

## SWISS COTTAGE SECONDARY SCHOOL SECONDARY FOUR AND FIVE PRELIMINARY EXAMINATION



| Name: (                                  | ) | Class:                  |
|------------------------------------------|---|-------------------------|
| ADDITIONAL MATHEMATICS                   |   | 4049/01                 |
| Paper 1                                  |   | Monday 9 September 2024 |
|                                          |   | 2 hours 15 minutes      |
| Candidates answer on the Question Paper. |   |                         |

#### **READ THESE INSTRUCTIONS FIRST**

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

## Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total number of marks for this paper is 90.

| Questions | 1 | 2 | 3 | 4 |
|-----------|---|---|---|---|
| Marks     |   |   |   |   |

This document consists of 18 printed pages and 2 blank pages.

[Turn over

## Mathematical Formulae

#### 1. ALGEBRA

Quadratic Equation

For the equation  $ax^2 + bx + c = 0$ ,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \ .$$

Binomial Theorem

where *n* is a positive integer and 
$$\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1).....(n-r+1)}{r!}$$
.

### 2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for  $\triangle ABC$ 

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

## Answer all the questions.

## Section A (17 marks)

The equation of a curve is  $y = 3x^3 + ax^2 + b$ , where a and b are constants. If a > 0, find, in terms of a and/or b, the range of values of x for which y is increasing. [3]

2 The area of a rectangle is  $(7+b\sqrt{2})$  cm<sup>2</sup>. Given that the length of the rectangle is  $(a+4\sqrt{2})$  cm and the breadth of the rectangle is  $(5-\sqrt{2})$  cm, find the value of a and of b. [4]

- 3 The equation of a curve is  $y = 2x^2 + 12x + 11$ .
  - (a) Express  $2x^2 + 12x + 11$  in the form  $a(x+b)^2 + c$  where a, b and c are constants. [2]

(b) Find the range of values of p for which the line y = px + 11 intersects the curve at two distinct points. [3]



The diagram shows a triangle BCE whose vertices lie on the circumference of a circle. AD is a tangent to the circle at point C and AB is a tangent to the circle at point B. BED is a straight line.

(a) Prove that angle 
$$ABC$$
 + angle  $CED = 180^{\circ}$ . [3]

(b) Show that there does not exist a circle that passes through points A, B, E and C. [2]

# **BLANK PAGE**

| Name:     |   |   |          |   |          |          |    |                                                  | ·  | ( |
|-----------|---|---|----------|---|----------|----------|----|--------------------------------------------------|----|---|
| Class:    |   |   |          |   |          |          |    |                                                  |    |   |
| Questions | 5 | 6 | 7        | 8 | 9        | 10       | 11 | 12                                               | 13 |   |
| Morks     |   |   | <u> </u> |   | <b>—</b> | <u> </u> |    | <del>                                     </del> |    |   |

Section B (73 marks)

5 (a) Solve the equation 
$$\log_5 x + 2 = 3\log_x 5$$
.

[5]

**(b)** Sketch the graph 
$$y = \log_{0.5} x$$
.

[2]

- 6 It is given that  $f(x) = 3\sin\left(\frac{x}{2}\right) + 4$ .
  - (a) State the least and greatest value of f(x).

[2]

(b) State the period of f(x).

[1]

(c) Sketch the graph of y = f(x) for  $0 \le x \le 4\pi$ .

[2]

(d) By drawing a suitable straight line on the same set of axes as the graph of y = f(x), state the number of solutions of the equation  $\sin\left(\frac{x}{2}\right) = -\frac{x}{4\pi}$  for  $0 \le x \le 4\pi$ . [2]

A curve is such that  $\frac{d^2y}{dx^2} = 3e^{-2x} + \cos 2x$ . The curve passes through the point A(0, 3) and has a gradient of 5 at A. Find the equation of the curve. [7]

8 (a) The expansion of  $\left(3x - \frac{2}{x^2}\right)^n$  has a term independent of x. By considering the general term in the expansion, explain why n is a multiple of 3. [3]

(b) It is given that n=9. Find the value of  $\frac{\text{coefficient of term independent of } x}{\text{coefficient of } \frac{1}{x^6}}$  [4]

9 (a) Express 
$$\frac{9x^2-4x+8}{(x-2)(x+1)^2}$$
 in partial fractions.

[5]

**(b)** Hence, find 
$$\int \frac{9x^2 - 4x + 8}{(x-2)(x+1)^2} dx$$
.

[3]

- 10 A particle moves in a straight line such that its displacement, s cm, from a fixed point O is modelled by  $s = -3t + e^{\frac{t}{2}}$ , where t is the time in seconds since the start of motion.
  - (a) Show that the particle reaches instantaneous rest at  $t = 2 \ln 6$ . [3]

(b) Explain why the particle passes through O during the first second.

