NAME:() CLASS:
	<u> </u>

STRE & HOPE	
AND DESCRIPTION OF THE PERSON	

FAIRFIELD METHODIST SCHOOL (SECONDARY)

PRELIMINARY EXAMINATION 2024 SECONDARY 4 EXPRESS

ADDITIONAL MATHEMATICS

4049/02

Paper 2

Date: 22 August 2024

Duration: 2 hours 15 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

The total of the marks for this paper is 90.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142.

For Examiner's Use

Table of Penalties		Question Number		
Presentation	□ 1 □ 2			
Rounding off	□1		Parent's/Guardian's Signature	90

NAME: _____

CLASS: _____

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

NAM	E:() CLASS:
	Answer all the questions.
1	Show that the equation $2(e^x - 3) = e^{\frac{1}{2}x}$ has only one solution and find this value correct to
	3 significant figures. [4]

NAME:	()	CLASS:

The equation of a curve is $y = ax^3 + b$, where a and b are constants. The equation of the normal to the curve at the point where x = 1 is 5y + 2x = 12. Find the value of a and of b.

[6]

NAME: _____()

CLASS:

- Given that $y = \frac{3 \ln 2x}{x^2}$ for x > 0.
 - (a) Show that $\frac{dy}{dx} = \frac{3}{x^3} (1 2 \ln 2x)$.

IAME:	()	CLASS:

(b) Hence, find $\int \frac{\ln 2x}{x^3} dx$.

NAME:	()	CLASS:
			-

- Given that $f(x) = x^2 ax + 3$, where a is a constant,
 - (a) find the range of values of a for which f(x) > x 1, for all real values of x, [4]

(b) find the value(s) of a for which the line y = a + 4 is a tangent to the curve y = f(x).

NAME:	() CLASS:
NAME:	•	•

5 (a) A and B are acute angles such that $sin(A-B) = \frac{3}{8}$ and $sin A cos B = \frac{5}{8}$.

Without using a calculator, find the value of $\cos A \sin B$. [2]

(b) Express $2\sin 2\theta(\sec \theta - \tan \theta)$ as a quadratic expression in $\sin \theta$.

NAME:	()	CLASS:

(c) Use your answer to part (b) to find, for $0 \le \theta \le 2\pi$, the exact solutions of the equation $2\sin 2\theta(\sec \theta - \tan \theta) + 3 = 0$.

1	,	`	CLASS:
NAME:(,	

- 6 A curve is such that $\frac{dy}{dx} = \frac{8}{x^2} 2$.
 - (i) Given that the curve passes through the point (1, 5), find the equation of the curve. [3]

(ii) Find the x-coordinates of the stationary points of the curve.

NAME:	() CLASS:	
(iii)	Obtain and expression for $\frac{d^2y}{dx^2}$	and hence, or otherwise, determine the nature of	
	each stationary point.	-	

	, ,	CLASS	:
NAME:	,		

7 (a) Write down the first three terms in the expansion, in descending powers of x,

of
$$\left(x^2 + \frac{m}{x}\right)^9$$
, where *m* is an integer. [2]

- **(b)** Given that the coefficient of x^3 in the expansion of $\left(x^2 + \frac{m}{x}\right)^9$ is -126,
 - (i) show that m = -1, [3]

