al

(d)

dA _ dA _ dr
dt dr dt

dA 5
prae 2n(r + k) X [-2-111(2t +1) + 3]

When r = 15,t = 4,k = 10:
44  or(15 + 10 x(51 9+3)
g}-— m( ) 2n

M1

M1

Al

=2(x-%) +F

12 1) y=25—x Al
A
= x2 4 32
= x2 + (25 — x)? M1
(b) = 2x% —50x + 625 Ml
2 2 2
2512 Al
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(E.g. if x; = 10, then 25 — x; = 15 will give the
same area)

Min area=6§'—5 B1
(c)

when x = 25 Bl

25 — x1 Bl
(d)

h=1210r ~412(3s.f.)

M1
Al
Let the equation of the perpendicular bisector 1 mark for
be substituting M
yo(h=8) 5 M2 | 1 mark for
x-(-2) h+5 gradient
{c) Sub (h, 3):
3-(h-5) _ 5
h—(=2)  h4+5 M1
h*—8h—50 =0 M1
B = B+y/82—4(1)(-50) Ml
- 2(1)
A2
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