(c) Find the total distance travelled by the particle in the interval t = 0 to t = 4. [3]

11 The table shows, to 3 significant figures, the value, C, in thousands, of a car t years from C 1st January 2024.

| t | 1    | 2    | 3    | 4    |
|---|------|------|------|------|
| C | 68.2 | 58.6 | 50.7 | 44.3 |

(a) On the grid below plot  $\ln(C-15)$  against t and draw a straight line graph. The vertical  $\ln(C-15)$  -axis should start at 3.0 and have a scale of 2 cm to 0.2 units. The horizontal t-axis should have a scale of 2 cm to 1 unit. [3]



(b) Use your graph to find the gradient of your straight line and hence express C in the form  $C = Ae^{-kt} + 15$ , where A and k are constants. [4]

(c) Assuming that the model is still appropriate, find the year for which the value of the car is first below \$35 000. [3]

12



The diagram shows a parallelogram with vertices A(-2,0), B, C(7,7) and D. The side AB has equation  $y = \frac{1}{2}x + 1$  and the length of  $AB = 5\sqrt{5}$  units.

(a) Find the coordinates of B.

[4]

**(b)** Prove that *ABCD* is a rectangle.

[3]

(c) Calculate the area of ABCD.

[2]

- 13 The equation of a curve is  $y = \frac{6}{(2x-5)^3}$ .
  - (a) Show that for x > 2.5, the curve has no stationary points.

[3]

(b) The normal to the curve at x = 1 intersects another curve  $36y = x^2 + 90x - 78$  at points A and B. Express the difference of the x-coordinates of A and B in the form  $\sqrt{k}$ , where k is an integer to be found.

## **BLANK PAGE**

Level: Sec 4E/5N

# Additional Mathematics (90 marks)

| Qn.#  | Solution                                                                                                    | Mark Allocation                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1     | $\frac{\mathrm{d}y}{\mathrm{d}x} = 9x^2 + 2ax$                                                              | M1 (Find $\frac{dy}{dx}$ )                                                      |
|       |                                                                                                             |                                                                                 |
| ļ     | $9x^2 + 2ax > 0$                                                                                            | $\mathbf{M1} \left( \frac{\mathrm{d}y}{\mathrm{d}x} > 0 \right)$                |
|       | x(9x+2a)>0                                                                                                  |                                                                                 |
|       | $x < -\frac{2}{9}a$ or $x > 0$                                                                              | A1                                                                              |
| 2     | $\left(5 - \sqrt{2}\right)\left(a + 4\sqrt{2}\right) = 7 + b\sqrt{2}$                                       |                                                                                 |
|       | $5a + 20\sqrt{2} - a\sqrt{2} - 8 = 7 + b\sqrt{2}$                                                           | M1 (expansion)                                                                  |
|       | $(5a-8) + (20-a)\sqrt{2} = 7 + b\sqrt{2}$                                                                   |                                                                                 |
|       | 5a - 8 = 7  and  20 - a = b                                                                                 | M1 (compare                                                                     |
| i     | a = 3, b = 17                                                                                               | coefficient) A2                                                                 |
| 3(a)  | $2x^{2} + 12x + 11 = 2(x^{2} + 6x) + 11$                                                                    | B1 (either $(x+3)^2$ or                                                         |
|       | $= 2 \left[ (x+3)^2 - 3^2 \right] + 11$                                                                     | -7 correct)                                                                     |
|       | -                                                                                                           | 7 0011000)                                                                      |
| 2(1.) | $=2(x+3)^2-7$                                                                                               | B2 (all correct)                                                                |
| 3(b)  | $2x^2 + 12x + 11 = px + 11$                                                                                 | M1 (sim eqn)                                                                    |
|       | $2x^2 + (12 - p)x = 0$                                                                                      |                                                                                 |
|       | $(12-p)^2-4(2)(0)>0$                                                                                        | M1 (Find discriminant)                                                          |
|       | $(12-p)^2 > 0$                                                                                              |                                                                                 |
|       | <i>p</i> ≠ 12                                                                                               | A1                                                                              |
| 4(a)  | Let $\angle ABC = x$ .                                                                                      |                                                                                 |
|       | AB = AC (tangents from external point)<br>$\angle ACB = \angle ABC = x$ (base angles of isosceles triangle) | M1 ( / ACP = / APC)                                                             |
|       | $\angle CEB = \angle ACB = x$ (alternate segment theorem)                                                   | $\mathbf{M1} (\angle ACB = \angle ABC)$ $\mathbf{M1} (\angle CEB = \angle ACB)$ |
|       | $\angle CED = 180^{\circ} - \angle ACB$ (adj. angles on straight line)                                      | Note: If first M1 not                                                           |
| ·     | $=180^{\circ}-x$                                                                                            | awarded, maximum 2                                                              |
|       | $\angle ABC + \angle CED = x + (180^{\circ} - x)$                                                           | out of 3 marks                                                                  |
|       | = 180°                                                                                                      | A1                                                                              |
| 4(b)  | Suppose there exists a circle that passes through $A$ , $B$ ,                                               |                                                                                 |
|       | E and $C$ .                                                                                                 |                                                                                 |
|       | $\angle BAC = 180^{\circ} - \angle ABC - \angle ACB$ (sum of angles of                                      |                                                                                 |
|       | triangle)                                                                                                   |                                                                                 |
|       | $=180^{\circ}-2x$                                                                                           |                                                                                 |
| ļ     | $\angle BAC = 180^{\circ} - \angle CEB$ (opp angles of cyclic quad)                                         | M1 (opp angles of                                                               |
|       | $=180^{\circ}-x$                                                                                            | cyclic quad)                                                                    |