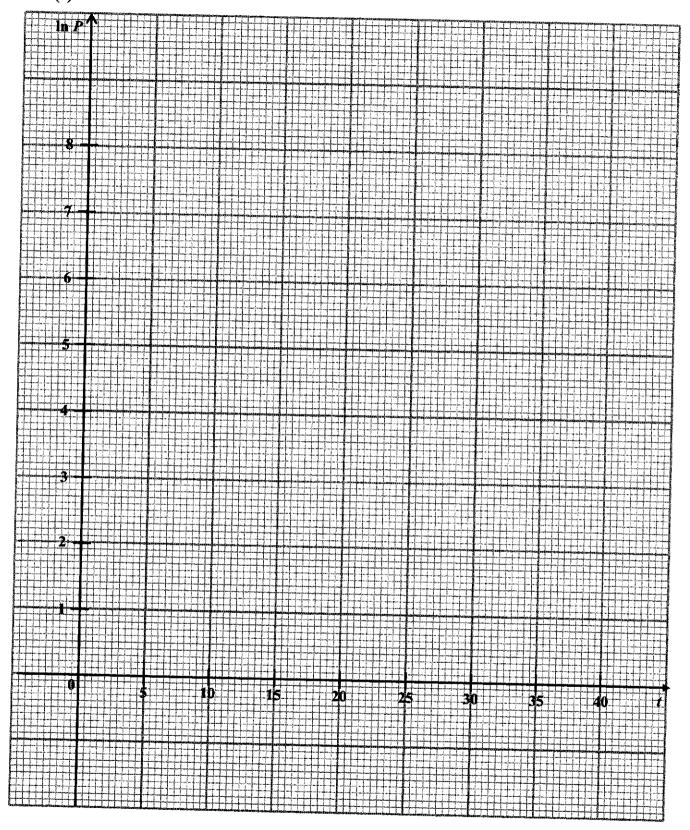
NAME:	()) CLASS:

(ii) hence, find the term independent of x in the expansion of

$$\left(2-\frac{1}{x^3}\right)\left(x^2+\frac{m}{x}\right)^9.$$
 [4]

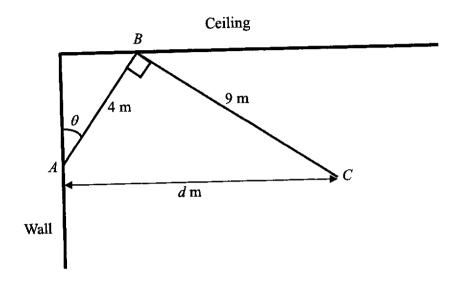
NAME:()	CLASS:

8 The table shows the population, P, in thousands, of a small town decreases with time, t years.


[<i>t</i>	6	9	12	15	18	25	33
	·							
	 P	274	203	151	112	83	41	18
	. •	- '		<u> </u>	<u> </u>	<u></u>		

- (a) Show your working clearly and draw a straight line graph of $\ln P$ against t on the grid provided. [3]
- (b) Find the gradient of your straight line and hence express P in the form of Ae^{-kt} , where A and k are constants, giving your answers correct to the nearest hundred and to 1 decimal place respectively. [4]

(c) If this model for the population remains valid, find the number of years it will take for the population of the small town to drop below 100000. Give your answer correct to the nearest year. [2]


NAME:		_	
NAME.	. ()	CLASS:

8 (a)

NAME:() CLAS	is:
---------------	-----

The diagram above shows two rods AB and BC of length 4 m and 9 m respectively and $\angle ABC = 90^{\circ}$. Rollers are fixed at points A and B such that A is able to move along the wall and B is able to move along the celling. The horizontal distance of C from the vertical wall is d m.

(a) Show clearly that $d = 4\sin\theta + 9\cos\theta$.

[2]

[4]

NAME:(()	CLASS:

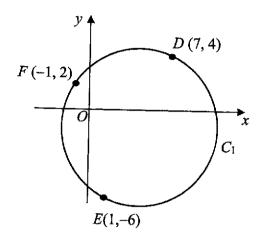
(b) Express d in the form $R\cos(\theta - \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.

(c) Find the value of θ for which d = 6 m.

[2]

NAME:	() CLAS	\$:
(3)	Find the maximum value of d and the corresponding value of θ .	[2]

NAN	/E:	() CLASS:
10	A pa	article moves in a straight line such that, t s after passing through a fixed point O , its lacement from O is s m. The velocity v ms ⁻¹ of the particle is such that $v = 6\cos 4t$.
	(a)	State the initial velocity of the particle. [1]
	(b)	Find the first value of t when the acceleration of the particle is equal to 8 ms^{-2} . [2]
	(c)	Find the displacement of the particle from O when $t = 4$. [3]


[5]

(1	1	CLASS:
NAME:	`	,	

(d) Find the total distance travelled by the particle for the first $\frac{3\pi}{8}$ seconds.