| Qn.#      | Solution                                                 | Mark Allocation                    |
|-----------|----------------------------------------------------------|------------------------------------|
| Here were | For $x \neq 0$ , $180^{\circ} - 2x \neq 180^{\circ} - x$ |                                    |
|           | Hence, there is no circle that passes through $A, B, E$  | A1 (contradiction)                 |
|           | and C.                                                   |                                    |
| 5(a)      | $\log_5 x + 2 = 3\log_x 5$                               |                                    |
|           | 1-2-3                                                    | M1 (change of base)                |
|           | $\log_5 x + 2 = \frac{3}{\log_5 x}$                      | Wit (change of base)               |
|           | Let $u = \log_5 x$                                       |                                    |
|           | 2 – 3                                                    |                                    |
|           | $u+2=\frac{3}{u}$                                        |                                    |
|           | $u^2 + 2u - 3 = 0$                                       | M1 (form quad eqn)                 |
|           | (u-1)(u+3)=0                                             | M1 (solve quad eqn)                |
|           | u=1 or $u=-3$                                            |                                    |
|           | $\log_5 x = 1  \text{or}  \log_5 x = -3$                 |                                    |
|           | $x = 5$ or $x = 5^{-3}$                                  |                                    |
|           | $x = \frac{1}{125}$                                      | A2                                 |
| 5(b)      | 3,                                                       | B1 (shape)                         |
| 0(0)      |                                                          | <b>B1</b> ( $x$ -int and $y$ -axis |
|           |                                                          | asymptote)                         |
|           |                                                          |                                    |
|           |                                                          |                                    |
|           | 0 1                                                      |                                    |
|           |                                                          |                                    |
|           |                                                          |                                    |
|           | y = logo.s2                                              |                                    |
| 6(a)      | Least value =1                                           | B1                                 |
|           | Greatest value = 7                                       | B1                                 |
| 6(b)      | Period = $4\pi$ or $720^{\circ}$                         | B1                                 |
| 6(c)      | 3.                                                       | B1 (shape + correct                |
|           | 1 1                                                      | number of cycles)                  |
|           | 7 7                                                      | D1 ( l'actor of                    |
|           |                                                          | B1 (coordinates of                 |
|           |                                                          | start/end point + max/min points)  |
|           | y=3sin(\frac{x}{2})14                                    | max/mm pomes)                      |
|           | 1                                                        |                                    |
|           |                                                          |                                    |
|           |                                                          |                                    |
|           | 1 y= - 3 x +4                                            | <u> </u>                           |
| ļ         |                                                          |                                    |
|           | 7 2m 3m 4m                                               |                                    |
|           |                                                          |                                    |
|           | 2                                                        |                                    |

| Qn.# | Solution                                                                    | Mark Allocation                                         |
|------|-----------------------------------------------------------------------------|---------------------------------------------------------|
| 6(d) | $\sin\left(\frac{x}{2}\right) = -\frac{x}{4\pi}$                            |                                                         |
|      | $3\sin\left(\frac{x}{2}\right) = -\frac{3}{4\pi}x$                          | i                                                       |
|      | $3\sin\left(\frac{x}{2}\right) + 4 = -\frac{3}{4\pi}x + 4$                  |                                                         |
|      | $y = -\frac{3}{4\pi}x + 4$                                                  | M1 (find eqn of line)                                   |
| 7    | After drawing line: Number of solutions = 3                                 | A1 (draw line + number of solutions)                    |
| 7    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \int 3e^{-2x} + \cos 2x  \mathrm{d}x$    |                                                         |
|      | $= -\frac{3}{2}e^{-2x} + \frac{1}{2}\sin 2x + c$                            | M1 (integrate $3e^{-2x}$ )<br>M1 (integrate $\cos 2x$ ) |
|      | Sub $x = 0$ , $\frac{dy}{dx} = 5$                                           |                                                         |
|      | $5 = -\frac{3}{2} + c$                                                      |                                                         |
|      | $c = \frac{13}{2}$                                                          | <b>M1</b> (find <i>c</i> )                              |
|      | $\frac{dy}{dx} = -\frac{3}{2}e^{-2x} + \frac{1}{2}\sin 2x + \frac{13}{2}$   | 2                                                       |
|      | $y = \int -\frac{3}{2}e^{-2x} + \frac{1}{2}\sin 2x + \frac{13}{2} dx$       | M1 (integrate $-\frac{3}{2}e^{-2x}$ )                   |
|      | $= \frac{3}{4}e^{-2x} - \frac{1}{4}\cos 2x + \frac{13}{2}x + c_1$           | M1 (integrate $\frac{1}{2}\sin 2x$ )                    |
|      | Sub (0, 3) $3 = \frac{3}{4} - \frac{1}{4} + c_1$                            | M1 (integrate $\frac{13}{2}$ )                          |
|      | $c_1 = \frac{5}{2}$                                                         |                                                         |
|      | $y = \frac{3}{4}e^{-2x} - \frac{1}{4}\cos 2x + \frac{13}{2}x + \frac{5}{2}$ | A1                                                      |
| 8(a) | $T_{r+1} = \binom{n}{r} (3x)^{n-r} \left(-\frac{2}{x^2}\right)^r$           | M1 (general term)                                       |
|      | $= \binom{n}{r} 3^{n-r} x^{n-r} (-2)^r (x^{-2})^r$                          |                                                         |
|      | $= \binom{n}{r} 3^{n-r} (-2)^r x^{n-3r}$                                    | M1 (simplification)                                     |

| Qn.#                            | Solution                                                                                                              | Mark Allocation                                    |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Carlotte Selection and Carlotte | n-3r=0                                                                                                                | A1 (avalenation)                                   |
|                                 | n=3r where r is a positive integer                                                                                    | A1 (explanation)                                   |
|                                 | Thus <i>n</i> is a multiple of 3.                                                                                     |                                                    |
| 8(b)                            | Term independent of $x$ :                                                                                             |                                                    |
| ļ                               | 9=3r                                                                                                                  |                                                    |
|                                 | $r = 3$ $T_4 = \binom{9}{3} 3^6 (-2)^3$                                                                               |                                                    |
|                                 | = -489888                                                                                                             | <b>B1</b> (Obtain -489888)                         |
|                                 | For $\frac{1}{x^6}$ term:                                                                                             |                                                    |
|                                 | 9-3r=-6 $r=5$                                                                                                         | <b>M1</b> (Find r for $\frac{1}{x^6}$              |
|                                 | $T_6 = \binom{9}{5} 3^4 (-2)^5 x^{-6}$                                                                                | term)                                              |
|                                 | $=-\frac{326592}{x^6}$                                                                                                | M1 (Find $\frac{1}{x^6}$ term)                     |
|                                 | $\frac{\text{coefficient of term independent of } x}{\text{coefficient of } \frac{1}{x^6}} = \frac{-489888}{-326592}$ |                                                    |
|                                 | $\frac{x}{2}$                                                                                                         | A1                                                 |
| 9(a)                            | $\frac{9x^2 - 4x + 8}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{B}{(x + 1)^2} + \frac{C}{x + 1}$                    | M1 (form 3 fractions)                              |
|                                 | $9x^2 - 4x + 8 = A(x+1)^2 + B(x-2) + C(x-2)(x+1)$<br>Sub $x = -1$                                                     | M1 (form identity)                                 |
|                                 | Sub $x = -1$<br>$9(-1)^2 - 4(-1) + 8 = B(-1 - 2)$<br>B = -7<br>Sub $x = 2$<br>$9(2)^2 - 4(2) + 8 = A(2 + 1)^2$        | M2 (A, B, C correct) M1 (1 of 3 constants correct) |
| <b>!</b>                        | $A = 4$ Sub $x = 0$ $9(0)^{2} - 4(0) + 8 = 4(1)^{2} - 7(-2) + C(-2)(1)$                                               |                                                    |
|                                 | $C = 5$ $\frac{9x^2 - 4x + 8}{(x - 2)(x + 1)^2} = \frac{4}{x - 2} - \frac{7}{(x + 1)^2} + \frac{5}{x + 1}$            | A1                                                 |
| 9(b)                            | $\int \frac{9x^2 - 4x + 8}{(x - 2)(x + 1)^2} dx = \int \frac{4}{x - 2} - \frac{7}{(x + 1)^2} + \frac{5}{x + 1} dx$    | B3 (B1 for each term)                              |
| <u> </u>                        | $=4\ln(x-2)+\frac{7}{x+1}+5\ln(x+1)+c$                                                                                | Note: Subtract 1 mark if there is no "+ $c$ "      |