NAME:	() cı	-ASS:

11 The diagram below is not drawn to scale.

In the diagram, D, E and F are points on the circle C_1 .

(a) Show that DE is the diameter of the circle C_1 and hence find the centre of C_1 . [5]

NAME:()	CLASS:

(b) Find the equation of the circle C_1 in the form $x^2 + y^2 + px + qy + r = 0$, where p, q and r are integers. [3]

(c) Given that the circle C_2 is a reflection of the circle C_1 in the line x = -2, find the equation of C_2 . [2]

NAME:	()	CLASS:	
(d)	Explain why point (3, 4) lies within only one of the circles	C_1 and C_2 .	[2]

~ End of Paper ~

Sec 4 Add Math Preliminary Exam 2024 P2 Marking Scheme

Qn.	Solution	Marks	AO
L	$2(e^{x} - 3) = e^{\frac{1}{2}x}$ Let $y = e^{\frac{1}{2}x}$,		3
	$2(y^2 - 3) = y$ $2y^2 - y - 6 = 0$	M1 (substitution)	
	$(2y+3)(y-2) = 0$ $y = -\frac{3}{2} \text{or} y = 2$ $e^{\frac{1}{2}x} = -\frac{3}{2} \text{(rej. as -ve)} e^{\frac{1}{2}x} = 2$ $\frac{1}{2}x = \ln 2$ $x = 2 \ln 2$ $= 1.39 (3 \text{ s.f.})$	M1 (factorization) -3 A1 (reject 2) (Did not award marks for students who squared both sides and could not justify why they rejected one answer when they ended up with 2 answers)	
	Therefore, the equation has only one solution where $x=1.39$	AG1	

$y = ax^3 + b$	2
$y = ax^3 + b$ $\frac{dy}{dx} = 3ax^2$	B1 (find $\frac{dy}{dx}$)
dx $5y + 2x = 12$	
5y = -2x + 12	
$y = -\frac{2}{5}x + \frac{12}{5}$	
Grad of normal = $-\frac{2}{5}$	
Grad of tangent = $\frac{5}{2}$	B1 (grad of
$\therefore \frac{dy}{dx} = \frac{5}{2}$	tangent)
dx = 2	tangent)
At x = 1,	
$y = -\frac{2}{5}(1) + \frac{12}{5}$	
y=2	M1 (find $y = 2$)
At x = 1, y = 2	
$2 = a(1)^3 + b$	M1 (for either (1)
a+b=2(1)	or (2))
$At x = 1, \frac{dy}{dx} = \frac{5}{2}$	
$\frac{5}{2} = 3a(1)^2$ (2)	
$a = \frac{5}{6}$	A1 (for a)
1	
Substituting $a = \frac{5}{6}$ into (1)	
$\frac{5}{6} + b = 2$	
$b = \frac{7}{6}$	A1 (for b)
6	

3a	$3\ln(2x)$		
	$y = \frac{3\ln(2x)}{x^2}$		1
	(3(2))	ł	
	$\frac{dy}{dx} = \frac{x^2 \left(\frac{3(2)}{2x}\right) - 6x \ln 2x}{\left(x^2\right)^2}$	N/1 (A1	
	$\frac{1}{dx} = \frac{1}{\left(x^2\right)^2}$	M1 (Apply	
		quotient rule)	
	$=\frac{3x-6x\ln 2x}{x^4}$	M1 (Able to diff	
		$\ln 2x = \frac{2}{2x} = \frac{1}{x}$.)	
	$=\frac{3}{x^3}(1-2\ln 2x)$	A1	
3b	$\int \left(\frac{3}{x^3} - \frac{6}{x^3} \ln 2x \right) dx = \frac{3 \ln 2x}{x^2} + C$	M1 (reverse	2
	$\int \int \left(x^3 - x^3 + 2x\right) dx = \frac{1}{x^2} + C$	differentiation -	-
		must include $+ C$)	
	$\int \left(\frac{1}{x^3} - \frac{2}{x^3} \ln 2x \right) dx = \frac{\ln 2x}{x^2} + C_1$		
	$\int \frac{2\ln 2x}{x^3} \mathrm{d}x = -\frac{\ln 2x}{x^2} - \frac{1}{2x^2} + C_2$	M1 (integrate $\frac{1}{x^3}$)	
	$\int \frac{\ln 2x}{x^3} dx = -\frac{1}{2} \left(\frac{\ln 2x}{x^2} + \frac{1}{2x^2} \right) + C_3$	A1(must include + C) (Whole question will only deduct once if they did not put + C)	
		they did not put + c)	
į			
ļ			
ĺ]
			j