| 10(a) $v = \frac{ds}{dt}$<br>$v = -3 + \frac{1}{2}e^{\frac{t}{2}}$ M1 (find $v$ ) $0 = -3 + \frac{1}{2}e^{\frac{t}{2}}$ M1 ( $v = 0$ ) $6 = e^{\frac{t}{2}}$ $\ln 6 = \frac{t}{2}$ $t = 2 \ln 6$ A1  10(b) At $t = 0$ , $s = 1$ M1 (both values of $s$ ) Since displacement changes from positive to negative, the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.  10(c) At $t = 2 \ln 6$ , $s = -4.7506$ M1 (both values of $s$ ) At $t = 4$ , $s = -4.6109$ M1 (sum of distances $s = 5.89$ cm (3sf)  11(a) Refer to attached graph  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ , $(0.417)$ and | Qn. #          | Solution                                | Mark Allocation                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|-------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | ds                                      |                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | $V = \frac{1}{dt}$                      |                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | $1 \frac{t}{2}$                         |                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | $v = -3 + \frac{1}{2}e^2$               | M1 (find $v$ )                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 1 1                                     |                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | $0 = -3 + \frac{1}{2}e^{2}$             | $\mathbf{M1}\ (v=0)$                |
| $t = 2 \ln 6$   A1   10(b)   At $t = 0$ , $s = 1$   At $t = 1$ , $s = -1.35$ (3sf)   Since displacement changes from positive to negative, the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.   10(c)   At $t = 2 \ln 6$ , $s = -4.7506$   At $t = 4$ , $s = -4.6109$   Total distance $= (1+4.7506) + (4.7506 - 4.6109)$   M1 (sum of distances) $= 5.89$ cm (3sf)   B1 (table of values)   B1 (plot points)   B1 (plot points)   B1 (plot points)   B1 (draw line)   C = $Ae^{-kt} + 15$   $\ln(C - 15) = \ln A - kt$   $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225)   $\ln A = 4.17$ (accept 4.14 to 4.2)   $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)   A1 (Find $A$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | t t                                     |                                     |
| $t = 2 \ln 6$   A1   10(b)   At $t = 0$ , $s = 1$   At $t = 1$ , $s = -1.35$ (3sf)   Since displacement changes from positive to negative, the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.   10(c)   At $t = 2 \ln 6$ , $s = -4.7506$   At $t = 4$ , $s = -4.6109$   Total distance $= (1+4.7506) + (4.7506 - 4.6109)$   M1 (sum of distances) $= 5.89$ cm (3sf)   B1 (table of values)   B1 (plot points)   B1 (plot points)   B1 (plot points)   B1 (draw line)   C = $Ae^{-kt} + 15$   $\ln(C - 15) = \ln A - kt$   $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225)   $\ln A = 4.17$ (accept 4.14 to 4.2)   $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)   A1 (Find $A$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | $6 = e^{\overline{2}}$                  |                                     |
| $t = 2 \ln 6$   A1   10(b)   At $t = 0$ , $s = 1$   At $t = 1$ , $s = -1.35$ (3sf)   Since displacement changes from positive to negative, the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.   10(c)   At $t = 2 \ln 6$ , $s = -4.7506$   At $t = 4$ , $s = -4.6109$   Total distance $= (1+4.7506) + (4.7506 - 4.6109)$   M1 (sum of distances) $= 5.89$ cm (3sf)   B1 (table of values)   B1 (plot points)   B1 (plot points)   B1 (plot points)   B1 (draw line)   C = $Ae^{-kt} + 15$   $\ln(C - 15) = \ln A - kt$   $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225)   $\ln A = 4.17$ (accept 4.14 to 4.2)   $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)   A1 (Find $A$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 1n6_t                                   |                                     |
| 10(b) At $t = 0$ , $s = 1$ At $t = 1$ , $s = -1.35$ (3sf) Since displacement changes from positive to negative, the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.  10(c) At $t = 2 \ln 6$ , $s = -4.7506$ At $t = 4$ , $s = -4.6109$ Total distance = $(1 + 4.7506) + (4.7506 - 4.6109)$ $= 5.89 \text{ cm (3sf)}$ M1 (both values of $s$ ) M1 (both values of $s$ ) M1 (sum of distances) A1  11(a) Refer to attached graph B1 (table of values) B1 (plot points) B1 (draw line)  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ , Gradient = $\frac{4.17 - 3.78}{0 - 2}$ $= -0.195 \text{ (accept } -0.225 \text{ to } -0.165)$ $C = Ae^{-k} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195 \text{ (3 s.f.) (accept } 0.165 \text{ to } 0.225)$ $\ln A = 4.17 \text{ (accept } 4.14 \text{ to } 4.2)$ $A = 64.7 \text{ (3 s.f.) (accept } 62.8 \text{ to } 66.7)$ A1 (Find $A$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | $\frac{m_0=-2}{2}$                      |                                     |
| 10(b) At $t = 0$ , $s = 1$ At $t = 1$ , $s = -1.35$ (3sf) Since displacement changes from positive to negative, the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.  10(c) At $t = 2 \ln 6$ , $s = -4.7506$ At $t = 4$ , $s = -4.6109$ Total distance $= (1 + 4.7506) + (4.7506 - 4.6109)$ $= 5.89$ cm (3sf)  11(a) Refer to attached graph  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ , Gradient $= \frac{4.17 - 3.78}{0 - 2}$ $= -0.195$ (accept $-0.225$ to $-0.165$ ) $C = Ae^{-k} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  M1 (both values of $s$ )  M1 (sum of distances at $s$ )  B1 (draw line)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                             |                | $t = 2 \ln 6$                           | A1                                  |
| At $t=1$ , $s=-1.35$ (3sf) Since displacement changes from positive to negative, the particle passes through $s=0$ some time between $t=0$ and $t=1$ . Hence particle passes through $O$ in first second.  10(c) At $t=2\ln 6$ , $s=-4.7506$ At $t=4$ , $s=-4.6109$ Total distance $=(1+4.7506)+(4.7506-4.6109)$ $=5.89$ cm (3sf)  11(a) Refer to attached graph  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ , Gradient $=\frac{4.17-3.78}{0-2}$ $=-0.195$ (accept $-0.225$ to $-0.165$ ) $C=Ae^{-kt}+15$ $\ln(C-15)=\ln A-kt$ $k=0.195$ (3 s.f.) (accept $0.165$ to $0.225$ ) $\ln A=4.17$ (accept $4.14$ to $4.2$ ) $A=64.7$ (3 s.f.) (accept $62.8$ to $66.7$ )  A1 (explanation)  A1 (explanation)  M1 (both values of $s$ )  M1 (sum of distances)  B1 (plot points)  B1 (draw line)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10(b)          | At $t = 0$ , $s = 1$                    |                                     |
| the particle passes through $s = 0$ some time between $t = 0$ and $t = 1$ . Hence particle passes through $O$ in first second.  10(c) At $t = 2 \ln 6$ , $s = -4.7506$ At $t = 4$ , $s = -4.6109$ Total distance $= (1+4.7506) + (4.7506 - 4.6109)$ $= 5.89 \text{ cm (3sf)}$ 11(a) Refer to attached graph  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ ,  Gradient $= \frac{4.17 - 3.78}{0 - 2}$ $= -0.195 \text{ (accept } -0.225 \text{ to } -0.165)$ $C = Ae^{-k} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195 \text{ (3 s.f.) (accept } 0.165 \text{ to } 0.225)$ $\ln A = 4.17 \text{ (accept } 4.14 \text{ to } 4.2)$ $A = 64.7 \text{ (3 s.f.) (accept } 62.8 \text{ to } 66.7)$ M1 (both values of $s$ )  M1 (sum of distances)  B1 (plot points) B1 (draw line)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | At $t=1$ , $s=-1.35$ (3sf)              |                                     |
| t = 0 and t = 1. Hence particle passes through O in first second.  10(c) At $t = 2 \ln 6$ , $s = -4.7506$ At $t = 4$ , $s = -4.6109$ Total distance = $(1 + 4.7506) + (4.7506 - 4.6109)$ = 5.89 cm (3sf)  11(a) Refer to attached graph  B1 (table of values) B1 (plot points) B1 (draw line)  11(b) Using points (0, 4.17) and (2, 3.78), Gradient = $\frac{4.17 - 3.78}{0 - 2}$ = -0.195 (accept -0.225 to -0.165) $C = Ae^{-k} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  M1 (both values of s) M1 (sum of distances) B1 (plot points) B1 (draw line)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                         | A1 (explanation)                    |
| first second.  10(c) At $t = 2 \ln 6$ , $s = -4.7506$ At $t = 4$ , $s = -4.6109$ Total distance $= (1 + 4.7506) + (4.7506 - 4.6109)$ $= 5.89$ cm (3sf)  11(a) Refer to attached graph  B1 (table of values) B1 (plot points) B1 (draw line)  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ ,  Gradient $= \frac{4.17 - 3.78}{0 - 2}$ $= -0.195$ (accept $-0.225$ to $-0.165$ ) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  M1 (both values of s)  M1 (sum of distances) B1 (plot points) B1 (draw line)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | - · · · · · · · · · · · · · · · · · · · |                                     |
| 10(c) At $t = 2 \ln 6$ , $s = -4.7506$<br>At $t = 4$ , $s = -4.6109$<br>Total distance $= (1+4.7506) + (4.7506 - 4.6109)$<br>$= 5.89$ cm (3sf)  11(a) Refer to attached graph  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ ,  Gradient $= \frac{4.17 - 3.78}{0 - 2}$ $= -0.195$ (accept $-0.225$ to $-0.165$ ) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  M1 (both values of s)  M1 (both values of s)  M1 (sum of distances)  B1 (plot points)  B1 (Gradient)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | · · · · · · · · · · · · · · · · · · ·   |                                     |
| At $t = 4$ , $s = -4.6109$<br>Total distance = $(1+4.7506) + (4.7506 - 4.6109)$<br>= 5.89 cm (3sf)  Refer to attached graph  B1 (table of values) B1 (plot points) B1 (draw line)  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ ,  Gradient = $\frac{4.17 - 3.78}{0 - 2}$ = -0.195 (accept -0.225 to -0.165) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  M1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10(.)          |                                         |                                     |
| Total distance = $(1+4.7506) + (4.7506-4.6109)$ M1 (sum of distances)<br>= $5.89$ cm (3sf)  Refer to attached graph  B1 (table of values) B1 (plot points) B1 (draw line)  Using points $(0, 4.17)$ and $(2, 3.78)$ , Gradient = $\frac{4.17-3.78}{0-2}$ = $-0.195$ (accept $-0.225$ to $-0.165$ ) $C = Ae^{-kt} + 15$ $\ln(C-15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10(c)          |                                         | $\mathbf{M1}$ (both values of $s$ ) |
| The state of th                                                                                     |                |                                         | M1 (gum of distances)               |
| 11(a) Refer to attached graph  Refer to attached graph  B1 (table of values) B1 (plot points) B1 (draw line)  11(b) Using points $(0, 4.17)$ and $(2, 3.78)$ ,  Gradient = $\frac{4.17 - 3.78}{0 - 2}$ = $-0.195$ (accept $-0.225$ to $-0.165$ ) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | ·                                       |                                     |
| 11(b) Using points (0, 4.17) and (2, 3.78),<br>Gradient = $\frac{4.17 - 3.78}{0 - 2}$<br>= -0.195 (accept -0.225 to -0.165) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195 (3 s.f.) (accept 0.165 to 0.225)$ $\ln A = 4.17 (accept 4.14 to 4.2)$ $A = 64.7 (3 s.f.) (accept 62.8 to 66.7)$ B1 (Gradient)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11(a)          |                                         |                                     |
| 11(b) Using points (0, 4.17) and (2, 3.78),<br>Gradient = $\frac{4.17-3.78}{0-2}$<br>= -0.195 (accept -0.225 to -0.165) $C = Ae^{-kt} + 15$ $\ln(C-15) = \ln A - kt$ $k = 0.195 (3 \text{ s.f.}) (accept 0.165 \text{ to 0.225})$ $\ln A = 4.17 (accept 4.14 \text{ to 4.2})$ $A = 64.7 (3 \text{ s.f.}) (accept 62.8 \text{ to 66.7})$ B1 (Gradient)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11( <i>a</i> ) | rector to attached graph                | 1 1                                 |
| Using points (0, 4.17) and (2, 3.78),  Gradient = $\frac{4.17 - 3.78}{0 - 2}$ = -0.195 (accept -0.225 to -0.165) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                         | ( <u> </u>                          |
| Gradient = $\frac{4.17 - 3.78}{0 - 2}$<br>= -0.195 (accept -0.225 to -0.165) $C = Ae^{-kt} + 15$ $\ln(C - 15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  B1 (Gradient)  M1 (Form linear eqn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11(b)          | Using points (0, 4.17) and (2, 3.78),   |                                     |
| $0-2$ $= -0.195$ (accept $-0.225$ to $-0.165$ ) $C = Ae^{-kt} + 15$ $\ln(C-15) = \ln A - kt$ $k = 0.195$ (3 s.f.) (accept 0.165 to 0.225) $\ln A = 4.17$ (accept 4.14 to 4.2) $A = 64.7$ (3 s.f.) (accept 62.8 to 66.7)  B1 (Gradient)  M1 (Form linear eqn)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Gradient - 4.17-3.78                    |                                     |
| $C = Ae^{-kt} + 15$<br>$\ln(C - 15) = \ln A - kt$<br>k = 0.195 (3 s.f.) (accept 0.165 to 0.225)<br>$\ln A = 4.17$ (accept 4.14 to 4.2)<br>A = 64.7 (3 s.f.) (accept 62.8 to 66.7)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 0-2                                     |                                     |
| $\ln(C-15) = \ln A - kt$ $k = 0.195 (3 \text{ s.f.}) \text{ (accept } 0.165 \text{ to } 0.225)$ $\ln A = 4.17 \text{ (accept } 4.14 \text{ to } 4.2)$ $A = 64.7 (3 \text{ s.f.}) \text{ (accept } 62.8 \text{ to } 66.7)$ A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | =-0.195 (accept $-0.225$ to $-0.165$ )  | B1 (Gradient)                       |
| k = 0.195 (3 s.f.) (accept 0.165 to 0.225)<br>$\ln A = 4.17$ (accept 4.14 to 4.2)<br>A = 64.7 (3 s.f.) (accept 62.8 to 66.7)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | $C = Ae^{-kt} + 15$                     |                                     |
| $\ln A = 4.17$ (accept 4.14 to 4.2)<br>A = 64.7 (3 s.f.) (accept 62.8 to 66.7)  A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | $\ln(C-15) = \ln A - kt$                | M1 (Form linear eqn)                |
| A = 64.7 (3  s.f.) (accept 62.8  to  66.7) A1 (Find A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                         |                                     |
| , (a star) (assept series to source)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | ` 1                                     | A1 (Pin 1 A)                        |
| $C = 64.7e^{-0.193i} + 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | · / · •                                 | 1                                   |
| $_{ m I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | $C = 64.7e^{-0.193i} + 15$              | AI                                  |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | OP                                      |                                     |
| $\ln(C-15) = -0.195t + 4.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                         |                                     |
| $C-15 = e^{-0.195t + 4.17}$ <b>M1</b> (remove ln)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                         | M1 (remove ln)                      |
| $C - 15 = e^{-0.195t} \times e^{4.17}$ $C - 15 = e^{-0.195t} \times e^{4.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                         |                                     |
| 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | -                                       | 10/11/07/1/07                       |
| 711 (711 to linu 11, 711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | C = 04./e +15                           | ,                                   |
| 11(c) $64.7155e^{-0.195t} + 15 < 35$ for eqn)  M1 (accept = 35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11(c)          | 64 7155 <sub>0</sub> -0.195t +15 < 25   | 4-2-1                               |
| 11(c) $64.7155e^{-0.195t} + 15 < 35$ <b>M1</b> (accept = 35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11(0)          | UT./1336 +13<33                         | MII (accept = 33)                   |