1	f(x) > x - 1		_
	$x^2-ax+3>x-1$ $x^2-(a+1)x+4>0$ Since it is always positive for all real values of x , the graph of the curve $y=x^2-(a+1)x+4$ lies entirely above the x -axis \Rightarrow the equation $x^2-(a+1)x+4=0$ has no real roots Discriminant, $D<0$ $(a+1)^2-4(1)(4)<0$ $(a+1)^2-4^2<0$ (a+5)(a-3)<0	M1 (form inequality) (students who equated both eqns together will not get M1 unless they explain that there are no real roots and lead to D<0) M1 (Discriminant less than zero) M1 (Factorization)	2
	∴ -5 < a < 3	A1	1
4b	$\begin{cases} y = f(x) \\ y = a + 4 \end{cases}$ $x^{2} - ax + 3 = a + 4$ $x^{2} - ax - a - 1 = 0$ Since the line $y = a + 4$ is a tangent to the curve, this equation	M1 (equate equations together)	
	has equal real roots Discriminant, $D = 0$ $(-a)^2 - 4(1)(-a-1) = 0$ $a^2 + 4a + 4 = 0$	M1 (D = 0)	
	$(a+2)(a+2) = 0$ $\therefore a = -2$	A1	
5a	$\sin(A-B) = \sin A \cos B - \cos A \sin B$ $\cos A \sin B = \sin A \cos B - \sin(A-B)$ $= \frac{5}{8} - \frac{3}{8}$	M1 (make cos A sin B the subject)	1
	$=\frac{1}{4}$	A1	

5b	$2\sin 2\theta(\sec \theta - \tan \theta)$	2
	$=2(2\sin\theta\cos\theta)\left(\frac{1}{\cos\theta}-\frac{\sin\theta}{\cos\theta}\right)$	M1 (double angle
	(coso coso)	formula)
	$=2(2\sin\theta\cos\theta)\left(1-\sin\theta\right)$	
	$=2(2\sin\theta\cos\theta)\left(\frac{1-\sin\theta}{\cos\theta}\right)$	M1 (bring $\cos \theta$
		under same
	4: 0.4:20	denominator)
	$=4\sin\theta-4\sin^2\theta$	A1
5c	$2\sin 2\theta(\sec \theta - \tan \theta) + 3 = 0$	
	$4\sin\theta - 4\sin^2\theta + 3 = 0$	
	$4\sin^2\theta - 4\sin\theta - 3 = 0$	
	$(2\sin\theta+1)(2\sin\theta-3)=0$	M1 (factorize)
	$\sin \theta = -\frac{1}{2}$ or $\sin \theta = \frac{3}{2}$ (rejected)	M1 (show both and must reject one)
	$\alpha = \frac{\pi}{6}$	
	$\theta = \pi + \frac{\pi}{6}, 2\pi - \frac{\pi}{6}$	
	$\theta = \frac{7\pi}{6}, \frac{11\pi}{6}$	A1 (must be in terms of π as qn
	$\theta = \frac{1}{6}, \frac{1}{6}$	asked for exact solns)
5(i)	$y = \int \left(\frac{8}{x^2} - 2\right) dx$ $y = -\frac{8}{x} - 2x + c$	1
	$v = -\frac{8}{2} - 2x + c$	
		M1 (with $+c$)
	At $x = 1$, $y = 5$ $5 = -\frac{8}{1} - 2(1) + c$	
	$3 = -\frac{1}{1} - 2(1) + c$	M1 (Sub in values)
	c=15	
	Equation of curve: $y = -\frac{8}{x} - 2x + 15$	A1
(ii)	Let $\frac{dy}{dx} = 0$	1
l	Let $\frac{dy}{dx} = 0$ $\frac{8}{x^2} - 2 = 0$	M1
Í	$\frac{8}{x^2} = 2$ $x^2 = 4$	
	$x^2 = 4$	
	x=2 or $x=-2$	A1 (both answers)

			1
6(iii)	$\frac{d^2y}{dx^2} = -\frac{16}{x^3}$	M1 (2 nd derivative)	
	$\begin{array}{ll} dx^2 & x \\ At x = 2, \end{array}$		
	$\frac{d^2y}{dx^2} = -\frac{16}{2^3} = -2 < 0$	A1	
	$\therefore \text{ Maximum point at } x = 2$		}
<u> </u> 	At x = -2,		
	$\frac{d^2y}{dx^2} = -\frac{16}{(-2)^3} = -\frac{16}{-8} = 2 > 0$		
	$\therefore \text{ Minimum point at } x = -2$	A1	
	ivinimizari possessi	(for students who got part (ii) wrong,	
		maximum mark is	
		1M if M1 shown) B2 (3 terms all	
7a	$\left(x^{2} + \frac{m}{x}\right)^{9} = x^{18} + {9 \choose 1} \left(x^{2}\right)^{8} \left(\frac{m}{x}\right)^{1} + {9 \choose 2} \left(x^{2}\right)^{7} \left(\frac{m}{x}\right)^{2} + \dots$	correct)	
	$\left(\frac{x+x}{x} \right)^{-x} + \left(\frac{1}{x} \right)^{-x} + \left($		
	$= x^{18} + 9 \text{ m} x^{15} + 36m^2 x^{12} + \dots$	B1(2 terms correct)	
	= x +9 Hx +30m x +		3
7 b (i)	For $\left(x^2 + \frac{m}{x}\right)^9$, general term is $(r+1)^{th}$ term		
	(x)		
	(9) $(2)^{9-r}$ $(3)^r$ $(-1)^r$	M1 (general term)	
	$= {9 \choose r} (x^2)^{9-r} (m)^r (x^{-1})^r$		
ļ	$= \binom{9}{r} (m)^r (x^{18-2r})(x^{-r})$		
	(r)		
	(9) () (.18-3r)		
	$= \binom{9}{r} \left(m\right)^r \left(x^{18-3r}\right)$		
	10.2.2		
3	18-3r=3	A1 (r=5)	
	r=5	AI(' J)	
	(9)		
ļ	$\therefore -126 = \binom{9}{5} m^5$		
	$-126=126m^5$		
	$m^5 = -1$		
	m=-1	AG1	
	m-1		