| Qn.#  | Solution                                                                                                                             | Mark Allocation                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|       | $e^{-0.195t} < \frac{20}{64.7155}$ $-0.195t < \ln\left(\frac{20}{64.7155}\right)$                                                    | M1 (apply ln)                          |
|       | t > 6.02<br>Year 2030                                                                                                                | A1 (Year)                              |
| 12(a) | Let $B\left(x, \frac{1}{2}x + 1\right)$<br>$(x+2)^2 + \left(\frac{1}{2}x + 1\right)^2 = \left(5\sqrt{5}\right)^2$                    | M1 (form eqn using length)             |
|       | $x^{2} + 4x + 4 + \frac{1}{4}x^{2} + x + 1 = 125$ $\frac{5}{4}x^{2} + 5x - 120 = 0$ $x^{2} + 4x - 96 = 0$                            | M1 (simplification)                    |
| 124)  | (x-8)(x+12) = 0<br>x = 8 or $x = -12$ (rej)<br>y = 5<br>B(8,5)                                                                       | M1 (solve quad eqn)  A1                |
| 12(b) | Gradient of $BC = \frac{7-5}{7-8}$<br>= -2<br>Gradient of $AB \times Gradient$ of $BC = \frac{1}{2} \times -2$                       | M1 (Gradient of BC)                    |
|       | =-1<br>Therefore $\angle ABC = 90^{\circ}$<br>Since $ABCD$ is a parallelogram with int angle = $90^{\circ}$ , $ABCD$ is a rectangle. | M1 (Show right angle) A1 (explanation) |
| 12(c) | Length $BC = \sqrt{(8-7)^2 + (5-7)^2}$<br>= $\sqrt{5}$ units<br>Area of $ABCD = 5\sqrt{5} \times \sqrt{5}$                           | M1 (Find <i>BC</i> )                   |
| 13(a) | $= 25 \text{ units}^2$ $\frac{dy}{dx} = 6(-3)(2x-5)^{-4}(2)$                                                                         | M1 ( $\frac{dy}{dx}$ without ×2)       |
|       | $=-\frac{36}{\left(2x-5\right)^4}$                                                                                                   | <b>M2</b> (correct $\frac{dy}{dx}$ )   |
|       | For $x > 2.5$ , since numerator of $\frac{dy}{dx} \neq 0$ , $\frac{dy}{dx} \neq 0$<br>Therefore there are no stationary points.      | A1 (with explanation)                  |
|       | 71                                                                                                                                   | 111 (With explanation)                 |