7b(ii)	For $\left(x^2\right)$	$+\frac{m}{p}$. the ter	m inden	endent	of v		-	-	1
	18-3r		,	аср	CHUCH	OIA,				
	r=6	- 0							M1	
	$\left \begin{array}{c} \left \left(\begin{array}{c} 9 \\ 6 \end{array} \right) \right m$	$u^6 = 84($	$(-1)^6 = 8$	34						
	For $\left(2 - \frac{1}{x^3}\right) \left(x^2 + \frac{a}{x}\right)^9$, the term independent of x:								A1	
	$\left \left(2 - \frac{1}{x^3} \right) \right $									
	$=2\times84+$	-126								
	204								M 1	
	= 294								A1	13 13 13 13
8a	t (years)	6	9	12	15	18	25	33	P2 – Plot points accurately.	1
	P	274	203	151	112	83	41	18	L1 – Plot straight	
	ln P	5.61	5.31	5.02	4.72	4.42	3.71	2.89	line graph (See graph attached.)	
Bb	$P = Ae^{-kt}$!				<u> </u>			unachea.)	2
!	$\ln P = \ln r$	Ae^{-kt}							M1 (product law or	2
ı	ln P = ln		−kt						if evidence shown in	
	$ \ln P = \ln A $	A-kt							transformation from	
	$ \ln P = -ka $	$t + \ln A$							eqn of graph to	
									$P = Ae^{-kt})$	
	$Grad = \frac{5}{2}$ $= -$.61-4. ^c 6-15 0.0989							M1 (gradient)	
	-k = -0.0		•							
	k = 0.1(1 c	d.p)							A1	
	$\ln A = 6.2$	_								
İ	A = 492.7			•					D1	
	$A = 500 \text{ (n}$ $\therefore P = 500e$		100)						B1 (If students did not use the gradient of	
	r = 300e						_		line to solve for k and A, maximum mark is 1M as question mentioned hence.)	

_ :	$\ln 100 = 4.6$	M1	1
	When $\ln P = 4.6$	A1	
	t = 16 (nearest year)		
a	Ceiling $A = A \sin \theta$ $B = 4 \sin \theta$ $BF = 9 \cos \theta$ $d = 4 \sin \theta + 9 \cos \theta$	M1 AG 1	3
9b	$R = \sqrt{81+16}$ $R = \sqrt{97}$ $9\cos\theta + 4\sin\theta = R(\cos\theta\cos\alpha + \sin\theta\sin\alpha)$	M1 (Find R)	1
[$9 = R \cos \alpha$ $4 = R \sin \alpha$ $\tan \alpha = \frac{4}{9}$ $\alpha = 23.962^{\circ}(3d \cdot p)$	M1 (No M1 giv if student do no show this) M1 (Find α)	1
9c	$\alpha = 24.0^{\circ}(1d.p)$ $9\cos\theta + 4\sin\theta = \sqrt{97}\cos(\theta - 24.0^{\circ})$ $\sqrt{97}\cos(\theta - 23.96^{\circ}) = 6$	A1	1
70	$\cos(\theta - 23.96^{\circ}) = \frac{6}{\sqrt{97}}$ $\theta = 52.467^{\circ} + 23.96^{\circ}$	MI	
	$\theta = 76.427^{\circ} \approx 76.4^{\circ}$	A1 (no A1 if 7	(6.5)

9d	Maximum value of $d = \sqrt{97}$	B1	1
	$\cos(\theta - 24.0^{\circ}) = 1$		1
	$\theta = 24.0$		
]		B1	[
	Maximum value of $d = \sqrt{97}$ and occurs when $\theta = 24.0^{\circ}$		
10a	$v = 6\cos 4t$		
	When $t = 0, v = 6$	}	$\int 1$
	Initial velocity of the particle is 6m/s.	B1	
10b	$a = \frac{dv}{dt} = -24\sin 4t$	dv	2
		$M1\left(\frac{dv}{dt}\right)$	
	Ī		
	$\sin 4t = -\frac{1}{3}$		
	4t = 3.4814		
	t = 0.870 (3 s.f)	A1	
10c	$s = \int 6\cos 4t dt$		1
	$s = \frac{6}{4}\sin 4t + c$	M1 (integration	
		with $+ c$)	
	$s = \frac{3}{2}\sin 4t + c$	with te	
	When $t=0$, $s=0$,		
	c=0	A1 (conclude c=0) (students who used	
	$s = \frac{3}{2}\sin 4t$	definite integral	
	When $t = 4$,	must indicate when t = 0, s=0)	
	$s = \frac{3}{2}\sin 16$	- 0, 3-0)	
	s = -0.432 Displacement = -0.432 m (3 sf)		
		B1	
0d	At instantaneous rest, $v = 0$		2
	$6\cos 4t = 0$	M1 (ν = 0)	
	$\cos 4t = 0$		
	$4t = \frac{\pi}{2}, \frac{3\pi}{2}$		
i	$t = \frac{\pi}{8}, \frac{3\pi}{8}$	M1 (volves of A	
	8′8	M1 (values of t)	