| Qn.#  | Solution                                                                                 | Mark Allocation         |
|-------|------------------------------------------------------------------------------------------|-------------------------|
| 13(b) | At $x=1$ , $y=-\frac{2}{9}$                                                              | B1 (y – coordinate)     |
|       | At $x=1$ , $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4}{9}$                              |                         |
|       | Gradient of normal = $\frac{9}{4}$                                                       | M1 (gradient of normal) |
|       | Eqn of normal: $y + \frac{2}{9} = \frac{9}{4}(x-1)$                                      | M1 (form eqn of normal) |
|       | $y = \frac{9}{4}x - \frac{89}{36}$                                                       |                         |
|       | $36y = 81x - 89$ Points of intersection: $x^2 + 90x - 78 = 81x - 89$                     | M1 (sim eqn)            |
|       | $x^{2} + 9x + 11 = 0$ $x = \frac{-9 \pm \sqrt{9^{2} - 4(1)(11)}}{2(1)}$                  | M1 (quad formula)       |
|       | $=-\frac{9}{2}\pm\frac{\sqrt{37}}{2}$                                                    |                         |
|       | Difference between x-coordinates                                                         |                         |
|       | $= -\frac{9}{2} + \frac{\sqrt{37}}{2} - \left(-\frac{9}{2} - \frac{\sqrt{37}}{2}\right)$ | M1 (difference)         |
|       | $=\sqrt{37}$                                                                             | A1                      |