		M1
	When $t = \frac{\pi}{8}$,	
	$s = \frac{3}{2}\sin\frac{\pi}{2} = 1.5$ m	M1
	When $t = \frac{3\pi}{8}$,	1411
	$s = \frac{3}{2}\sin\frac{3\pi}{2} = -1.5$ m	
	Total distance travelled	Al
	$= (1.5 \times 2) + 1.5$	
	= 4.5m	
 1a	Solution 1	3
	Grad EF = $\frac{2-(-6)}{-1-1} = -4$	M1 (Find grad)
	Grad DF = $\frac{4-2}{7-(-1)} = \frac{1}{4}$	B1 (Show – 1)
	Since Grad $DF \times \text{Grad } EF = -4 \times \frac{1}{4} = -1$	B1(Conclude 90°)
	$\therefore DF \perp EF$	}
	$\angle DFE = 90^{\circ}$ (Right angle in semi-circle)	AG 1 (State reason
	$\therefore DE$ is the diameter of C_1	angle in semi-
		circle)
	Since PQ is the diameter of C_1	
i	Centre of $C_1 = \left(\frac{1+7}{2}, \frac{-6+4}{2}\right)$	B1
İ	= (4,-1)	
11a	Solution 2	3
IIa	$DF = \sqrt{(7+1)^2 + (4-2)^2} = \sqrt{68}$	M1 (Find distance)
	$DF = \sqrt{(7+1)^2 + (4-2)^2} = \sqrt{68}$ $EF = \sqrt{(1+1)^2 + (-6-2)^2} = \sqrt{68}$	
	$EF = \sqrt{(1+1)^2 + (-6-2)^2} = \sqrt{66}$ $DE = \sqrt{(7-1)^2 + (4+6)^2} = \sqrt{136}$	
	$DF^2 + EF^2 = \left(\sqrt{68}\right)^2 + \left(\sqrt{68}\right)^2 = 136$	
	$DE^2 = \left(\sqrt{136}\right)^2 = 136$	B1 (Show this
]	$\cdots DF^2 + EF^2 = DE^2$	statement)
	By converse of Pythagoras theorem, triangle DFE is a right	B1(Conclude 90°-
	angled triangle. Therefore $\angle DFE = 90^{\circ}$.	must state Pythagoras thm)

	Since $\angle DFE = 90^{\circ}$			
	By converse of right angle in semi-circle		AG 1 (State reason	
	$\therefore DE$ is the diameter of C_1		angle in semi-	
	Since PQ is the diameter of C_1		circle)	
	Centre of $C_1 = \left(\frac{1+7}{2}, \frac{-6+4}{2}\right)$			
	= (4,-1)		B1	
11b	Radius of $C_1 = \sqrt{(4-1)^2 + (-1-(-6))^2} = \sqrt{34}$		B1	1
	Equation of C_1 : $\frac{(x-4)^2 + (y+1)^2 = 34}{x^2 + y^2 - 8x + 2y - 17 = 0}$		M1	
	$x^2 + y^2 - 8x + 2y - 17 = 0$		A1	
11c	Centre of $C_2 = (-8, -1)$ Radius = $\sqrt{34}$	<u> </u>	B1 (centre)	2
	Equation of C_2 : $(x+8)^2 + (y+1)^2 = 34$		B1	
11d	Distance of E from centre of C_1			2
	$=\sqrt{(3-4)^2+(4+1)^2}$			2
	- \((3-4) + (4+1)^2			
	$=\sqrt{26}$			
	$<$ radius of C_1		 M1	}
	Distance of E from centre of C_2		1011	
	$=\sqrt{(3+8)^2+(4+1)^2}$			
	$=\sqrt{146}$	_丿		
	$= \sqrt{146}$ > radius of C_2	_) 		